Inhaltsverzeichnis. 1 Rationale Zahlen 2. 2 Zuordnungen 3. 3 Geometrie 5. 4 Prozentrechnung 9. 5 Zinsrechnung Terme/Gleichungen 13

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Inhaltsverzeichnis. 1 Rationale Zahlen 2. 2 Zuordnungen 3. 3 Geometrie 5. 4 Prozentrechnung 9. 5 Zinsrechnung 12. 6 Terme/Gleichungen 13"

Transkript

1 Inhaltsverzeichnis Rationale Zahlen Zuordnungen Geometrie 5 4 Prozentrechnung 9 5 Zinsrechnung 6 Terme/Gleichungen 7 Wahrscheinlichkeitsrechnung 5

2 Rationale Zahlen ddition/ Subtraktion negativer Zahlen Man unterscheidet zwei Fälle:. eide Zahlen haben das gleiche Vorzeichen: Das Ergebnis erhält das gemeinsame Vorzeichen und die eträge werden addiert = +9 (Das gemeinsame Vorzeichen ist +) 9 = 9 (Das gemeinsame Vorzeichen ist ). eide Zahlen haben unterschiedliche Vorzeichen: Das Ergebnis erhält das Vorzeichen des größeren etrags und man berechnet die Differenz der eträge. +7 = +5 (Das Vorzeichen des größeren etrags ist +) + 7 = +5 (Das Vorzeichen des größeren etrags ist +) + 7 = 5 (Das Vorzeichen des größeren etrags ist ) 7 + = 5 (Das Vorzeichen des größeren etrags ist ) Negative Zahlen und Klammern Wenn ein + vor der Klammer steht, lässt man einfach die Klammer und das + vor der Klammer weg: 75 + ( 5) = 75 5 = 40 Wenn Schulden hinzugefügt 75 + ( 5) = 75 5 = 60 werden, wird man ärmer. Wenn ein vor der Klammer steht, müssen die Vorzeichen in der Klammer umgedreht werden, danach lässt man die Klammer und das vor der Klammer weg. 75 ( 5) = = 60 Wenn Schulden weggenommen 75 ( 5) = = 40 werden, wird man reicher. Multiplikation/Division von rationalen Zahlen Das Ergebnis der Multiplikation/Division zweier rationaler Zahlen erhält man, indem man. die Zahlen ohne Vorzeichen miteinander multipliziert/dividiert,. das Vorzeichen ermittelt: sind die Vorzeichen gleich, ist das Ergebnis positiv. (+ mal + ergibt + und - mal - ergibt +) sind die Vorzeichen unterschiedlich, ist das Ergebnis negativ. (+ mal - ergibt - und - mal + ergibt -) sp.: (+) ( 5) = 5 (+) : ( 4) = 0, 5 ( 6, ) ( ) = +, (, 5) : ( ) = 0, 5

3 Zuordnungen Zuordnungen In vielen lltagssituationen findet man einen Zusammenhang zwischen ereichen von Größen. Zu einer Größe aus dem ersten ereich gehört eine Größe aus dem zweiten ereich. Solche Zuordnungen werden durch einen Pfeil bezeichnet. eispiel: Gewicht Preis Zeit Temperatur lter Körpergröße Zuordnungen werden in Tabellen, in Schaubildern oder in Pfeilbildern dargestellt. Manchmal werden sie auch durch eine Rechenvorschrift beschrieben. Proportionale Zuordnungen Zuordnungen, bei denen sich die eine Größe verdoppelt (halbiert), verdreifacht (drittelt) usw. wenn sich die andere Größe auch verdoppelt (halbiert), verdreifacht (drittelt), usw. nennt man proportionale Zuordnungen. sp.: kg Äpfel kostet e, dann kosten kg Äpfel 4 e und kg kosten 6 e, usw.. Masse (kg) Preis (Euro) 4 6 : Masse (kg) Preis (Euro) : : 0,67 Graph einer proportionalen Zuordnungen Die Wertepaare einer Zuordnung kann man als Punkte in ein Koordinatensystem einzeichnen. ei einer proportionalen Zuordnung liegen alle diese Punkte auf einer Geraden durch den Ursprung (0 0). Um den Graph zu zeichnen benötigst du nur ein Wertepaar. Preis in Euro : Masse in kg

