Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Größe: px
Ab Seite anzeigen:

Download "Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:"

Transkript

1 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N 2 Es regnet. R 3 Also wird die Straße nass. N (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel was ist mit folgender Schlußweise: 1 Alle Griechen sind Philosophen. x.g(x) P(x) 2 Sokrates ist eine Grieche. G(s) 3 Also ist Sokrates ein Philosoph. P(s)

2 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 193 Resolution zur Erinnerung: aussagenlogische Resolution Verfahren für Unerfüllbarkeit wegen Satz von Herbrand klar: Resolution auch für FO möglich hier zunächst Resolutionskalkül für FO ohne Gleichheitssymbol. = Formeln immer gegeben als Klausel-Mengen Φ={ϕ 1,...} in Skolem-Normalform ϕ i = x 1... x n m j=1 wobei j Literale über atomaren Formeln R(t 1,...,t n );nur Variablen x 1,...,x n j

3 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 194 Beispiel Notation: universelle Quantifizierung nur noch implizit Bsp.: { x.p(x) y.r(x, y), v. z.p(v) R(v, z)} in Skolem-Normalform: { x.p(x) R(x, f (x)), z.p(c) R(c, z)} dann in Klauselform mit impliziter univ. Quantifizierung: { P(x) R(x, f (x)), P(c), R(c, z)} ist intuitiv unerfüllbar: 1. und 2. Klausel sorgen dafür, dass R(c, f (c)) gilt, dies widerspricht aber der 3. Klausel wegen impliziter, univ. Quantifizierung über z

4 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 195 Grundresolution hier zunächst vereinfachter Fall der Grundresolution: variablen-freie Klauseln Def.: Resolutionsbeweis für Klauselmenge Φ ist endlicher Baum: Wurzel mit leerer Klausel beschriftet Blätter mit Klauseln ϕ Φ beschriftet Söhne nach Resolutionsregel konstruiert: C, R(t 1,...,t n ) C, R(t 1,...,t n ) C, C beachte: dasselbe wie Resolution für Aussagenlogik

5 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 196 Grundresolution ist korrekt und vollständig Theorem 37 Sei Φ variablen-freie Klauselmenge. Dann ist ϕ unerfüllbar gdw. es einen Grundresolutionsbeweis für Φ gibt. Beweis: Folgt sofort aus Satz von Herbrand. Beachte: Φ= AL(Φ) in diesem Fall. Ziel: Einschränkung auf Variablenfreiheit aufheben Lemma: Sei T Menge aller Grundterme über zugrundeliegender Signatur. x 1...x n ϕ ist unerfüllbar gdw. (t 1,...,t n ) T n ϕ[t 1 /x 1,...,t n /x n ] unerfüllbar ist. Beweis: Folgt aus Satz von Herbrand.

6 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 197 Resolution für FO Resolutionsbeweis definiert wie oben, jedoch angewendet auf allgemeine Klauselmengen mit Variablen x 1,...,x n zusätzliche Instanziierungsregel C C[t 1 /x 1,...,t n /x n ] Theorem 38 Φ unerfüllbar gdw. es Grundresolutionsbeweis mit Instanziierungsregel für ϕ gibt. Beweis: Obiges Lemma überträgt Unerfüllbarkeit auf Grundklauselmenge, also erst entsprechende Instanziierungen durchführen, dann Resolventen bilden. Wie oben, zusätzlich mit folgendem Prinzip. Ist Φ ϕ[t/x] unerfüllbar, so ist auch Φ x.ϕ unerfüllbar.

