Intervallschätzung II 2

Größe: px
Ab Seite anzeigen:

Download "Intervallschätzung II 2"

Transkript

1 Itervallschätzug Kofidezitervall für die Variaz Kofidezitervall für de Ateilswerte Kofidezitervall für die Differez zweier Ateile Bestimmug des Stichrobeumfags Itervallschätzug II Bibliografie Bleymüller / Gehlert / Gülicher Verlag Vahle Statistik für Wirtschaftswisseschaftler Bleymüller / Gehlert Verlag Vahle Statistische Formel, Tabelle ud rogramme oweroiträsetatioe (rof. Mohr/ Dr. Ricabal Vorlesugsskrit für Statistik I (Dr. u Che Vorlesugsskrit für Statistik II (rof. Mohr, rivate Haseuiversität Rostock htt:// Itervallschätzug II

2 Verteilug der Schätzer für de Mittelwert ud die Variaz eier Normalverteilug Seie µe(x ud Var (X die ubekate arameter eier Normalverteilug X i eier Grudgesamtheit. Sei (X, X,.... X eie ufallsstichrobe vom Umfag aus dieser Grudgesamtheit. Die beste Schätzer (erwartugstreu ud kosistet für de arameter µ ud sid: Stichrobemittelwert µˆ X X i S (X i bzw. Modifizierte Stichrobevariaz i X i Für eifache ufallsstichrobe bzw. /N < 0,05 gelte: X ² ~ N(µ, X µ ~ N(0, ud S ² Itervallschätzug II 3 ~ Kofidezitervall für die Variaz eier ormalverteilte Grudgesamtheit S ² ~ W[ S ² W[ ; ; S ² ] W[ S ² ; ] ; ] W[ ² ( S ; ; ] ( S ( S W[ ² ; ; ] ( S ( S ² [ ; ; ] Itervallschätzug II 4

3 Kofidezitervall für die Stadardabweichug eier ormalverteilte GG ( S ( S W[ ² ; ; ] ( S ( S W[ ; ; ] ( S ( S [ ] ; ; Itervallschätzug II 5 Beisiel: Itervallschätzug der Variaz Die Motagedauer (X vo Geräte eies Tys i eier Großserieroduktio wird statistisch mittels Stichrobe überwacht. Sie ka für die Gesamtroduktio (äherugsweise als ormalverteilt vorausgesetzt werde. Die Berechuge aus 6 zufällig gezogee Stichrobemessuge lieferte eie mittlere Motagedauer vo 05 mi ud eie Stadardabweichug vo 0 mi. u bestimme ist eie 95%ige Itervallschätzug für die Variaz ud die Stadardabweichug der Motagedauer. Itervallschätzug II 6

4 Beisiel: Itervallschätzug der Variaz für die Motagedauer vo Geräte X: Motagedauer (i Miute vo Geräte i der Großserieroduktio arameter I der GG I der S Mittelwert µ (ubekat 05 mi Stadardabweichug (ubekat s0 mi Variaz ² (ubekat s²400 mi² ( S ( S W[ ² ( S ; ; ; ( S ² ; ² 7,488 6,6 ] ; 6,6 ; 0,05 0,05 ; 6 ; 6 8,8 ² 958,6 0,975 0,05 ; 5 ; 5-0,95 6 7,488 (Tab. 5 Itervallschätzug II 7 Itervallschätzug der Streuug für die Motagedauer vo Geräte - Iterretatio ( S ; ( S ² ; ( S ; ( S ; 8,8 ² 958,6 4,77 30,95 Iterretatio: Da das Kofideziveau 0,95 ahe bei Eis gewählt wurde, vertraut ma darauf, die Itervalle [8,8 ; 958,6] ud [4,77 ; 30,95] erhalte zu habe, so dass sie die Variaz ² bzw. die Stadardabweichug überdecke. Ob i diesem Fall diese Aahme richtig oder falsch ist, ka icht gesagt werde. Bekat ist jedoch der mittlere rozetuale Fehlerateil mit 5 %, der sich bei wiederholter Beobachtug vo Stichrobe des Umfags 6 ergibt. Itervallschätzug II 8