4 Umgekehrt proportionale Zuordnungen Wenn sich die eine Größe verdoppelt, verdreifacht, usw., die andere Größe aber halbiert, drittelt usw., handelt es sich um eine umgekehrt proportionale Zuordnung. lle Punkte der umgekehrt proportionalen Zuordnung liegen auf einer Kurve, diese Kurve heißt Hyperbel. sp.: Gewinn pro Persin in Euro nzahl der Personen Gewinn pro Persin in Euro : : : 4 40 Dreisatz nzahl der Personen evor du mit dem Verfahren rechnest, musst du sicher sein, dass es sich um eine proportionale oder umgekehrt proportionale Zuordnung handelt. Man geht in Schritten vor:. Ein gegebenes Wertepaar aufschreiben.. Zwischenwert berechnen.. Gesuchten Wert berechnen. sp.: Proportionale Zuordnung: Umgekehrt proportionale Zuordnung Masse (kg) Preis (Euro) 4 : : 6 nzahl der Personen Gewinn pro Persin in Euro : :4 4 40

5 Geometrie ezeichnung von Dreiecken c b β a Punkte: Die drei Punkt eines Dreiecks werden mit Großbuchstaben und gegen den Uhrzeigersinn bezeichnet. Seiten: Seiten werden mit kleinen uchstaben bezeichnet. Die Seite a liegt dem Punkt gegenüber usw.. Winkel: Die Winkel werden nach dem Scheitelpunkt gekennzeichnet:, β, Winkelsumme Dreieck β Die Summe der Winkel in einem Dreieck beträgt 80 : + β + = 80 Dreiecksformen nach Winkeln drei spitze Winkel ein rechter Winkel ein stumpfer Winkel. β β spitzwinkliges Dreieck: lle Winkel sind kleiner als 90. rechtwinkliges Dreieck: Ein Winkel ist 90 groß. stumpfwinkliges Dreieck: Ein Winkel ist größer als 90. β

6 Dreiecksformen nach Seitenlänge asis b gleichschenklig a=c Schenkel a c β Schenkel asiswinkel: = b gleichseitig a=b=c c = β = gleichschenkliges Dreieck: Zwei Seiten sind gleich lang. Diese Seiten heißen Schenkel. Die dritte Seite heißt asis. Die asiswinkel sind gleich groß gleichseitiges Dreieck: lle drei Seiten sind gleich lang. ei einem gleichseitigen Dreieck sind auch alle drei Winkel gleich groß. Jedes gleichseitige Dreieck ist auch gleichschenklig. a β

7 Kongruenzsatz SSS Zwei Dreiecke sind kongruent (deckungsgleich) wenn sie in allen Seiten übereinstimmen. Planfigur b a c β Konstruktionsbeschreibung eispiel: gegeben: a=4cm, b=5cm, c=,5cm Konstruiere. die Seite c. den Kreis um mit dem Radius b=5cm. den Kreis um mit dem Radius a=4cm 4. den Schnittpunkt der Kreise, das ist der Punkt. Kongruenzsatz SWS Zwei Dreiecke sind kongruent (deckungsgleich), wenn sie in Seiten und dem eingeschlossenen Winkel übereinstimmen. Planfigur b a c β Konstruktionsbeschreibung eispiel: gegeben: a=4cm, b=5cm, = 70 Konstruiere. die Seite b mit den Punkten und. den Winkel. den Kreis um mit dem Radius a=4cm und erhalte. 4. die Seite c.