7 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 198 Beispiel Bsp: x. y.p(x) P(y) P(c) P(d) ist unerfüllbar 1 in Klauselform: {P(x), P(y)}, { P(c), P(d)} 2 Expansion mittels Herbrand-Universum in aussagenlogische Klauselmenge liefert {P(c)}, {P(c), P(d)}, {P(d)}, { P(c), P(d)} 3 Herleitung der leeren Klausel per Resolution ist leicht

8 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 199 Pragmatische Aspekte Verfahren per Reduktion auf Grundresolution in Praxis ungeeignet; verlangt, die Terme im Vorhinein ohne Rückgriff auf den Resolutionsbeweis zu erraten besseres Verfahren wünschenswert, welches Instanziierungen erst dann vornimmt, wenn sie wirklich gebraucht werden wie soll man dann Literale mit Variablen behandeln? Bsp. sollte man zwei Klauseln mit folgenden Literalen resolvieren können? R(f (x), c), R(f (f (c)), y) R(f (x), c), R(f (f (c)), x) R(x, y), R(y, y) P(g(f (x), a)), P(g(z, f (y)))

9 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 200 Substitutionen Def.: Substitution ist Abbildung σ von Variablen auf Terme Bsp.: σ =[x g(c, f (d)), y f (x), z z] Konvention: Variablen, die nicht explizit in [...] aufgelistet werden, werden auf sich selbst abgebildet Def.: Substition σ kann in natürlicher Weise erweitert werden auf Terme: σ(f (t 1,...,t n )) := f (σ(t 1 ),...,σ(t n )) Prädikate: σ(r(t 1,...,t n )) := R(σ(t 1 ),...,σ(t n )) Literale: σ( ) := σ() Klauseln: σ(φ) := {σ(ϕ) ϕ Φ}

10 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 201 Syntaktische Unifikation syntaktische Unifikation = finde Substitution für Variablen, die zwei (oder mehrere) Prädikate gleich macht Def.: Substitution σ heißt Unifikator von 1,..., n,falls σ( 1 )=σ( 2 )=...= σ( n ) Bsp.: Gibt es Unifikatoren für folgende Prädikate? Welche? 1 P(x) und P(c) 2 P(x) und Q(x) 3 R(f (x), c) und R(z, f (y)) 4 R(f (x), c) und R(f (f (c)), y) 5 R(f (x), c) und R(f (f (c)), x) 6 R(x, y) und R(y, y) 7 P(x) und P(f (x)) 8 P(x) und P(f (y))

11 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 202 Allgemeinste Unifikatoren Def.: Seien σ, ρ zwei Substitutionen. Dann heißt σ allgemeiner als ρ, geschrieben σ ρ, falls es eine Substitution ζ gibt, so dass für alle Variablen x gilt: ρ(x) =ζ(σ(x)) Bsp.: [x f (y), y c] [x f (f (y)), y c] [x f (y), y c] und [x f (f (y)), y z] sind unvergleichlich bzgl. [x y] [y x] und umgekehrt! Def. σ heißt allgemeinster Unifikator (MGU) von 1,..., n,falls σ ρ für jeden Unifikator ρ von 1,..., n

12 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 203 Allgemeinste Unifikatoren ein paar Fakten über Unifikation Unifikatoren müssen nicht immer existieren: P(f (x)), P(g(y)) gibt es Unifikator, so gibt es auch MGU MGUs müssen nicht eindeutig sein: P(x), P(y) hat MGUs [x y], [y x] MGUs lassen sich berechnen

13 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 204 Faktoren Def.: Sei C = 1,..., n, C Klausel, σ MGU von 1,..., n.dann heißt σ( 1 ), C Faktor von C Resolution muss auf Faktoren ausgeführt werden: Bsp: {P(x), P(y)}, { P(c), P(d)} unerfüllbar, aber leere Klausel nicht herleitbar durch Resolution auf einzelnen Literalen im folgenden Faktorisierung gleich in Resolutionsschritt eingebaut

14 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 205 Prädikatenlogische Resolution Def.: Seien C und D Klauseln. Dann heißt E Resolvente von C und D, falls 1 es C, D gibt, die aus C und D durch evtl. Umbenennen von Variablen entstehen und keine Variablen gemeinsam haben, so dass 2 C = α 1,...,α n, C und D = β 1,..., β m, D, 3 es MGU σ von α 1,...,α n,β 1,...,β m gibt und 4 E = σ(c D ) Def.: Resolutionsbeweis für Klauselmenge Φ mit dieser Resolutionsregel wie üblich definiert