5 Ateil i der Grudgesamtheit Der Ateil vo Elemete i eier GG, die eie bestimmte Eigeschaft aufweise, wird mit bezeichet ud etsricht der Wahrscheilichkeit dafür, dass ei zufällig ausgewähltes Elemet der GG diese Eigeschaft besitzt. Die Ateilswerte werde für dichotome Merkmale (Biärmerkmale ausgewiese. X 0 W(X W(X 0 - Eie solche ufallsvariable geügt eier wei-ukt bzw. Beroulli-Verteilug. M Erwartugswert: E(X N Variaz: Var(X ( Itervallschätzug II 9 Schätzer des arameters eier Beroulli-Verteilug Sei X eie Beroulli-Verteilug mit dem ubekate arameter (Ateilswert. Sei (X, X,... X eie ufallsstichrobe vom Umfag. Der beste Schätzer für ist: i i ˆ X X mit X i 0 für i,,, Dieser Schätzer wird Stichrobeateil geat. Die Summe der X i stellt die Azahl der Erfolge der iehuge der Stichrobe dar. Diese Summe ist eie ufallsvariable ud geügt eier Biomialverteilug mit de arameter ud (iehug mit Wiederholuge bzw. Hyergeometrischer Verteilug mit de arameter N, ud M (iehug ohe urücklege. Itervallschätzug II 0

6 Verteilug des Schätzers für der arameter eier Beroulli-Verteilug für große Sei X eie Beroulli -Verteilug mit dem ubekate arameter (Ateil. Sei (X, X,... X eie ufallsstichrobe vom Umfag. Der Schätzer für ist der Stichrobeateil. Für große Stichrobeumfäge ( - 9 geügt der Stichrobeateil asymtotisch eier Normalverteilug mit dem Erwartugswert ud der Variaz (-/. ˆ i Xi ( N(, Xi E(X i i i i E( E( Xi i ( Var( Var( VarXi ( ( i i Faustregel: (- 9 Itervallschätzug II Schätzug der Stadardabweichug des Stichrobeateils für große Var( Var( i Xi ( ( ( ( ubekat ( N N beim iehe ohe urücklege ( beim iehe mit urücklege Itervallschätzug II

7 Kofidezitervall für de Ateil bei großem Stichrobeumfag W( + ( beim iehe mit urücklege ( N N beim iehe ohe urücklege Faustregel: (- 9 Itervallschätzug II 3 Beisiel: Schätzug des Ateils I eiem Vorort mit Familie soll der Ateil der Familie mit mehr als eiem kw geschätzt werde. I eier Stichrobe vom Umfag 00 Familie möge sich 30 Familie mit mehr als eiem kw befide. Gehe wir vo eiem 95%ige Sigifikaziveau aus. 30 ˆ 0,30 00 * ( 0,3 0,7 0, 0,00 0, Faustregel: (- 00 0,3 0,7 9 ( + (0,3,96 0,046 0,3 +,96 0,046 (0,3 0,0903 0,3 + 0,0903 (0,097 0,3903 0,05 0,975 *bei /N0,0 < 0,05 Itervallschätzug II 4 (Tab.,96

8 Kofidezitervall für de Ateil für kleie Stichrobeumfäge, (- < 9 Die Itervallschätzug eies ubekate Ateilswertes mit kleie Stichrobe ist äußerst roblematisch, weil der ubekate arameter i de dazu geutzte Verteiluge auftaucht. Normalerweise werde folgede Verteiluge als ivotgröße eigesetzt: Biomialverteilug beim iehe mit urücklege Hyergeometrische Verteilug beim iehe ohe urücklege Fisherverteilug F v, v Die allgemeie Formel für die Greze eies Kofidezitervalls [K u ; K o ] zum Kofideziveau - für de Ateil werde folgedermaße defiiert: K u F ( + + F, ( + ;, ( + ; K o ( F (, + ; Itervallschätzug II 5 Kofidezitervalle für de Ateil - usammefassug - arameter Kofidezitervall Stadardfehler ( ohe urücklege ( mit urücklege Azuwedede Verteilug kleie S große S + ( ( ( ( N N * [K u ; K o ] Faustregel: (- < 9 Normalverteilug Faustregel: (- 9 K u F ( + + F, ( + ; * Für /N < 0,05 ka der Korrekturfaktor für eie edliche Gesamtheit verachlässigt werde., ( + ; K o ( F (, + ; N N Itervallschätzug II 6