8 Kongruenzsatz WSW Zwei Dreiecke sind kongruent (deckungsgleich), wenn sie in einer Seite und den anliegenden Winkeln übereinstimmen. Planfigur b a c β Konstruktionsbeschreibung eispiel: gegeben: b=5cm, = 40, = 70 Konstruiere. die Seite b mit den Punkten und. den Winkel. den Winkel. den Schnittpunkt der beiden Schenkel, das ist der Punkt. Kongruenzsatz SSW Zwei Dreiecke sind kongruent (deckungsgleich), wenn sie in zwei Seiten und dem Winkel, der der längeren Seite gegenüberliegt, übereinstimmen. Planfigur b a c β Konstruktionsbeschreibung eispiel: gegeben: c=5cm, b=7cm, β = 00 Konstruiere. die Seite c mit den Punkten und. den Winkel β. den Kreis um mit dem Radius b=7cm. den Schnittpunkt des Kreises mit dem freien Schenkel, das ist der Punkt.

9 4 Prozentrechnung Prozent-ruch-Dezimalbruch nteile können als ruch, Dezimalbruch oder Prozent geschrieben werden. Das Wort Prozent stammt vom italienischen per cento und kann mit von hundert übersetzt werden. 75% bedeutet also , 5 =,5 00 =, 5% Jeder Prozentsatz ist also ein ruchteil mit dem Nenner 00. 8% = 8 00 = 0, 08 Lerne auswendig! = 50% 4 = 5% 4 = 75% 5 = 0% 0 = 5% 8 =, 5% 0 = 0% =, % 00 = % 5 = 4% Der Prozentsatz ist gesucht Wieviel Prozent sind von 40? nteile können als ruch geschrieben werden: (siehe Karteikarte Prozent-ruch-Dezimalbruch) von 40 = 40 = 0, = 0% von 40 sind also 0% Der nteil (Prozentwert (W)) ist gesucht Wieviel sind 7% von 650m? Der nteil wird mit dem Dreisatzschema berechnet: 00% 650m % % = 45, 5m 7% von 650m sind 45,5m.

10 Das Ganze (Grundwert (G)) ist gesucht. 4kg sind 7% von? Das Ganze wird mit dem Dreisatzschema berechnet: 7% 4kg % % = 6 00 = 600kg 4kg sind 7% von 600kg.

11 egriffe/formel zur Prozentrechnung Das Ganze wird Grundwert (G) genannt. Der nteil vom Grundwert ist der Prozentwert (W). p ist die Prozentzahl. Den Prozentwert (W) berechnet man mit der Formel: W = G p 00 eispiel: Eine Hose kostete 80 e bevor sie um 5% ermäßigt wurde. G= 80, p=5, W=? W = W= Die Hose wurde um e ermäßigt und kostet jetzt noch 68 e. Wenn der Grundwert (G) oder die Prozentzahl (p) gesucht ist, setzt man alle gegebenen Werte in die Formel ein und löst die Gleichung auf. eispiele zur Prozentrechnung mit Formeln G gesucht: Michel bekam bei der Schülersprecherwahl 78 Stimmen, das waren 5% der abgegebenen Stimmen. G=?, p= 5, W=78 G 5 78 = = G 5 :5 :5 50 = G Es wurden 50 Stimmen abgegeben. p gesucht: Michaela bekam bei der Schülersprecherwahl 8 Stimmen. Es wurden 50 Stimmen abgegeben. G= 50, p=?, W= 8 50 p 8 = = 50 p :50 :50 5 = p Michaela bekam 5% der abgegebenen Stimmen.

12 5 Zinsrechnung egriffe/formel zur Zinsrechnung Die Zinsrechnung ist eine nwendung der Prozentrechnung. Während man die Prozentrechnung für alle beliebige Größen benutzt, geht es bei der Zinsrechnung immer um Geldbeträge, für die man Zinsen bekommt. Deshalb nutzt man andere egriffe: Prozentrechnung Zinsrechnung Grundwert (G) Kapital (K) Die Zinsen für ein Jahr berechnet Prozentzahl (p) Zinssatz (p) man mit der Formel: Prozentwert (W) Zinsen (Z) Z = K p 00 eispiel: Heinz legt für Jahr 500 e bei einem Zinssatz von,5 % an. K= 500, p=,5, Z=? Z = 500,5 00 Z=,5 e Hans bekommt,50 e Zinsen, insgesamt hat er nach einem Jahr 5,50 e. eispiele zur Zinsrechnung (K oder p gesucht) K gesucht: Michel bekommt nach einem Jahr 6,80 e Zinsen. Der Zinssatz beträgt,% K=?, p=,, Z=6,80 6,8 = K, = K, :, :, 55 = K Michel hat vor einem Jahr 55 e angelegt. p gesucht: Michaela hat 80 e angelegt. Nach einem Jahr hat sie 84,76 e. K= 80, p=?, Z= 4,76 80 p 4,76 = = 80 p :80 :80,8 = p Der Zinssatz beträgt,8%.