15 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 206 Beispiel Bsp.: Betrachte C = {C 1, C 2, C 3 } mit C 1 = { P(y, c), P(y, x), P(x, y)} C 2 = {P(y, f (y)), P(y, c)} C 3 = {P(f (y), y), P(y, a)}

16 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 207 Notwendigkeiten Notwendigkeit zu Faktorisieren bereits gezeigt Variablenumbenennung ebenfalls essentiell: {P(c, y)}, {Q(x, d)}, { P(x, c), Q(d, y)} ist unerfüllbar, ohne Variablenumbenennung nicht zu zu resolvieren MGUs ebenfalls essentiell: { Q(y)}, {Q(x), P(x)}, {Q(x), P(x)} führt z.b. mit Unifikatoren [y c, x c] einerseits und [y d, x d] andererseits nicht zum Ziel

17 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 208 Korrektheit und Vollständigkeit Theorem 39 Sei C Klauselmenge. Es gibt Resolutionsbeweis für C gdw. C unerfüllbar ist. Beweisskizze: Wie bisher: Zeige, dass erfüllbare Menge unter Hinzunahme von Resolventen erfüllbar bleibt. SeiC unerfüllbar. Nach Thm. 38 gibt es Grundresolutionsbeweis mit Instanziierungen zu Grundtermen. Dieser lässt sich in einen Resolutionsbeweis umbauen, welcher die Instanziierungen mittels MGUs teilweise und nur an benötigter Stelle macht.

18 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 209 Beschränkung auf zwei Terme noch zu tun: Berechnung von MGUs Lemma: Seien t 1,...,t n, n > 1 Terme ohne Funktionssymbol f. Jeder Unifikator für t 1,...,t n ist auch ein Unifikator für f (t 2,...,t n ), f (t 1,...,t 1 ) und umgekehrt. Beweis: Übung. Soll heißen: bei der Berechnung von MGUs können wir uns auf den Fall zweier Terme t, t beschränken. Beachte: Für Unifikation kein Unterschied zwischen Funktions- und Prädikatsymbolen.

19 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 210 Berechnung von MGUs Algorithmus arbeitet auf Menge von Paaren von Termen M = {(t 1, t 1 ),...,(t n, t n)} Aufruf mit zu unifizierendem Paar (t, t ) iteriere, solange noch eine der folgenden Regeln die Menge M ändert entferne Paare der Form (t, t) aus M ersetze jedes (t, x) in M durch (x, t), fallsx Variable, t nicht Variable gibt es (t, t ) M mit t = f (s 1,...,s m ), t = f (u 1,...,u m ), so ersetze M durch (M \{(t, t )}) {(s 1, u 1 ),...,(s m, u m )} ist M = {(x, t), (t 1, t 1 ),...,(t n, t n)}, sodassx nicht in t vorkommt, so ersetze M durch {(x, t), (σ(t 1 ),σ(t 1 )),...,(σ(t m),σ(t m))}, wobei σ =[x t]

20 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 211 Berechnung von MGUs Termination nicht trivial; aber Regeln nicht beliebig lange anwendbar zwei Fälle bei Termination: 1 M = {(x 1, t 1 ),...,(x n, t n )}, wobei x 1,...,x n paarweise verschieden und kommen nicht in t 1,...,t n vor [x 1 t 1,...,x n t n ] ist MGU 2 keine Regel anwendbar, aber M nicht von obiger Form Eingabe nicht unifizierbar Theorem 40 (ohne Beweis) Obiger Algorithmus terminiert immer und berechnet einen MGU für die Eingabeterme.