9 Verteilug der Differez zweier Stichrobeateile ˆ Seie X ud X zwei beroulliverteilte ufallsgröße mit de arameter bzw. i zwei Grudgesamtheite. Seie (X, X,..., X ud (X, X,..., X zwei uabhägig voeiader gezogee Stichrobe. Die Differez - wird mit der Differez der Stichrobeateile - geschätzt. Bei große Stichrobe gelte folgede Beziehuge: Xi i ( ~ N(, ud ˆ E( ( ( ~ N( ; + E( E( ( ( Var( Var( + Var( + ud i X ( ~ N(, Itervallschätzug II 7 i Normalverteilug, Faustregel: ( - 9 ( - 9 Kofidezitervall für die Differez zweier Ateilswerte bei große Stichrobe Seie X ud X zwei beroulliverteilte ufallsgröße mit de arameter bzw. i zwei Grudgesamtheite. Seie (X, X,..., X ud (X, X,..., X zwei uabhägig voeiader gezogee Stichrobe. Bei große Stichrobe, ( - 9 ud ( - 9, lässt sich für die Differez - folgedes Kofidezitervall herleite: ( ( ~ N( ; + ( ( ( ( + ( - D ( D ~ N(0, D ( ( + Itervallschätzug II 8

10 Beisiel: Itervallschätzug für die Differez der Ateilswerte u eier wichtige kommualolitische Frage werde 00 Eiwoher der Altstadt (Grue ud 500 Bewoher der Neubaugebiete (Grue befragt. I der. Grue beträgt der Ateil der ustimmede 60 % ud i der. Grue 48 %. Das Schätzitervall zum Kofideziveau 0,99 für die Differez der Ateilswerte der beide Grudgesamtheite lautet: W[( - D ( + D ] 0, ,995 0,0,58 ( ( 0,60 0,40 0,48 0,5 D + + 0, (Tab. [(0,6 0,48 -,58 0,04 (0,6 0,48 +,58 0,04] [0, 0,063 [0,037 0,63] 0, + 0,063] Itervallschätzug II 9 usammefassug - Itervallschätzug Mit eier Itervallschätzug wird ei arameter derart geschätzt, dass ei Itervall etsteht ud die Wahrscheilichkeit dafür agegebe werde ka, dass der wahre arameterwert der Grudgesamtheit i diesem Itervall liegt. Diese Aussage erfolgt uter dem Vorbehalt eier Irrtumswahrscheilichkeit auf eiem Kofideziveau -. Itervallschätzug II 0

11 Itervallschätzug des Mittalwertes Bisher stellte sich die Aufgabe, aus eier Stichrobe vom gegebee Umfag bei gegebeem Sicherheitsgrad - ei Kofidezitervall für eie arameter γ (z. B. µ, ² oder zu bestimme. Für de Mittelwert µ eier Normalverteilug mit bekater Variaz ² erhält ma das Kofidezitervall: [X µ X+ ] mit dem absolute Schätzfehler: µ [(X+ (X ] Itervallschätzug II Bestimmug des Stichrobeumfags Aus der Relatio zwische de Größe vo: absolutem Schätzfehler µ (Geauigkeit Sigifikaziveau - (Sicherheitsgrad Stichrobeumfag lässt sich eie dieser Größe aus der Keug der adere bestimme. Häufig stellt sich i der raxis die Aufgabe, de otwedige Stichrobeumfag so zu bestimme, dass eie vorgegebee Geauigkeit ud eie vorgegebee Sicherheit bei der arameterschätzug zu gewährleiste sid. Itervallschätzug II

