10. Äquivalenzen zur Riemannschen Vermutung

Größe: px
Ab Seite anzeigen:

Download "10. Äquivalenzen zur Riemannschen Vermutung"

Transkript

1 0. Äquivalenzen zur Riemannchen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung Satz. Sei θ <. Folgende Auagen ind äquivalent: (i π( = li( + O( θ+ε für alle ε > 0, (ii θ( = + O( θ+ε für alle ε > 0, (iii ψ( = + O( θ+ε für alle ε > 0, (iv M( = O( θ+ε für alle ε > 0, (v RV(θ. Dabei it M( := n μ(n die Merten-Summe. Wir werden den Bewei in Etappen führen. Zunächt zeigen wir die Äquivalenz der Auagen (i - (iii und die Implikationen (iii (v und (iv (v. Dann werden wir die Perronche Formel und einige weitere Auagen au der Theorie der Dirichlet-Reihen beweien, o da ich die verbleibenden Implikationen (v (iii und (v (iv chließlich al leichte Folgerung au dem bereit Bekannten ergeben werden. Erinnerung. E it li( = li( = u log u + du, und partielle Integration liefert log u du log u = log + du log u + O(. Direkt au der Definition von li( folgt außerdem li( = n + O(. log n 0.. Bewei der Äquivalenz von (i, (ii und (iii. In Kapitel 4 wurde ψ( = θ( + O( / gezeigt. Alo gilt (ii (iii. Zu (ii (i : E it π( = p = p log p log p, o da man mit abelcher partieller Summation und θ( = + R( π( = θ( log + = log + = li( + R( log + θ(u u log u du du log u + R( log + R(u u log du + O( u R(u u log u du 0 Mitchrift von Andrea Wadhwa. Letzte Änderung:

2 0. Äquivalenzen zur Riemannchen Vermutung erhält, alo π( = li( + O( θ+ε, fall R( = O( θ+ε. {, fall n prim, a n := 0 ont Zu (i (ii : Mit it θ( = n log n ( a n + O(, log n und mit abelcher partieller Summation und R( := π( li( erhält man θ( = log ( R( + O( It alo R( = O( θ+ε, o folgt R(u + O( u θ( = log O( θ+ε + O( θ+ε + O( = O( θ+ε. du + O(. 0.. Bewei der Implikation (iii (v. Wir betrachten die Funktion F ( := ζ ( ζ(. Die Dirichlet-Reihe ζ( Λ(n a n F ( = =: n n konvergiert für Re >. Wir zeigen, da unter der Vorauetzung (iii die Dirichlet-Reihe ogar für Re > θ konvergiert, worau dann (v folgt. E it A( := n a n = n ( Λ(n = ψ( = O( θ+ε für alle ε > 0 (nach (iii. Abelche partielle Summation liefert n Λ(n n = A( + A(u du, u+ o da ich für Re > (und θ + ε < F ( = A( d + ergibt. Die rechte Seite eitiert für Re > θ und tellt dort eine holomorphe Funktion von dar. (Da die Dirichlet-Reihe dann auch konvergiert, folgt au dem Cauchy-Kriterium unter Verwendung deelben Integral A(/ + d. 0.

3 0. Äquivalenzen zur Riemannchen Vermutung 0.3. Bewei der Implikation (iv (v. Hier kann man den gleichen Bewei wie bei (iii (v führen, wobei man jetzt die Funktion F ( := mit der ζ( Dirichlet-Reihe μ(n F ( = n betrachtet Lemma (Perronche Formel. Sei 0 für 0 < <, h( := für =, für >. Dann gilt für > 0 und κ > 0 πi Dabei it Genauer gilt πi = h(. := lim T h( zu vertehen. κ min (, min (, κ πt πt log für =, für =. Bewei. Wir behandeln zunächt den Fall =. Hier it κ+it d = log, wobei log = log + iα den Hauptwert de Logarithmu in der Halbebene Re > 0 bezeichnet. Für = κ + it it ( T α = arctan ( π κ für T, alo d = i arctan( T κ. Wegen ( T arctan = π ( κ κ β mit β = arctan T ( κ min T, π (hier wurde benutzt, da die Steigung de Arcu-Tangen höchten it folgt die Behauptung im Fall =. 0.3

4 0. Äquivalenzen zur Riemannchen Vermutung Sei nun <. Da Integral über den Rand de durchgezogen gezeichneten Rechteck in der Skizze + it κ + it + it K K + 0 κ it κ it it verchwindet. Zudem gilt auf dem rechten Rand (de Rechteck = = e log = e log 0 für. Da man owohl auf dem oberen al auch auf dem unteren Rand T und = e σ log hat, folgt σ log dσ e T = T log e κ log = κ T log. κ Die it die zweite behauptete Abchätzung im Fall <. Für die erte Abchätzung eretzen wir den Integrationweg vo it nach κ + it durch den durchgezogen gezeichneten Kreibogen K + mit Radiu R = κ + T und erhalten = κ R πr πκ, K + womit der Fall < abgehandelt it. Sei nun >. Wir integrieren die Funktion einmal im mathematich poitiven Sinne über den Rand de getrichelt gezeichneten Rechteck in obiger Skizze. Nun hat bei = 0 da Reiduum, alo hat da Integral über da Rechteck den Wert πi. Analog zu oben gilt jetzt auf dem linken Rand de Rechteck = = e log = e log für,

5 0. Äquivalenzen zur Riemannchen Vermutung und owohl auf dem oberen al auch auf dem unteren Rand hat man T owie = σ = e σ log, o da πi κ σ log dσ e T = T log eκ log = κ T log heraukommt und damit die zweite behauptete Abchätzung im Fall > gezeigt it. Für die erte eretzen wir (unter Beachtung de Reiduum von bei = 0 den Integrationweg vo it nach κ + it durch den getrichelt gezeichneten Kreibogen K (mit Radiu R = κ + T und erhalten πi = κ R πr = πκ, K womit auch der Fall > abgehandelt und damit da Lemma bewieen it Satz (Perron. Sei F ( = a n n eine Dirichlet-Reihe mit σ a (F <, und ei A( := n a n. κ > ma ( 0, σ a (F, T > 0 und A( = ( F ( πi + O κ ( + T log(/n. Bewei. It nicht ganz, o gilt A( = n a n = ( a n h n mit der Funktion h au der Perronchen Formel, und it ganz, o gilt A( = ( a n h + n a. Mit der effektiven Abchätzung der Perronchen Formel erhält man für = n nh( a κ+it ( a n n πi n a n κ n min, κ πt log(/n = κ κ ma (, πt log(/n κ + T log(/n 0.5 ( + πt log(/n

6 0. Äquivalenzen zur Riemannchen Vermutung und für = n nh( a n κ+it a n πi n a n = κ + T log(/n. Mit dem Symbol δ := für ganz, δ := 0 für nicht ganz folgt A( F ( πi ( = a n h + δ n a F ( πi δ a + n = κ κ + T log(/n. + T log(/n + δ a 0.6. Corollar. Mit den Bezeichnungen de Satze gilt für nicht ganz A( = πi F (. Mit A ( := ( A( A( 0 gilt A ( = πi auch für = n ganz. F ( Bewei. It nicht ganz, o folgt die ofort au obigem Satz. It ganz, o gilt A ( = A( a + a = πi nach dem Satz und πi ( a d = a πi ( n = a n n + a d = a nach der Perronchen Formel. Darau folgt die Behauptung. A ( untercheidet ich alo von A( nur, wenn = n ganz it, und in dieem Fall gilt A ( = A( a n. 0.6

7 0. Äquivalenzen zur Riemannchen Vermutung 0.7. Satz. Sei F ( = a n n eine Dirichlet-Reihe, die für Re > abolut konvergiert und die ich in die Halbebene Re > θ ( θ < holomorph fortetzen lät. Für jede θ > θ und für jede ε > 0 gelte F ( = O( t ε (t = Im gleichmäßig in Re θ. Dann folgt A( := n a n = O( θ für alle θ > θ. Inbeondere konvergiert dann die Dirichlet-Reihe von F ( für Re > θ. Bewei. Man kann al halbganz annehmen. Dann gibt e eine Kontante c mit log c n n, o da alo ( + T log(/n ct n. κ Wählen wir κ = + ε (mit ε > 0 fet, o it κ > σ a (F, und mit dem Satz von Perron und T = folgt A( = F ( ( πi + O κ ( κ = O = O( ε. T T E bleibt alo da Integral d F ( (T = abzuchätzen. Dazu wählen wir θ > θ und ε > 0 o, da θ + ε < θ owie 3ε > θ. Da Integral F ( über den Rand de Rechteck θ + it κ + it θ θ κ = + ε θ it κ it 0.7

8 0. Äquivalenzen zur Riemannchen Vermutung verchwindet, e genügt alo, die Integrale über den oberen, unteren und linken Rand de Rechteck abzuchätzen. Auf dem oberen Rand gilt F ( c T ε = c ε mit einer geeigneten Kontanten c (nach Vorauetzung, ferner = σ +ε und T =, alo F ( c ε ( + ε +ε = O( 3ε = O( θ. θ+it Auf dem unteren Rand erhält man genauo F ( = O(3ε = O( θ. θ it Auf dem linken Rand hat man F ( c t ε, = σ = θ owie t. E folgt θ+it T F ( c θ t ε dt = c ε θ T ε = c ε θ ε θ+i0 und ebeno = O( θ+ε = O( θ θ+i0 θ it 0 F ( c ε θ ε = O( θ+ε = O( θ. Damit it die Behauptung gezeigt Bewei der Implikation (v (iii. Wir betrachten die Funktion F ( := ζ ( ζ( ζ( (mit der Dirichlet-Reihe F ( = Λ(n. Nach Vorauetzung (v lät ich n diee in die Halbebene Re > θ fortetzen. In Kapitel 9 wurde gezeigt, da au RV(θ für alle θ > θ folgt log ζ( = O(log t gleichmäßig für Re = σ θ, t t 0. It θ > θ, o ergibt die Cauchyformel angewendet mit Radiu δ = θ θ ζ ( = O(log t gleichmäßig für Re = σ θ, t t ζ( 0. Zudem wurde in Kapitel 9 gezeigt, da au RV(θ für alle θ > θ und alle ε > 0 folgt ζ( = O( t ε für t t 0 gleichmäßig in Re θ. Die Vorauetzungen de obigen Satze ind alo erfüllt, und für A( := n ( Λ(n = ψ( folgt A( = O( θ für alle θ > θ. 0.8

9 0. Äquivalenzen zur Riemannchen Vermutung 0.9. Bewei der Implikation (v (iv. Hier kann man obigen Satz anwenden auf die Funktion F ( := ζ( = μ(n n, für die ja auch nach Kapitel 9 für alle θ > θ und alle ε > 0 ζ( = O( t ε für t t 0 gleichmäßig in Re θ gilt, fall RV(θ erfüllt it. 0.9

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anali III W / Löungvorchläge zum 9. Übungblatt. Wir zeigen zunächt, da die u.u. au Vorleung/Übung noch nicht bekannt it: It A BR p und B BR q, o it A B BR p+q. Die läßt ich z.b. wie in Aufgabe

Mehr

2. Dirichlet-Reihen. Arithmetische Funktionen

2. Dirichlet-Reihen. Arithmetische Funktionen 2. Dirichlet-Reihen. Arithmetische Funktionen 2.. Eine Dirichlet-Reihe ist eine Reihe der Gestalt a n f(s = n, s wobei (a n n eine Folge komplexer Zahlen und s eine komplexe Variable ist. 2.2. σ a (f :=

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen ur Vorlesung Funktionentheorie Sommersemester 2012 Präsenblatt ur mündlichen Bearbeitung in den

Mehr

Zusatzblatt zur Klausurvorbereitung mit Lösungen (ohne

Zusatzblatt zur Klausurvorbereitung mit Lösungen (ohne Zuatzblatt zur Klauurvorbereitung mit Löungen (ohne Gewähr (ertellt von Aleiz Gaal und Claudio Lloa Ienrich Da Blatt dient der Klauurvorbereitung und ollte nicht al Probeklauur aufgefat werden. Viel mehr

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

3.7 Der AKS-Primzahltest

3.7 Der AKS-Primzahltest 3.7 Der AKS-Primzahltet Die Frage, ob e einen eterminitichen Primzahltet gibt, er mit polynomialem Aufwan aukommt, war biher nur urch Miller auf ie erweiterte Riemannche Vermutung zurückgeführt woren.

Mehr

1. Zeta-Funktion und Euler-Produkt

1. Zeta-Funktion und Euler-Produkt . Zeta-Funktion und Euler-Produkt. Zeta-Funktion und Euler-Produkt.. Die Riemannsche Zeta-Funktion ist für s C mit Re s > definiert durch ζ(s) := n= n s. Traditionell schreibt man s = σ + it mit σ, t R.

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt Karlruher Intitut für Technologie (KIT) Intitut für Analyi Dr. A. Müller-Rettkowki Dipl.-Math. M. Uhl WS 9/ Höhere Mathematik I für die Fachrichtungen Elektroingenieurween, Phyik und Geodäie Löungvorchläge

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Anschlussbelegungder9polSub DX,Y,Z,(N): 230VAnschlussEinbaustecker: Steckdosen: DurchöffnendeskleinenDeckelsaufderVorderseiteerreichenSiedir6,3A DiebeidenSteckdosenwerdenüberPin1und14derSoftwaregeschaltet

Mehr

) + d(v s0...s n ) 2. Bedingung B ist in der Anwendung mühsam zu verifizieren. Ist ' jedoch ein Diffeomorphismus, so genügt folgende Sektorbedingung.

) + d(v s0...s n ) 2. Bedingung B ist in der Anwendung mühsam zu verifizieren. Ist ' jedoch ein Diffeomorphismus, so genügt folgende Sektorbedingung. 248 8 HomoklinePunkteundShiftabbildungen und daher mit Lemma 2 k qk 1 1 µ d(u 1... n ) + d(v... n ) 2 1 µ n. Alo it h tetig. Die Stetigkeit von h 1 folgt chließlich au der Eindeutigkeit der Zuordnung $

Mehr

TECHNIKEN ZUR BERECHNUNG DER DIMENSION

TECHNIKEN ZUR BERECHNUNG DER DIMENSION TECHNIKEN ZUR BERECHNUNG DER DIMENSION KATHARINA KIESEL Zuammenfaung Im Folgenden werden Tehniken zur Berehnung der Dimenion von Fraktalen aufgezeigt E wird unter anderem definiert wa eine Mae-Verteilung

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

5. Eine weitere Klasse von q-fibonacci-zahlen und der Euler sche Pentagonalzahlensatz.

5. Eine weitere Klasse von q-fibonacci-zahlen und der Euler sche Pentagonalzahlensatz. 5 Eie weitere Klae vo -Fiboacci-Zahle ud der Euler che Petagoalzahleatz I dieem Abchitt betrachte wir ei weitere Aalogo der Fiboacci-Polyome, für da auch ei chöe Aalogo der Luca-Polyome exitiert ud da

Mehr

Technische Strömungslehre Formelsammlung

Technische Strömungslehre Formelsammlung Formelammlung Strömunglehre Seite von 4 Tehnihe Strömunglehre Formelammlung Komreibilität K von Flüigkeiten E FL V V K E Fl Komreibilität von Gaen V Bei Gaen entriht E V Ga vonϑ C ;, 35bar für den Normzutand

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

MISSION ALPHA. Wähle einen Zielraum und führe dort eine Interagieren-Aktion aus. Wähle drei Schleusen aus und zerstöre sie. Sammle 5 Frags.