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Logische Programmierung

Logische Programmierung Logische Programmierung B-82 Deklaratives Programmieren in Prädikatenlogik: Problem beschreiben statt Algorithmus implementieren (idealisiert). Grundlagen: Relationen bzw. Prädikate (statt Funktionen);

Mehr

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat Logik-Programme Definition: Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat die Form {P }. Eine Prozedurklausel ist eine Klausel der Form {P, Q 1, Q 2,..., Q k } mit k 1. P

Mehr

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1)

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Wissensrepräsentation: Resolution (im PK1) 2. Resolution Vorbild für Formalismus : exakt, präzise, (theoretisch) beherrscht Aufbau: Zeichen

Mehr

Musterlösung der Klausur zur Vorlesung Logik für Informatiker

Musterlösung der Klausur zur Vorlesung Logik für Informatiker Musterlösung der Klausur zur Vorlesung Logik für Informatiker Bernhard Beckert Christoph Gladisch Claudia Obermaier Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Klausur für Studiengänge INF und IST

Klausur für Studiengänge INF und IST Familienname: Matrikelnummer: Studiengang: (bitte ankreuzen) INF IST MED Vorname: Email-Adresse: Immatrikulationsjahr: Klausur für Studiengänge INF und IST sowie Leistungsschein für Studiengang Medieninformatik

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Logikprogrammierung. gehalten von Prof Dr. Jürgen Giesl im Sommersemester 2006 an der RWTH Aachen

Logikprogrammierung. gehalten von Prof Dr. Jürgen Giesl im Sommersemester 2006 an der RWTH Aachen Logikprogrammierung gehalten von Prof Dr. Jürgen Giesl im Sommersemester 2006 an der RWTH Aachen eine studentische Mitschrift von Florian Heller florian@heller-web.net Diese Mitschrift erhebt keinen Anspruch

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik schulz@eprover.org Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen

Mehr

6.1 Syntax und Semantik von Constraint-Logikprogrammen

6.1 Syntax und Semantik von Constraint-Logikprogrammen Kapitel 6 Logikprogrammierung mit Constraints Nachdem wir nun sowohl die reine Logikprogrammierung als auch ihre Implementierung in der Sprache Prolog betrachtet haben, wollen wir uns zum Schluss mit einer

Mehr

Wissensbasierte Systeme/ Expertensysteme. Teil 2

Wissensbasierte Systeme/ Expertensysteme. Teil 2 Wissensbasierte Systeme/ Expertensysteme Teil 2 BiTS, Sommersemester 2004 Dr. Stefan Kooths KOOTHS BiTS: Wissensbasierte Systeme/Expertensysteme Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Entscheidungsunterstützung(ssysteme)

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 12: Termersetzungssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A ist eine

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Logik & Semantik 7. Vorlesung Prädikatenlogik 1. Syntax der Prädikatenlogik Semantik der Prädikatenlogik: Grundbegriffe (Variablen-)Substitutionen

Logik & Semantik 7. Vorlesung Prädikatenlogik 1. Syntax der Prädikatenlogik Semantik der Prädikatenlogik: Grundbegriffe (Variablen-)Substitutionen Logik & Semantik 7. Vorlesung Prädikatenlogik 1 Syntax der Prädikatenlogik Semantik der Prädikatenlogik: Grundbegriffe (Variablen-)Substitutionen 1 Definition eines logischen Systems: Generelles Schema

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern 6. Logisch schließende Agenten 7. Prädikatenlogik 1. Stufe 8. Entwicklung einer Wissensbasis 9. Schließen in der Prädikatenlogik

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

8. Logische Programmierung. Prolog Sprachkonstrukte: Fakten. Prolog Übersicht

8. Logische Programmierung. Prolog Sprachkonstrukte: Fakten. Prolog Übersicht 8. Logische Programmierung GPS-8-1 Übersicht zur logischen Programmierung GPS-8-2 Themen dieses Kapitels: Deklaratives Programmieren: Problem beschreiben statt Algorithmus implementieren (idealisiert).