12 Stichrobeumfag bei der Schätzug des Mittelwertes µ (Fall Bediguge: Normalverteilug des Merkmals i der Grudgesamtheit oder >30 Bekate Variaz ² iehe mit urücklege oder /N<0,05. µ µ ² ( µ ² Vorgegebe: - : Sicherheitsgrad der Schätzug µ: Geauigkeit bzw. absoluter Schätzfehler : Stadardabweichug des Merkmals Gesucht: Stichrobeumfag Itervallschätzug II 3 Stichrobeumfag bei der Schätzug des Mittelwertes µ (Fall Bediguge: Normalverteilug des Merkmals i der Grudgesamtheit oder große Bekate Variaz ² iehe ohe urücklege ud /N 0,05. Vorgegebe: N µ - : Sicherheitsgrad der Schätzug N : Geauigkeit bzw. absoluter Schätzfehler : Stadardabweichug ² N N: Umfag der Grudgesamt ( µ ²(N + ² Gesucht: Stichrobeumfag Itervallschätzug II 4

13 Beisiel: Bestimmug des Stichrobeumfags für die Schätzug des Mittelwertes µ Das Durchschittsgewicht vo.000 Koservedose ist mit eiem Sicherheitsgrad vo 0,99 ud bei eiem absolute Fehler vo maximal g zu schätze. Aus voragegagee Studie ka ageomme werde, dass das Gewicht der Dose ormalverteilt ist mit eier Variaz vo 36 g². Wie groß soll der Stichrobeumfag sei, um diese Bediguge zu erfülle? ² N Gegebe: ( µ ²(N + ² ²( N , ,58² µ ,58² 47960,8 ²36 4, ,6 0,995 0,995 Itervallschätzug II 5 robleme bei der Bestimmug des Stichrobeumfags bei ubekater Variaz µ S [X t We die Variaz ² der Grudgesamtheit ubekat ist, ka die Formel für de otwedige Stichrobeumfag icht eigesetzt werde: ; ² ( µ ² S ; X+ t Aus dem Kofidezitervall für de Mittelwert eier Normalverteilug bei ubekater Variaz folgt für µ ud : ] ; µ [(X S + t ; S (X t ; S ] t ; S (Xi X i S t ; ( µ ² roblematisch dabei ist, dass sowohl die t-verteilug als auch die Stichrobevariaz selbst vom zu bestimmede Stichrobeumfag abhäge. Itervallschätzug II 6

14 Bestimmug des otwedige Stichrobeumfags bei ubekater Variaz Bei ubekater ² ka folgedes iteratives Verfahre eigesetzt werde:. Es wird eie kleie Stichrobe (ilotstichrobe mit dem Umfag (m3, 4 oder 5 gezoge.. Aus dieser ilotstichrobe wird s² ud t berechet ud daraus der etsrechede Stichrobeumfag bestimmt. S m m (Xi X m i S m t ; m ( µ ² 3. Ma zieht eie Stichrobe vom Umfag -m, um zusamme eie S mit dem Umfag zu bilde. Mit dieser S berechet ma de Schätzfehler µ. Ist µ kleier oder gleich µ, da reicht dieser Stichrobeumfag. Gilt diese Relatio icht, da utzt ma die vorhadee Stichrobe als ilotstichrobe ud wiederholt de Algorithmus ab Schritt. µ Itervallschätzug II 7 s t ; Bestimmug des Stichrobeumfags bei der Schätzug eies Ateilswertes Soll ei Ateilswert mit vorgegebeer Geauigkeit ud vorgegebeem Sicherheitsgrad - bestimmt werde, so geht ma folgedermaße vor. Uter der Aahme eies große Stichrobeumfags ka die Normalverteilug eigesetzt werde. + ( ( N N [( + ( ( ² Itervallschätzug II 8 ( ( N ( ²(N + ( ] beim iehe mit urücklege iehe ohe urücklege roblematisch ist es hier, dass i beide Bestimmugsgleichuge der ubekate Ateil auftaucht. Ma ka i diesem Fall wie bei ubekater ² vorgehe. Ma fägt aber mit eier größere ilotstichrobe (m > 30 a.