13 6 Terme und Gleichungen Terme und Variablen erechnungen kann man allgemein als Term aufschreiben. nstelle von Zahlen schreibt man dabei uchstaben. Diese uchstaben nennt man Variablen. Variablen sind Platzhalter für Zahlen. eispiel: Umfang eines Rechtecks Term: a + b Variablen: a steht für die Länge; b steht für die reite. Werte von Termen Wenn man für die Variablen Zahlen einsetzt, kann man den Wert des Terms berechnen. eispiel: a + b Setzt man für a=7 und b= ein, ergibt sich: 7 + = 0 Für a=7 und b= ist der Wert des Terms also 0. Gleichungen lösen I Du kennst schon seit der Grundschule Rechenterme mit Platzhaltern wie 7 + =. Gesucht wird die Zahl, die man einsetzen muss, damit die Gleichung wahr wird. Statt des Platzhalters nimmt man uchstaben (x;y;...). Sie heißen Variablen. Um sich ein mühsames Probieren zu ersparen, formt man die Gleichung so um, dass ihre Lösung die gleiche bleibt. Dabei gilt die Regel, dass man auf beiden Seiten der Gleichung das Gleiche rechnen muss. Du darfst auf beiden Seiten eine gleiche Zahl addieren x 4 = 5 +4 x 4 +4 = x = 9 eine gleiche Zahl subtrahieren 7 x+7 = x+7 7 = 7 x = 6 7 mit einer gleichen Zahl multiplizieren durch eine gleiche Zahl dividieren x = 6 x = 8 x = 6 : : x : = 8 : x = x = 6 eachte: x soll in der letzten Zeile alleine auf einer Seite stehen!

14 Gleichungen lösen II Häufig sind mehrere Schritte nötig, um eine Gleichung zu lösen. sp.: x + 5 = ls erstes musst du auf beiden Seiten addieren/subtrahieren (Strichrechnung): x + 5 = 5 x = 8 ls nächstes musst du auf beiden Seiten multiplizieren/dividieren (Punktrechnung): x = 8 : ( ) x = 6 Manchmal musst du auch auf beiden Seiten addieren/subtrahieren. sp.: x 7 = 7x x = 7x + 5 7x 5x = 5 : ( 5) x = Gleichungen lösen III ei längeren Gleichungen musst du zuerst die Gleichung vereinfachen. Dazu fasst du auf beiden Seiten Terme zusammen. 5x + 4x = 8x x + 0 Zusammenfassen 9x = 5x 5x addieren/subtrahieren 6x = + 6x = + : ( 6) dividieren/multiplizieren x =

15 7 Wahrscheinlichkeitsrechnung Wahrscheinlichkeiten Wenn bei einem Zufallsversuch alle Ergebnisse gleich wahrscheinlich sind, kann man die Wahrscheinlichkeit wie folgt bestimmen: Wahrscheinlichkeit eines Ergebnisses = nzahl aller Ergebnisse sp.: eim Wurf eines Würfels gibt es 6 Ergebnisse, nämlich die Zahlen von bis 6. lle Ergebnisse sind gleich wahrscheinlich. lso ist die Wahrscheinlichkeit für jede Zahl 6 Ereignisse ei einem Zufallsversuch führen häufig mehrere Ergebnisse zum Erfolg. lle Ergebnisse, die zum Erfolg führen heißen günstige Ergebnisse. Ein Ereignis besteht aus mehreren günstigen Ergebnissen. Die Wahrscheinlichkeit für ein Ereignis berechnet man wie folgt: Wahrscheinlichkeit eines Ereignisses = nzahl der guenstigen Ergebnisse nzahl der moeglichen Ergebnisse sp.:mit einem Würfel soll eine gerade Zahl gewürfelt werden. günstige Ergebnisse:, 4 und 6, also gibt es drei günstige Ergebnisse nzahl aller Ergebnisse: 6 (nämlich die Zahlen bis 6) Wahrscheinlichkeit für eine gerade Zahl = 6 = Zweistufige Zufallsversuche g g g r b b r r r r r b g r b g r b g r b g. Zug. Zug Die Wahrscheinlichkeiten lassen sich bei zweistufigen Zufallsversuchen mit einem aumdiagramm ermitteln. Produktregel Man berechnet die Wahrscheinlichkeit eines Ergebnisses, indem man die Wahrscheinlichkeiten entlang des zugehörigen Pfades multipliziert. sp.: P(b, r) = = 00 0 = 0, 0 = 0% Summenregel Die Wahrscheinlichkeit eines Ereignisses erhält man, indem man die Wahrscheinlichkeiten der zugehörigen Ergebnisse addiert. sp.: P(zwei gleiche Kugeln) = P(r, r) + P(b, b) + P(g, g) = = 00 8 = 0, 8 = 8%

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8 Inhaltsverzeichnis 1 Flächen Klammern auflösen 4 3 Prozentrechnung 6 4 Zinsrechnung 7 5 Funktionen 8 1 Flächen Quadrat Alle Seiten sind gleich lang und alle Winkel sind rechte Winkel. - 4 Symmentriachsen

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7. I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.3) Rechnen mit proportionalen Zuordnungen... 2 7.4) Die antiproportionale Zuordnung... 2

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a Algebra 1. Termen mit Variablen Ein Term ist ein Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen bestehen kann. Variablen sind Platzhalter für Zahlen oder für Größen. Eine Variable steht immer

Mehr

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen

Mehr

Grundwissen Mathematik - 7. Jahrgangsstufe

Grundwissen Mathematik - 7. Jahrgangsstufe Stichworte Termbegriff äquivalente Terme Rechenregeln Grundwissen Mathematik - 7. Jahrgangsstufe 1. Terme Terme sind Rechnungen, die Zahlen und Variable enthalten dürfen. Alle aus der 5. Klasse bekannten

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Grundwissen. Achsenspiegelung. Die Verbindungsstrecke von einem Punkt P und seinem Bildpunkt P' wird von der Symmetrieachse

Grundwissen. Achsenspiegelung. Die Verbindungsstrecke von einem Punkt P und seinem Bildpunkt P' wird von der Symmetrieachse 170 10 Grundwissen Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. aue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandeltwurde,nimmstdudiezugehörigenkartenindeinekarteiauf.

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM

MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM NEU-ULM Lessing-Gmnasium Neu-Ulm Seite von I. Funktionen. Direkt proportionale Zuordnungen und sind direkt proportional, wenn, zum n-fachen Wert für der

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken Brüche Schuleigener Lehrplan Mathematik Klasse 7 auf der Basis der Kernlehrpläne Stand August 2009 Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Schnittpunkt 7 5 Doppelstunden Kommunizieren

Mehr

Kongruenz und Symmetrie

Kongruenz und Symmetrie Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Synopse zum neuen Kernlehrplan für die Hauptschule

Synopse zum neuen Kernlehrplan für die Hauptschule Synopse zum neuen Kernlehrplan für die Hauptschule Schnittpunkt Plus Mathematik Differenzierende Ausgabe Schule: Band 7 978-3-12-742431-7 Lehrer: - Sachsituationen erfassen - mathematische Situationen

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7 1. Rationale Zahlen Vernetzen Geben Ober- und Unterbegriffe an und führen Beispiele und Gegenbeispiele als Beleg an (z.b. Proportionalität, Viereck) Überprüfen bei einem Problem die Möglichkeit mehrerer

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen

inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen Arithmetik/Algebra 1. Rechnen mit Brüchen Vergleichen und bewerten Lösungswege Argumentationen und Darstellungen Erkunden Untersuchen Muster und Beziehungen bei Zahlen und Figuren und stellen Vermutungen

Mehr

Stoffverteilungsplan Klasse 7

Stoffverteilungsplan Klasse 7 Stoffverteilungsplan Klasse 7 Rahmenlehrplan Im Blickpunkt: Mathematische Kompetenzen 6 Viel Erfolg im neuen Schuljahr 1 Zahlen und Operationen 30 Basiswissen: Brüche und Dezimalzahlen Kapitel 1: Rationale

Mehr

Der Wortschatz der Mathematik in der «cinquième»

Der Wortschatz der Mathematik in der «cinquième» Der Wortschatz athematik in «cinquième» absolute (n) Häufigkeit (en) In Zeit von 8 Uhr bis 9 Uhr werden an einer Zählstelle gezählt : 10 Krafträ (KR), 28 Personenkraftwagen (PKW), 7 usse sowie 5 Lastkraftwagen

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK 7.Jahrgangstufe ALGEBRA Seite 1 1. Terme 3a ist ein Term; a ist eine Variable; 3 heißt Koeffizient. Termberechnung: Es können nur gleichartige Terme ( = Terme mit gleichen Variablen) zusammengefasst, d.h.

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

Schriftlich rechnen, Ergebnisse kontrollieren, Zahlen runden Größen umrechnen Quadrate, Rechtecke, Würfel, Quader berechnen...

Schriftlich rechnen, Ergebnisse kontrollieren, Zahlen runden Größen umrechnen Quadrate, Rechtecke, Würfel, Quader berechnen... Inhaltsverzeichnis 1 Fit in Mathe ein klares Ziel... 8 Kannst du das?... 10 Schriftlich rechnen, Ergebnisse kontrollieren, Zahlen runden... 10 Größen umrechnen... 12 Quadrate, Rechtecke, Würfel, Quader

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7 Themen verschiedener Darstellungsmöglichkeiten von Proportionaler, ihre Darstellung in Koordinatensystemen und Berechnungen mit Hilfe des Dreisatz antiproportionaler, ihre Darstellung im Koordinatensystem

Mehr

Matheheft 7. Klasse. Kurz geübt & schnell kapiert. Matheheft. 7. Klasse. Matheheft 7. Klasse

Matheheft 7. Klasse. Kurz geübt & schnell kapiert. Matheheft. 7. Klasse. Matheheft 7. Klasse Matheheft 7. Klasse Matheheft 7. Klasse Kurz geübt & schnell kapiert Matheheft 7. Klasse Kurz geübt & schnell kapiert Matheheft 7. Klasse Lernplan von 1 Seite Prozent- und Zinsrechnung bearbeiten am Anteile

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 1. Kongruenz: 1. Satz: Stimmen zwei Dreiecke ΔABC und ΔA B C in bestimmten Kombinationen einzelner Winkel und Längen überein, dann sind die Dreiecke

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

7.1 Algebra Rechnen mit rationalen Zahlen und Termen

7.1 Algebra Rechnen mit rationalen Zahlen und Termen Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 7. Klasse 7.1 Algebra 7.1.1 Rechnen mit rationalen Zahlen und Termen WH: Siehe dazu..3 Vorrangregeln und.. K-, A-, D-Gesetze sowie 6. Rechengesetze

Mehr

Kompetenzen am Ende der Einheit GRUNDWISSEN

Kompetenzen am Ende der Einheit GRUNDWISSEN Kompetenzen am Ende der Einheit GRUNDWISSEN A) Grundrechenarten mit - 1.Natürlichen Zahlen : Berechne ohne Taschenrechner : a) 6438 + 64742 b) 8633 5877 c) 28 * 36 d) 7884 : 9-2. Brüchen : Berechne ohne

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen

Mehr

1.Wichtige geometrische Eigenschaften

1.Wichtige geometrische Eigenschaften 1.Wichtige geometrische Eigenschaften 1.Achsensymmetrie Die Punkte P und P* sind achsensymmetrisch bzgl. der Symmetrieachse a. Es gilt: a)[pp*] wird von a rechtwinklig halbiert. a ist Mittelsenkrechte

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen M 7. chsensymmetrie Eigenschaften: - [`] steht senkrecht auf der Symmetrieachse - [`] wird von der Symmetrieachse halbiert - Liegt ein unkt auf der Symmetrieachse, dann stimmt ` mit überein - Zueinander

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Stoffverteilungsplan Mathematik Klasse 7 RS,

Stoffverteilungsplan Mathematik Klasse 7 RS, Stoffverteilungsplan Mathematik Klasse 7 RS, 04.12.2006 Inhalte Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methoden 1 Rationale Zahlen Unter Null 1 Ganze Zahlen 2 Rationale Zalen 3 Anordnung

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient = für alle Wertepaare gleich ist. (= Proportionaliätsfaktor

Mehr

Einführung KV 32 Kopfrechnen leicht gemacht (1) 6/7 KV 33 Kopfrechnen leicht gemacht (2) 6/7 KV 34 Vorlage zur Rückmeldung 9

Einführung KV 32 Kopfrechnen leicht gemacht (1) 6/7 KV 33 Kopfrechnen leicht gemacht (2) 6/7 KV 34 Vorlage zur Rückmeldung 9 Inhaltsverzeichnis zur Schülerbuchseite Karteikarten KV Karteikarten zum Nachschlagen () 6/7, 6, 22 25, 56 60 KV 2 Karteikarten zum Nachschlagen (2) 24/25, 57, 43 KV 3 Karteikarten zum Nachschlagen (3)

Mehr

Mathematik Klasse 7 Lehrbuch: Lambacher Schweizer Mathematik für Gymnasien 7, Ernst Klett Verlag, 1. Auflage, 2011

Mathematik Klasse 7 Lehrbuch: Lambacher Schweizer Mathematik für Gymnasien 7, Ernst Klett Verlag, 1. Auflage, 2011 Das Lehrbuch enthält zu jedem innerhalb der Übungsaufgaben Bist du sicher? -, außerdem gibt es zu jedem Lerngebiet eine Zusammenfassung Rückblick und einen Lernerfolgstest Training, deren Lösungen du auf

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Auch wenn die prozessbezogenen Kompetenzen sich in allen Kapiteln wieder finden,

Auch wenn die prozessbezogenen Kompetenzen sich in allen Kapiteln wieder finden, Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung r (fachmathematischer) und r Kompetenzen erreicht werden kann. Entsprechend

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

Stoffverteilung Mathematik Klasse 7 auf Basis der Bildungsstandards 2004

Stoffverteilung Mathematik Klasse 7 auf Basis der Bildungsstandards 2004 Prozentrechnung Prozente und Zinsen 1. Prozente Vergleiche werden einfacher 2. Prozentsatz Prozentwert Grundwert 3. Grundaufgaben der Prozentrechnung 4. Zinsen 5. Zinseszinsen 6. Überall Prozente Modellieren

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen Mathematik 7. Klasse /6 Grundwissen 7. Klasse lgebra.terme mit Variablen a) llgemeines Treten in einem Term (Rechenausdruck) verschiedene Variablen auf, dann dürfen diese mit verschiedenen

Mehr

Fach / Jahrgangsstufe Mathematik / Jg7. Nr. des Unterrichtsvorhabens im Halbjahr Nr.1 im 1. Hj. Thema: Rationale Zahlen verstehen und anwenden

Fach / Jahrgangsstufe Mathematik / Jg7. Nr. des Unterrichtsvorhabens im Halbjahr Nr.1 im 1. Hj. Thema: Rationale Zahlen verstehen und anwenden Fach / Jahrgangsstufe Mathematik / Jg7 Nr. des Unterrichtsvorhabens im Halbjahr Nr.1 im 1. Hj. Thema: Rationale Zahlen verstehen und anwenden Zahl der Unterrichtsstunden: Ca. 20 Unterrichtsstunden Inhaltsbezogene

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG

MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG Gegenüberstellung der Bildungsstandards Klasse 8 und der in den Schülerbänden 3 und 4 1. Leitidee Zahl die Unvollständigkeit von Zahlbereichen verstehen und aufzeigen

Mehr

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Dreisatz Tabelle und Graph einer Zuordnung Zueinander proportionale Größen proportionale Dreisatz bei proportionalen Zueinander antiproportionale Größen antiproportionale Dreisatz bei antiproportionalen

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Stoffverteilungsplan Mathematik Klasse 7 Lambacher Schweizer 7 ISBN

Stoffverteilungsplan Mathematik Klasse 7 Lambacher Schweizer 7 ISBN Stoffverteilungsplan Mathematik Klasse 7 Lambacher Schweizer 7 ISN 978-3-12-733671-9 3 Stoffverteilungsplan Mathematik Klasse 7 Lambacher Schweizer 7 ISN 978-3-12-733671-9 1 Stoffverteilungsplan Mathematik

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1

Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1 Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1 Natürliche Zahlen o Zahlen sammeln und Darstellen (erstellen & lesen von Diagrammen) o Rechnen mit natürlichen Zahlen o Umgang mit Größen Symmetrie o

Mehr

Basiswissen Mathematik Klasse 7 / 8 Seite 1 von 11 1 Berechne 12% von 73. 12% 73=0,12 73=8,76 2 Wie viel Prozent sind 9 von 34? 9 =9 :34=0,2647...=26,5 % 34 3 Eine CD kostet netto 12,43. Dazu kommen 19%

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN Mathematische Gleichungen ergeben sich normalerweise aus einem textlichen Problem heraus. Hier folgt nun ein zugegebenermaßen etwas künstliches Problem:

Mehr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 7 eingeführtes Schulbuch: Lambacher Schweizer 7

Gymnasium OHZ Schul-KC Mathematik Jahrgang 7 eingeführtes Schulbuch: Lambacher Schweizer 7 8-10 Wochen stellen Zuordnungen und funktionale Zusammenhänge durch Tabellen, Graphen oder Terme dar, auch unter Verwendung digitaler Mathematikwerkzeuge, interpretieren und nutzen solche Darstellungen.

Mehr

Schulinterner Lehrplan Mathematik Klasse 7

Schulinterner Lehrplan Mathematik Klasse 7 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 7 Als Lehrwerk wird das Buch Mathematik real 7, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Grundwissen Mathematik 8.Jahrgangsstufe G8

Grundwissen Mathematik 8.Jahrgangsstufe G8 Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache

Mehr

Stoffverteilungsplan Mathematik 8 auf der Grundlage des Lehrplans Schnittpunkt 8 Klettbuch

Stoffverteilungsplan Mathematik 8 auf der Grundlage des Lehrplans Schnittpunkt 8 Klettbuch K5: Mit Variablen und Termen arbeiten K5: Mit Variablen und Termen arbeiten K2: Geeignete heuristische Hilfsmittel (z. B. informative Figuren), Strategien und Prinzipien zum Problemlösen auswählen und

Mehr

Leitidee Zahl Bruchzahlen darstellen mit gemeinen Brüchen und Dezimalbrüchen addieren, subtrahieren, multiplizieren und dividieren

Leitidee Zahl Bruchzahlen darstellen mit gemeinen Brüchen und Dezimalbrüchen addieren, subtrahieren, multiplizieren und dividieren Mathematik Klasse 7 Inhalt / Thema von Maßstab Band 3 1. Fit nach den Sommerferien Bruchteile von Größen Brüche und Dezimalbrüche addieren, subtrahieren, multiplizieren und dividieren relevante Informationen

Mehr

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de Skript Prozentrechnung Erstellt: 2015/16 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Berechnung des Prozentwertes... 5 3. Berechnung des Prozentsatzes... 6 4. Berechnung

Mehr

Grundwissen Mathematik 7II-III/1

Grundwissen Mathematik 7II-III/1 Grundwissen athematik 7II-III/ ultiplikation und Division in QI Rechenregeln a c a c a c a d : b d b d b d b c Vorzeichenregeln + ++ + + + + : ++ : + : + + : Potenzgesetze. Potenzgesetz n m n m a a a +

Mehr