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Auswahl von Klauseln und Atomen in Prolog

Auswahl von Klauseln und Atomen in Prolog 5.6 Prolog... ist die bekannteste Implementierung einer LP-Sprache; wurde Anfang der 1970er von Alain Colmerauer (Marseille) und Robert Kowalski (Edinburgh) entwickelt. konkretisiert den vorgestellten

Mehr

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Barbara König Logik 1 Motivation: Wir beschäftigen uns nun im folgenden mit der, die gegenüber

Mehr

1 Aussagenlogische Formeln

1 Aussagenlogische Formeln 1 Aussagenlogische Formeln Aufgabe 1.1 Transformieren Sie die Formel in disjunktive Normalform (DNF). ((:A! :B) ^ D)! ((A _ C) $ (:B ^ D)) Lösung 1.1 Schrittweise Transformation: Schritt 1: ((:A! :B) ^

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

3. Logik-Programmierung

3. Logik-Programmierung 3. Logik-Programmierung 3.1. Vorbemerkungen Idee: Ausführen eines Logik-Programms entspricht Herleitung leerer Klausel. Zusätzliche Verwendung einer Antworterzeugungskomponente (liefert Rechenergebnis).

Mehr

Program = Logic + Control

Program = Logic + Control Program = Logic + Control Prozedurale/imperative Sprachen: Abläufe formulieren Computer führt aus von-neumann-maschine Idee von deklarativen/logischen/funktionalen Programmiersprachen: Zusammenhänge formulieren

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Objekte in einer gewissen Beziehung zueinander stehen, eine Eigenschaft für alle Objekte gilt, es ein Objekt mit einer bestimmten Eigenschaft gibt.

Objekte in einer gewissen Beziehung zueinander stehen, eine Eigenschaft für alle Objekte gilt, es ein Objekt mit einer bestimmten Eigenschaft gibt. 3. Prädikatenlogik Gegenüber der Aussagenlogik wird die Sprache der Prädikatenlogik (Predicate Logic) so erweitert, daß gewisse Formen von Aussagen, die in der Aussagenlogik nicht möglich sind, ausgedrückt

Mehr

Aufgabe - Fortsetzung

Aufgabe - Fortsetzung Aufgabe - Fortsetzung NF: Nicht-Formel F: Formel A: Aussage x :( y : Q(x, y) R(x, y)) z :(Q(z, x) R(y, z)) y :(R(x, y) Q(x, z)) x :( P(x) P(f (a))) P(x) x : P(x) x y :((P(y) Q(x, y)) P(x)) x x : Q(x, x)

Mehr

Semantic Web Technologies I!

Semantic Web Technologies I! www.semantic-web-grundlagen.de Semantic Web Technologies I! Lehrveranstaltung im WS11/12! Dr. Elena Simperl! DP Dr. Sebastian Rudolph! M.Sc. Anees ul Mehdi! www.semantic-web-grundlagen.de Logik Grundlagen!

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Unifikation (1) Allgemeines: Mechanismus zur Parameter-Übergabe. Zuweisung an Variablen (einmalig, symmetrisch). Pattern-Matching (Muster-Vergleich).

Unifikation (1) Allgemeines: Mechanismus zur Parameter-Übergabe. Zuweisung an Variablen (einmalig, symmetrisch). Pattern-Matching (Muster-Vergleich). 4. Prolog Ausführung 4-1 Unifikation (1) Allgemeines: Mechanismus zur Parameter-Übergabe. Zuweisung an Variablen (einmalig, symmetrisch). Pattern-Matching (Muster-Vergleich). Substitution: Abbildung von

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will?

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will? Mengenlehre und Logik: iederholung Repetitorium: Grundlagen von Mengenlehre und Logik 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 arum??? arum um alles in der elt muss man sich mit herumschlagen,......

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Prolog = Programmierung in Logik (Roussell, Colmerauer, 1973/74)

Prolog = Programmierung in Logik (Roussell, Colmerauer, 1973/74) Logikprogrammierung Historie: Philosophie / Mathematik Künstliche Intelligenz Praktische Programmiersprache: Prolog = Programmierung in Logik (Roussell, Colmerauer, 1973/74) Grundidee: Ein Programm ist

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Klauseln und und Hornklauseln

Klauseln und und Hornklauseln Klauseln und und Hornklauseln Durch Transformation in Klauselform entsteht eine sehr einfache Grundstruktur der resultierenden Formeln Eine Eine Disjunktion von von Literalen heißt heißt Klausel. Klausel.