15 Obere Schrake für de Stichrobeumfag bei der Schätzug eies Ateilswertes ( ( ² ( d( ² d Beim iehe mit urücklege ud große Stichrobe Diese Formel als Fuktio vo erreicht ihr Maximum a der Stelle /. ( 0 ² beim iehe ohe urücklege ( d ²( ( ² d ² < 0 ( ² ( N e ²(N + ( Diese Formel als Fuktio vo erreicht auch ihr Maximum a der Stelle /. Itervallschätzug II 9 Beisiel: Bestimmug des Stichrobeumfag für die Schätzug des Ateilswertes Ei Markeartikelhersteller will de Bekatheitsgrad seies rodukts i der Budesreublik bestimme. Der absolute Schätzfehler soll % ud der Sicherheitsgrad 0,95 betrage. Wie groß ist der otwedige Stichrobeumfag zu wähle? Gegebe: N: sehr groß - 0,95 0,0 Ma ka /N<0,05 uterstelle (iehe mit urücklege 0,5 0,5,96² Obere Schrake: 40 ² 0,0² We aus eier frühere Utersuchug (ilotstichrobe mit eiem Bekatheitsgrad vo 0,4 gerechet werde ka, da gilt: m ( m ² 0,4 0,58,96² 340 0,0² Itervallschätzug II 30

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3

Vl Statistische Prozess und Qualitätskontrolle und Versuchsplanung Übung 3 Vl Statistische Prozess ud Qualitätskotrolle ud Versuchsplaug Übug 3 Aufgabe ) Die Schichtdicke X bei eier galvaische Beschichtug vo Autoteile sei ormalverteilt N(μ,σ ). 4 Teile werde galvaisch beschichtet.

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

X X Schätzen von Vertrauensintervallen Schwankungsintervall

X X Schätzen von Vertrauensintervallen Schwankungsintervall .. Schätze vo Vertrauesitervalle..1. Schwakugsitervall Beispiel: X = Betrag vo Geldüberweisuge, ormalverteilt, µ = 5000, = 1000 Zufallsstichprobe mit = 100, Schätzer für µ: X X Gesucht: Itervall, i dem

Mehr

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis:

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

8. Intervallschätzung

8. Intervallschätzung 8. Itervallschätzug 8.1 Begriff des Kofidezitervalls Mit uterschiedliche Stichprobe lasse sich verschiedee Puktschätzer θ für de Parameter der Grudgesamtheit erziele. We m Stichprobe aus der Grudgesamtheit

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Anwendung für Mittelwerte

Anwendung für Mittelwerte Awedug für Mittelwerte Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Mittelwert der Grudgesamtheit icht zufällig?... beobachtete Mittelwert zufällig Statistik für SoziologIe 1

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit 3. Itervallschätzuge 3.1. Zufallsstichprobe ud Stichprobefuktioe 3.1.1 Zufallsstichprobe 1 Sei eie Zufallsvariable ud seie gemeisamer Verteilug,,,, Zufallsvariable mit - da heiße 1,,, Zufallsstichprobe

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

2. Repetition relevanter Teilbereiche der Statistik

2. Repetition relevanter Teilbereiche der Statistik . Repetitio Statistik Ökoometrie I - Peter Stalder. Repetitio relevater Teilbereiche der Statistik (Maddala Kapitel ) Zufallsvariable ud Wahrscheilichkeitsverteiluge Zufallsvariable X (stochastische Variable)

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Grundzüge der Stichprobentheorie. Statistisches Bundesamt

Grundzüge der Stichprobentheorie. Statistisches Bundesamt Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Parametrische Einstichprobentests

Parametrische Einstichprobentests Parametrische Eistichprobetests Eiführug ud Begriffe beim Hypothesetest Hypothesetest für de Mittelwert Hypothesetest für die Variaz Hypothesetest für de Ateilswert Lehrstuhl Statistik Testverfahre I Bibliografie

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Parameterschätzung. Numero, pondere et mensura Deus omnia condidit

Parameterschätzung. Numero, pondere et mensura Deus omnia condidit Parameterschätzug Numero, podere et mesura Deus omia codidit Populatio, Zufallsvariable, Stichprobe Populatio Zufallsvariable X Stichprobe x eie"realisierug vo X (Beobachtug) alle mäliche Rekrute der US

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Übungen zu QM III Mindeststichprobenumfang

Übungen zu QM III Mindeststichprobenumfang Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 jutta.arreberg@th-koel.de Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Testverfahren zur Prüfung von Hypothesen über Parameter oder Verteilungen. Einstichprobentest für die Varianz einer Normalverteilung

Testverfahren zur Prüfung von Hypothesen über Parameter oder Verteilungen. Einstichprobentest für die Varianz einer Normalverteilung Testverfahre zur Prüfug vo Hypothese über Parameter oder Verteiluge Eistichprobetest für die Variaz eier Normalverteilug Eistichprobetest für de Ateilswert Zweistichprobetests zum Vergleich zweier arithmetischer

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG 9 - LÖSUNGEN. Ziehug vo Kugel aus eier Ure a. Die Zahl der Permutatio der Kugel, die aus Klasse utereiader gleicher

Mehr

Multivariate Analysemethoden und Multivariates Testen

Multivariate Analysemethoden und Multivariates Testen Multivariate Aalysemethode ud Multivariates Teste Stude im Mai Güter Meihardt Johaes Guteberg Uiversität Maiz Priziie des statistische Schliesses Samlig - Modellvorstellug Poulatio Samlig Stichrobe Kewerte

Mehr

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

II. Grundzüge der Stichprobentheorie

II. Grundzüge der Stichprobentheorie II. Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

10. Intervallschätzung 10.1 Begriff des Konfidenzintervalls

10. Intervallschätzung 10.1 Begriff des Konfidenzintervalls 10. Itervallschätzug 10.1 Begriff des Kofidezitervalls Mit uterschiedliche Stichprobe werde verschiedee Puktschätzer für de Parameter der Grudgesamtheit erzielt. We m Stichprobe aus der Grudgesamtheit

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Kapitel 2: Stochastische Prozesse. Copyright M. Gross, ETH Zürich 2006, 2007

Kapitel 2: Stochastische Prozesse. Copyright M. Gross, ETH Zürich 2006, 2007 Kaitel 2: Coyright M. Gross, ETH Zürich 2006, 2007 Bedigte Verteiluge Ebeso a die Verbudwahrscheilicheit vo Zufallsvariable über bedigte Wahrscheilicheite ausgedrüct werde i i,, i,, Wiederum ommt eie Produtregel

Mehr

Zufallsstreubereiche und Vertrauensbereiche

Zufallsstreubereiche und Vertrauensbereiche HTL Saalfelde Zufallsstreu- ud Vertrauesbereiche Seite 1 vo 1 Wilfried Rohm, HTL Saalfelde wilfried.rohm@schule.at Zufallsstreubereiche ud Vertrauesbereiche Mathematische / Fachliche Ihalte i Stichworte:

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grudproblem der Iferezstatistik Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Ateil icht zufällig p... beobachtete Ateil zufällig Statistik für SoziologIe 1 Iferez für Ateile?

Mehr

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I 6 Hypothesetests Gauß-Test für de Mittelwert bei bekater Variaz 6.3 Gütefuktio ud Fehlerwahrscheilichkeite Rechtsseitiger Test (µ 0 = 500) zum Sigifikaziveau α = 0.30 6 Hypothesetests Gauß-Test für de

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler Statistik ud Wahrscheilichkeitsrechug Testatprüfug am Doerstag 5.Mai Wa? Doerstag, 5. Mai, 8:00 Uhr Dauer der

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

Ereignis Wahrscheinlichkeit P (A) A oder B P (A + B) A und B P (AB) B, wenna P (B A)

Ereignis Wahrscheinlichkeit P (A) A oder B P (A + B) A und B P (AB) B, wenna P (B A) Kapitel 10 Statistik 10.1 Wahrscheilichkeit Das Ergebis eier Messug oder Beobachtug wird Ereigis geat. Ereigisse werde mit de Buchstabe A, B,...bezeichet. Die Messug eier kotiuierliche Variable x gibt

Mehr

Induktive Schlussweise. Schätzfunktionen und Schätzverfahren. Bibliografie

Induktive Schlussweise. Schätzfunktionen und Schätzverfahren. Bibliografie Auswertug uivariater Datemege -iduktiv - Iduktive Schlussweise Schätzfuktioe ud Schätzverfahre Schätzug I Bibliografie Prof. Dr. Kück Uiversität Rostock Statistik, Vorlesugsskript Abschitt 7..; 7.. Bleymüller

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Statistik, Abschnitt (1) Gegeben sei der Stichprobenvektor (X 1,..., X n ). Die Stichprobenfunktion. ˆµ k := 1 n. Xi k (1) i=1.

Statistik, Abschnitt (1) Gegeben sei der Stichprobenvektor (X 1,..., X n ). Die Stichprobenfunktion. ˆµ k := 1 n. Xi k (1) i=1. Statistik, Abschitt.. Schätzmethode.. Mometemethode Für Parameter, die sich i bekater Weise aus de Momete zusammesetze, erhält ma Schätzuge, idem ma die theoretische Momete durch die sogeate empirische

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten.

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten. Aufgabe 36 (S. 346: Schätzverfahre für Mittelwert ud Stadardabweichug a Puktschätzuge für µ aufgrud der Werte der kleie Stichprobe aus Aufgabe 3 Bei eier Puktschätzug wird für de zu schätzede Parameter

Mehr

Intervallschätzung. Bibliografie:

Intervallschätzung. Bibliografie: Itervallschätzug Kofdeztervall der Varaz Kofdeztervalle vo Atelswerte Kofdeztervall für de Dfferez zweer Atele Bestmmug des tchrobeumfags Dr. Rcabal Delgado/rof. Kück Lehrstuhl tatstk chätzug III Bblografe:

Mehr

Der Vergleich eines Stichprobenmittelwertes mit einem Populationsmittelwert

Der Vergleich eines Stichprobenmittelwertes mit einem Populationsmittelwert Der Vergleich eies Stichprobemittelwertes mit eiem Populatiosmittelwert Am Beispiel des Falschspielers habe wir - uterstützt durch Ketisse über die Eigeschafte der Biomialverteilug - erstmals gesehe, welche

Mehr

Ulrich Stein Fehlerrechnung

Ulrich Stein Fehlerrechnung Fehlerrechug Verteilug vo Messwerte Mittelwert Stadardabweichug Stadardfehler Rude vo Messwerte Darstellug vo Messwerte (Stellezahl) Fehlerfortpflazug Messergebisse Messug physikalische Realität Messgerät,

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Inhaltsverzeichnis. Wirtschaftswissenschaftliches Zentrum 11 Universität Basel. Mathematik 2

Inhaltsverzeichnis. Wirtschaftswissenschaftliches Zentrum 11 Universität Basel. Mathematik 2 Wirtschaftswisseschaftliches Zetrum 11 Uiversität Basel Mathematik Dr. Thomas Zehrt Schätze Beötigtes Vorwisse: Der Stoff der Vorlesug,,Statistik wird als bekat vorausgesetzt, isbesodere Kapitel 11,,(Pukt)schätze

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

Aufgabe 5: Grundlagen Wahr keit, Satz von Bayes und Binomialverteilung

Aufgabe 5: Grundlagen Wahr keit, Satz von Bayes und Binomialverteilung Klausur: Statistik Jürge Meisel Zugelassee Hilfsmittel: icht progr. Tascherecher Bearbeitugszeit: 60 Miute Amerkug zur Bearbeitug: Die Klausur besteht aus isgesamt 6 Aufgabe. Sie müsse ur 5 davo bearbeite.

Mehr

Formelsammlung Statistik 29. Januar 2019

Formelsammlung Statistik 29. Januar 2019 Formelsammlug Statistik Seite 1 Formelsammlug Statistik 9. Jauar 019 Witersemester 018/19 Adreas Löpker, HTW Dresde 1. Deskriptive Statistik (F1) Stichprobe x vom Umfag, Stichprobe y vom Umfag m x = (x

Mehr

Einstichprobentests für das arithmetische Mittel

Einstichprobentests für das arithmetische Mittel Eistichprobetests für das arithmetische Mittel H 0 : = 0 bzw. H 0 : 0 H 1 : 0 zweiseitiger Test) H 1 : 0 zweiseitiger Test) Uter Gültigkeit vo H 0 ist die achfolgede Teststatistik stadardormalverteilt.

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen Statistik. Vorlesug, September, 00 f() 0.0 0. 0. 0.3 0.4 Stadard Normalverteilug Dichtefuktio vo Stadard Normal Verteilug -4-0 4 Der Erwartugswert: mittlere Wert E ( = f( ) d=0 für die Stadard Normal Verteilug

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Ihaltsverzeichis 1 Vorbemerkuge 1 Zufallsexperimete - grudlegede Begriffe ud Eigeschafte 3 Wahrscheilichkeitsaxiome 4 4 Laplace-Experimete 6 5 Hilfsmittel aus der Kombiatorik 7 6 Bedigte Wahrscheilichkeite

Mehr

Statistik. 2. Semester. Begleitendes Skriptum zur Vorlesung. im FH-Masterstudiengang. Technisches Management. von. Günther Karigl

Statistik. 2. Semester. Begleitendes Skriptum zur Vorlesung. im FH-Masterstudiengang. Technisches Management. von. Günther Karigl Statistik. Semester Begleitedes Skriptum zur Vorlesug im FH-Masterstudiegag Techisches Maagemet vo Güther Karigl FH Campus Wie 06/7 Statistische Schätzverfahre Statistische Schätzverfahre Währed die deskriptive

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grudproblem der Iferezstatistik Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Ateil icht zufällig p... beobachtete Ateil zufällig? Statistik für SoziologIe 1 Iferezschluss Kofidezitervall

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3])

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3]) I- Messusicherheite: Lit.: Prof. Dr. Gerz Wahrscheilichkeitsrechug ud Usicherheitsberechug IO/BIPM-Leitfade Guide to the Epressio of Ucertaity i Measuremet, GUM (008 überarbeitet, die deutsche Fassug ist

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia Statistik I - Formelsammlug Ihaltsverzeichis 1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre................................. 1. Kombiatorik........................................ 1.3 Wahrscheilichkeite....................................

Mehr

3. Grundbegrie der Schätztheorie

3. Grundbegrie der Schätztheorie Statistik, Abschitt 3. 3. Grudbegrie der Schätztheorie I der kormatorische Statistik will ma uter aderem auf Grud eier Stichprobe vom Umfag Iformatioe über ubekate Parameter θ der Verteilug F der zugrudeliegede

Mehr

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch Spiel Körpergröße Zahl: Azahl weiblich Eiführug i die iduktive Statistik Friedrich Leisch Istitut für Statistik Ludwig-Maximilias-Uiversität Müche Tafelgruppe 8.5 8.6 8.7 8.8 8.9 9.0 9.1 4 5 3 2 1 0 1

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Korrekturliste zum Studienbuch Statistik

Korrekturliste zum Studienbuch Statistik Korrekturlite zum Studiebuch Statitik I der aktuelle Auflage wurde durch ei Kovertierugproblem i de Kapitel 0 (S. 3 3 ud de etprechede Abchitte i de Löuge (S. 39 07 teilweie die Zeiche µ durch ud π durch

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Vergleich vo mehrere Stichprobe Grudlage der Biostatisti ud Iformati Hypotheseprüfuge III., Nichtparametrische Methode dr László Smeller Semmelweis Uiversität 0 Vergleich vo mehrere Stichprobe Boferroi

Mehr

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω Statistik Theorie Defiitioe Ω = Grudmege = Ergebismege = Mege aller mögliche Ergebisse A = Ereigisraum = σ-algebra (Sigma-Algebra) = Mege aller messbare Ergebisse über eie defiierte Grudmege Ω P(Ω) = Potezmege

Mehr

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion

Normalverteilung. Standardnormalverteilung. Intervallwahrscheinlichkeiten. Verteilungsfunktion Normalverteilug Stadardormalverteilug Normalverteilug N(μ, ) mit ichte : Gaußche Glockekurve μ μ μ+ μ >, f ( ) = ( μ) WS 6/7 Prof. r. J. Schütze, FB GW NV π Eigechafte der ichte: - Maimum i μ - mmetrich

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodelehre e e Prof. Dr. G. Meihardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persike persike@ui-maiz.de

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik 2 für Naturwisseschafte 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Modul 209 Tabelle Has Walser: Modul 209, Tabelle ii Ihalt Fakultäte... 2 Biomialkoeffiziete... 2 3 Biomische Verteilug... 3

Mehr

Evaluation & Forschungsstrategien

Evaluation & Forschungsstrategien Evaluatio & Forschugsstrategie WS2/2 Prof. Dr. G. Meihardt Johaes Guteberg Uiversität Maiz Prizipie des statistische Schliesses Samplig - Modellvorstellug Populatio Samplig Stichprobe Kewerte x Theoretische

Mehr