MISSION ALPHA. Wähle einen Zielraum und führe dort eine Interagieren-Aktion aus. Wähle drei Schleusen aus und zerstöre sie. Sammle 5 Frags. MISSION ALPHA Wähle einen Zielraum und führe dort eine Interagieren-Aktion aus. Wähle drei Schleusen aus und zerstöre sie. Sammle 5 Frags. MISSION BETA Wähle einen Zielraum aus, führe dort eine Interagieren-Aktion

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

5. Funktional-Gleichung der Zetafunktion

5. Funktional-Gleichung der Zetafunktion 5. Funktional-Gleichung der Zetafunktion 5.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x O( x und f (x O( x für x ˆf(t : f(xe πixt dx. die Fourier-Transformierte

Mehr

mit dem Betrag v 0 Die Anordnung befindet sich im Vakuum. Die auf die Ionen wirkenden Gravitationskräfte sind vernachlässigbar klein.

mit dem Betrag v 0 Die Anordnung befindet sich im Vakuum. Die auf die Ionen wirkenden Gravitationskräfte sind vernachlässigbar klein. athphy-online Abchluprüfung Berufliche Oberchule 00 Phyik Technik - Aufgabe II - Löung Teilaufgabe.0 Mit der unten dargetellten Anordnung kann die Mae von Protonen betit werden. Eine Waertoffionenquelle

Mehr

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0

e i(π t) ( ie i(π t) ) dt dt = i 2i t=0 UNIVESITÄT KALSUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

β Ζ φ ε = δ δ = + = = = = = ρ ρ γ γ γ γ γ γ γ = = = = = = + + = = = + + = = = = $ σ r ( ) K r = = = O M L r M r r = = O M L r M r r = = = = = = = = ( ) ( ) = ( ) = ± ( ) ( ) = ± ( ) = ± (

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

23. Kürzeste Wege. Flussüberquerung (Missionare und Kannibalen) Das ganze Problem als Graph. Formulierung als Graph

23. Kürzeste Wege. Flussüberquerung (Missionare und Kannibalen) Das ganze Problem als Graph. Formulierung als Graph Fluüberquerung (Miionare und Kannibalen). Kürzete Wege Problem: Drei Kannibalen und drei Miionare tehen an einem Ufer eine Flue. Ein dort bereittehende Boot fat maimal zwei Peronen. Zu keiner Zeit dürfen

Mehr

Aufgaben Schwingungen

Aufgaben Schwingungen Aufgaben Schwingungen. An eine Fadenpendel hängt eine Mae von kg und chwingt. Geben Sie die Rücktellkräfte bei den folgenden Aulenkwinkeln an: a) α = 5 b) β = 0. Ein Körper der Mae kg hängt an einer Feder

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

13.1 Die Laplace-Transformation

13.1 Die Laplace-Transformation 13.1 Die Laplace-ranformation 565 13.1 Die Laplace-ranformation Die Laplace-ranformation it eine Integraltranformation, die jeder Zeitfunktion f(t), t, eine Bildfunktion F () gemäß 13.1 F () = f (t) e

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy D-MATH Funktionentheorie HS 08 Prof. Michael Struwe Lösungen Serie 5 Korollare der Integralformel von Cauchy. (a) Berechnen Sie für folgende Funktionen die Taylorreihe bei z 0 und bestimmen Sie den Konvergenzradius.

Mehr

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 7. Bitte wenden!

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 7. Bitte wenden! D-HEST, Mathematik III HS 27 Prof. Dr. E. W. Farka M. Nitzchner Löung 7 Bitte wenden! . Wir betrachten ein Sytem linearer Differentialgleichungen erter Ordnung mit kontanten Koeffizienten der Form y (t)

Mehr

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0 3.6 Tranformationätze 853 3.6 Tranformationätze In dieem Abchnitt werden weitere Eigenchaften der Laplace-Tranformation vorgetellt, die in vielen technichen Bechreibungen ihre Anwendung finden. Oftmal

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

Korrekturen 1 zur Elektrodynamik, 5. Auflage, 2008

Korrekturen 1 zur Elektrodynamik, 5. Auflage, 2008 Korrekturen 1 zur Elektrodynamik, 5 Auflage, 2008 Seite 91: Gleichung (1011) wird korrigiert zu q Φ(r, θ) = r r 0 = q r 2 + r0 2 2 rr 0 cos θ (1011) Seite 92: Die Zeile nach (1014) muss lauten: Der Vergleich

Mehr

3.1 Der Satz von Engel

3.1 Der Satz von Engel 3. Auflöbare und nilpotente Lie-Algebren 17 3.1 Der Satz von Engel Ein grundlegende Reultat über nilpotente Lie-Algebren it der Satz von Engel, der eine Verbindung zwichen nilpotenten Endomorphimen und

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r Funktionentheorie, Woche 8 Harmonische Funktionen 8. Folgen der Holomorphie Im letzten Kapitel sahen wir, dass der Realteil einer holomorphen Funktion harmonisch ist, und dass es zu jeder harmonischen

Mehr

Aufnahmeprüfung FHNW 2013: Physik

Aufnahmeprüfung FHNW 2013: Physik Muterlöungen Phyik Aufnahmeprüfung FHW 03 Aufnahmeprüfung FHW 03: Phyik Aufgabe Da nebentehende Diagramm zeigt den Gechwindigkeit-Zeit-Verlauf für ein Schienenfahrzeug. a ) Skizzieren Sie qualitativ richtig

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Fourier-Reihen: Definitionen und Beispiele

Fourier-Reihen: Definitionen und Beispiele Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik

Mehr

Maximaler Fluss = minimaler Schnitt

Maximaler Fluss = minimaler Schnitt Maximaler Flu = minimaler Schnitt Oliver Junge Fakultät für Mathematik Techniche Univerität München Flüe in Netzwerken Mathematiche Abtraktion Kapazität 3 2 Quelle 5 Senke 1 2 Netzwerk gerichteter Graph

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

5 Die Poisson-Approximation

5 Die Poisson-Approximation 5 Die Poion-Approximation Im vierten Kapitel hatten wir mit der Normalverteilung die icherlich wichtigte und meittudierte Verteilung der W.-Theorie kennengelernt und geehen, daß man diee al Lime eine geeignet

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6.

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6. .6 Graphen.6. Definition und Dartellung.6. Aupähen von Graphen.6.3 Minimal pannende Bäume.6.4 Kürzete Pfade.6.5 Maximaler Flu .6.5 Maximaler Flu.6.5. Flunetzwerke.6.5. Ford-Fulkeron-Methode.6.5.3 Algorithmu

Mehr

Dirichletreihen im Komplexen

Dirichletreihen im Komplexen Dirichletreihen im Komplexen Dominik Wrazidlo Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 2009, Leitung Prof. Dr. E. Freitag) Zusammenfassung: Gegenstand dieser Ausarbeitung ist die

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorleung. Falltudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal pannende Bäume 5. Kürzete Pfade 6. Traveling Saleman Problem 7. Flüe in Netzwerken

Mehr

Benutzerhinweise für den PU Bayes-Korrektor V1.0

Benutzerhinweise für den PU Bayes-Korrektor V1.0 PU Dipl.-Kfm. Jörg Petermann Unternehmenberatung Benutzerhinweie für den PU Bae-Korrektor V1.0 Trier, 20. Juli 2007 1 Bae' Theorem Die Wahrcheinlichkeitrechnung hält immer wieder Überrachungen bereit.

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9 Prof r Holger ette Muterlöung Statitik I Sommeremeter 009 r Melanie Birke Blatt 9 Aufgabe : 4 Punkte E eien X,, X n unabhängig identich N µ, -verteilt a Man berechne die Fiher-Information I µ für µ b E

Mehr

1.1.4 Potential; Äquipotentiallinien bzw. -flächen; potentielle Energie eines geladenen Teilchens im homogenen elektrischen Feld

1.1.4 Potential; Äquipotentiallinien bzw. -flächen; potentielle Energie eines geladenen Teilchens im homogenen elektrischen Feld 1.1.4 Potential; Äquipotentiallinien bzw. -flächen; potentielle nergie eine geladenen Teilchen im homogenen elektrichen Feld Die Charakteriierung eine elektrichen Felde in einem Raumpunkt durch Angabe

Mehr

Cauchys Integralsatz und Cauchys Integralformel

Cauchys Integralsatz und Cauchys Integralformel Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine

Mehr

Aufgabenblatt zum Seminar 01 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 01 PHYS70356 Klassische und relativistische Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 01 PHYS70356 Klaiche und relativitiche Mechanik Phyik, Wirtchaftphyik, Phyik Lehramt, Nebenfach Phyik) Othmar Marti, othmar.marti@uni-ulm.de) 20. 10. 2008 1 Aufgaben 1. Sie ehen

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Wir wollen jetzt die Cauchys che Integralformel in mehreren Veränderlichen formulieren. (ζ 1 z 1 ) (ζ n z n ) dζ 1 (ζ 1 z 1 ) dζ n.

Wir wollen jetzt die Cauchys che Integralformel in mehreren Veränderlichen formulieren. (ζ 1 z 1 ) (ζ n z n ) dζ 1 (ζ 1 z 1 ) dζ n. 4 Kapitel Holomorphe Funktionen 2 Das Cauchy-Integral Wir wollen jetzt die Cauchys che Integralformel in mehreren Veränderlichen formulieren. Sei r (r,..., r n ) R n +, P P n (0, r), n (0, r), und f eine

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretiche Grundlagen der Informatik Andrea Schumm 21.1.21 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Univerität de Lande Baden-Württemberg und nationale Forchungzentrum in der Helmholtz-Gemeinchaft www.kit.edu

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Satz des Pythagoras Realschule / Gymnasium Klasse 9

Satz des Pythagoras Realschule / Gymnasium Klasse 9 Satz de Pythagora Realchule / Gymnaium Klae 9 Alexander Schwarz www.mathe-aufgaben.com Dezember 014 1 Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat ich eine Leiter gekauft, die

Mehr

Windungszahl. Windungszahl II. Bemerkung. Beispiel

Windungszahl. Windungszahl II. Bemerkung. Beispiel Windungszahl Bemerkung. Für einen beliebigen z 0 homotopen Weg in G \ {z 0 }, der den Punkt z 0 niht notwendigerweise genau einmal durhläuft, gilt 2πi Uml (, z 0 ) f (z 0 ) 2. Nützlih ist folgende heuristishe

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

Besprechung am /

Besprechung am / PN1 - Phyik 1 für Chemiker und Biologen Prof. J. Lipfert WS 018/19 Übungblatt 8 Übungblatt 8 Beprechung am 18.1.018/0.1.018 Aufgabe 1 Magnetiche Fetplatten, auch al HDD (Hard Drive Dik) bezeichnet, tellten

Mehr

Definition: Die Bewegung eines Körpers, die sich in festen Zeitabständen wiederholt und symmetrisch zu einer Ruhelage abläuft heißt Schwingung.

Definition: Die Bewegung eines Körpers, die sich in festen Zeitabständen wiederholt und symmetrisch zu einer Ruhelage abläuft heißt Schwingung. 9 Schwingungen 9.1 Beipiele und Grundlagen Ruhelage Ruhelage Fadenpendel Ruhelage Federpendel Federpendel Ruhelage orionpendel Charakteritika: Die Bewegung it periodich; d.h. die Bewegung wiederholt ich

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zentrale chriftliche Abiturprüfungen i Fach Matheatik Analyi Grundkur Aufgabe 5: Helikopter In der Abbildung it ein Auchnitt de Graphen einer quadratichen Funktion zu ehen, der i Zeitinterall on 0 bi 60

Mehr

Kapitel II. Konvergenz von Folgen und Reihen

Kapitel II. Konvergenz von Folgen und Reihen Kapitel II Konvergenz von Folgen und Reihen 7 Einführende Beispiele und Rechenregeln für konvergente Folgen 8 Konvergenzkriterien und Häufungswerte von Folgen in R 9 Konvergenz und absolute Konvergenz

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Historie zur riemannschen Zetafunktion

Historie zur riemannschen Zetafunktion Hitorie zur riemannchen Zetafunktion Die riemannche Zetafunktion benannt nach Bernhard Riemann it eine pezielle mathematiche Funktion, die in der analytichen Zahlentheorie, einem Teilgebiet der Mathematik,

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom))

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom)) Prof. Dr.-Ing. Matthia Kind Intitut für hermihe Verfahrentehnik Dr.-Ing. homa Wetzel Wärmeübertragung I öung zur 4. Übung ( M (Rührkeel, Gleih-, Gegentrom Einführung Ein in der Wärmeübertragung häufig

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

V6.4 - Erzwungene Schwingungen, Resonanz

V6.4 - Erzwungene Schwingungen, Resonanz V6.4 - Erzwungene Schwingungen, Reonanz Michael Baron, Sven Pallu 31. Mai 2006 Zuammenfaung Im folgenden Veruch betrachten wir da Schwingungverhalten eine gedämpften, periodich erregten Ozillator in Form

Mehr

Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen

Tabellen erstellen mit Word 7 Computeria Rorschach. Wir erstellen mit Word 7/10 eigene Tabellen Tabellen erstellen mit Word 7 Computeria Rorschach Wir erstellen mit Word 7/10 eigene Tabellen Roland Liebing 10.02.2012 Tabellen erstellen mit Word7/10 Wir klicken in der Registerkarte Einfügen auf die

Mehr

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion Z-Tranformation Laplace-Tranformation Laplace-Tranformation der Delta-Funktion Z-Tranformation Für eine Differenengleichung wie.b. f(n+) f(n) = n n (alternative Schreibweie n+ n = n n ) it eine expliite

Mehr

Zur Bestimmung der ungünstigsten Toleranz zusammengesetzter Systeme können die Einzeltoleranzen entsprechend ihres Zusammenwirkens addiert werden.

Zur Bestimmung der ungünstigsten Toleranz zusammengesetzter Systeme können die Einzeltoleranzen entsprechend ihres Zusammenwirkens addiert werden. Vorauetzung und verwandte Themen Für diee Bechreibungen ind Vorkenntnie der Statitik und der Verteilungen erforderlich. Weiterführende Thema it: www.veruchmethoden.de/prozedaten_toleranzimulation.pdf Einführung

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

8 Martingaldarstellung und Doob-Meyer Zerlegung

8 Martingaldarstellung und Doob-Meyer Zerlegung 8 Martingaldartellung und Doob-Meyer Zerlegung 8.1 Der Martingaldartellungatz In Kapitel 3 haben wir gezeigt, da da Ito-Integral eine H -Integranden ein tetige Martingal it. Der Martingaldartellungatz

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Bernoulli-Zahlen, Zetafunktion und Summen von Potenzen

Bernoulli-Zahlen, Zetafunktion und Summen von Potenzen Bernoulli-Zahlen, Zetafunktion und Summen von Potenzen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 30. September 0 Die Bernoulli-Zahlen gehören zu den wichtigsten Konstanten der Mathematik. Wir

Mehr

Fachhochschulreifeprüfung an Fachoberschulen und Berufsoberschulen 2003 (Bayern) Physik: Aufgabe III

Fachhochschulreifeprüfung an Fachoberschulen und Berufsoberschulen 2003 (Bayern) Physik: Aufgabe III Fachhochchulreifeprüfung an Fachoberchulen und Berufoberchulen 3 (Bayern) Phyik: Aufgabe III. Für alle Körper, die ich antrieblo auf einer Kreibahn it de Radiu R und der Ulaufdauer T u ein Zentralgetirn

Mehr