Mehr

wichtiger, effizient zu behandelnder Spezialfall (benannt nach Alfred Horn)

wichtiger, effizient zu behandelnder Spezialfall (benannt nach Alfred Horn) 2.4 Hornformeln wichtiger, effizient zu behandelnder Spezialfall (benannt nach Alfred Horn) Def.: (Hornformel) Eine Formel F ist eine Hornformel, falls F in KNF ist und jedes Konjunktionsglied (also jede

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies Kapitel 7 Dr. Jérôme Kunegis Logische Kalküle WeST Web Science & Technologies Lernziele Grundideen des Domain-Relationenkalküls (DRK) und des Tupel-Relationenkalküls (TRK) Relationale Datenbank als Formelmenge

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist

Mehr

5 Logische Programmierung

5 Logische Programmierung 5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Prädikatenlogik - Micromodels of Software

Prädikatenlogik - Micromodels of Software Prädikatenlogik - Micromodels of Software Philipp Koch Seminar Logik für Informatiker Universität Paderborn Revision: 30. Mai 2005 1 Inhaltsverzeichnis 1 Motivation 3 2 Modelle 3 2.1 Definition eines Modells.......................

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Formale Methoden. Alexander Knapp, Gerhard Schellhorn. Universität Augsburg

Formale Methoden. Alexander Knapp, Gerhard Schellhorn. Universität Augsburg Formale Methoden Alexander Knapp, Gerhard Schellhorn Universität Augsburg Formale Methoden: Ziele (1) Grundlagen für die Softwareerstellung Mathematik von Spezifikations- und Programmiersprachen Vermeidung

Mehr

Einführung in die Prädikatenlogik

Einführung in die Prädikatenlogik Kapitel 2 Einführung in die Prädikatenlogik 2.1 Syntax und Semantik Prädikatenlogische Formeln sind im Gegensatz zu aussagenlogischen Formeln aufgebaut aus gewissermaßen parametrisierten Elementaraussagen.

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik - das Quiz zur Vorlesung Teil I - Grundzüge der Logik In der Logik geht es um... (A) die Formen korrekten Folgerns (B) die Unterscheidung von wahr und falsch (C) das Finden von

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Teil 8. Resolution und Prädikatenlogik erster Stufe

Teil 8. Resolution und Prädikatenlogik erster Stufe Teil 8 Resolution und Prädikatenlogik erster Stufe Widerlegungsbeweise Grundidee Widerlegungsbeweise: Wir wollen beweisen, dass aus einer gegebenen Formelmenge Φ eine Behauptung (Formel) φ semantisch folgt.

Mehr

Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel

Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel Zusammenfassung Wir werden in dieser Arbeit zwei neue Definitionsvorschläge von Definition entwickeln, die folgende Eigenschaften aufweisen:

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Logik für Informatiker Wintersemester 2012/13

Logik für Informatiker Wintersemester 2012/13 2 Prädikatenlogik In der Prädikatenlogik kann man die in der Aussagenlogik bereits betrachteten atomaren Aussagen eleganter formulieren: A = Borussia Dortmund ist deutscher Fußballmeister : deutscher_fussballmeister(

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme und Grammatikregeln

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme und Grammatikregeln Stefan Brass: OOP (Java), 3. Syntaxdiagramme und Grammatikregeln 1/32 Objektorientierte Programmierung Kapitel 3: Syntaxdiagramme und Grammatikregeln Stefan Brass Martin-Luther-Universität Halle-Wittenberg

Mehr

Kapitel 5: Applikative Programmierung

Kapitel 5: Applikative Programmierung Kapitel 5: Applikative Programmierung In der applikativen Programmierung wird ein Programm als eine mathematische Funktion von Eingabe-in Ausgabewerte betrachtet. Das Ausführen eines Programms besteht

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr