Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Größe: px
Ab Seite anzeigen:

Download "Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:"

Transkript

1 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N 2 Es regnet. R 3 Also wird die Straße nass. N (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel was ist mit folgender Schlußweise: 1 Alle Griechen sind Philosophen. x.g(x) P(x) 2 Sokrates ist eine Grieche. G(s) 3 Also ist Sokrates ein Philosoph. P(s)

2 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 193 Resolution zur Erinnerung: aussagenlogische Resolution Verfahren für Unerfüllbarkeit wegen Satz von Herbrand klar: Resolution auch für FO möglich hier zunächst Resolutionskalkül für FO ohne Gleichheitssymbol. = Formeln immer gegeben als Klausel-Mengen Φ={ϕ 1,...} in Skolem-Normalform ϕ i = x 1... x n m j=1 wobei j Literale über atomaren Formeln R(t 1,...,t n );nur Variablen x 1,...,x n j

3 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 194 Beispiel Notation: universelle Quantifizierung nur noch implizit Bsp.: { x.p(x) y.r(x, y), v. z.p(v) R(v, z)} in Skolem-Normalform: { x.p(x) R(x, f (x)), z.p(c) R(c, z)} dann in Klauselform mit impliziter univ. Quantifizierung: { P(x) R(x, f (x)), P(c), R(c, z)} ist intuitiv unerfüllbar: 1. und 2. Klausel sorgen dafür, dass R(c, f (c)) gilt, dies widerspricht aber der 3. Klausel wegen impliziter, univ. Quantifizierung über z

4 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 195 Grundresolution hier zunächst vereinfachter Fall der Grundresolution: variablen-freie Klauseln Def.: Resolutionsbeweis für Klauselmenge Φ ist endlicher Baum: Wurzel mit leerer Klausel beschriftet Blätter mit Klauseln ϕ Φ beschriftet Söhne nach Resolutionsregel konstruiert: C, R(t 1,...,t n ) C, R(t 1,...,t n ) C, C beachte: dasselbe wie Resolution für Aussagenlogik

5 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 196 Grundresolution ist korrekt und vollständig Theorem 37 Sei Φ variablen-freie Klauselmenge. Dann ist ϕ unerfüllbar gdw. es einen Grundresolutionsbeweis für Φ gibt. Beweis: Folgt sofort aus Satz von Herbrand. Beachte: Φ= AL(Φ) in diesem Fall. Ziel: Einschränkung auf Variablenfreiheit aufheben Lemma: Sei T Menge aller Grundterme über zugrundeliegender Signatur. x 1...x n ϕ ist unerfüllbar gdw. (t 1,...,t n ) T n ϕ[t 1 /x 1,...,t n /x n ] unerfüllbar ist. Beweis: Folgt aus Satz von Herbrand.

6 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 197 Resolution für FO Resolutionsbeweis definiert wie oben, jedoch angewendet auf allgemeine Klauselmengen mit Variablen x 1,...,x n zusätzliche Instanziierungsregel C C[t 1 /x 1,...,t n /x n ] Theorem 38 Φ unerfüllbar gdw. es Grundresolutionsbeweis mit Instanziierungsregel für ϕ gibt. Beweis: Obiges Lemma überträgt Unerfüllbarkeit auf Grundklauselmenge, also erst entsprechende Instanziierungen durchführen, dann Resolventen bilden. Wie oben, zusätzlich mit folgendem Prinzip. Ist Φ ϕ[t/x] unerfüllbar, so ist auch Φ x.ϕ unerfüllbar.

7 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 198 Beispiel Bsp: x. y.p(x) P(y) P(c) P(d) ist unerfüllbar 1 in Klauselform: {P(x), P(y)}, { P(c), P(d)} 2 Expansion mittels Herbrand-Universum in aussagenlogische Klauselmenge liefert {P(c)}, {P(c), P(d)}, {P(d)}, { P(c), P(d)} 3 Herleitung der leeren Klausel per Resolution ist leicht

8 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 199 Pragmatische Aspekte Verfahren per Reduktion auf Grundresolution in Praxis ungeeignet; verlangt, die Terme im Vorhinein ohne Rückgriff auf den Resolutionsbeweis zu erraten besseres Verfahren wünschenswert, welches Instanziierungen erst dann vornimmt, wenn sie wirklich gebraucht werden wie soll man dann Literale mit Variablen behandeln? Bsp. sollte man zwei Klauseln mit folgenden Literalen resolvieren können? R(f (x), c), R(f (f (c)), y) R(f (x), c), R(f (f (c)), x) R(x, y), R(y, y) P(g(f (x), a)), P(g(z, f (y)))

9 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 200 Substitutionen Def.: Substitution ist Abbildung σ von Variablen auf Terme Bsp.: σ =[x g(c, f (d)), y f (x), z z] Konvention: Variablen, die nicht explizit in [...] aufgelistet werden, werden auf sich selbst abgebildet Def.: Substition σ kann in natürlicher Weise erweitert werden auf Terme: σ(f (t 1,...,t n )) := f (σ(t 1 ),...,σ(t n )) Prädikate: σ(r(t 1,...,t n )) := R(σ(t 1 ),...,σ(t n )) Literale: σ( ) := σ() Klauseln: σ(φ) := {σ(ϕ) ϕ Φ}

10 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 201 Syntaktische Unifikation syntaktische Unifikation = finde Substitution für Variablen, die zwei (oder mehrere) Prädikate gleich macht Def.: Substitution σ heißt Unifikator von 1,..., n,falls σ( 1 )=σ( 2 )=...= σ( n ) Bsp.: Gibt es Unifikatoren für folgende Prädikate? Welche? 1 P(x) und P(c) 2 P(x) und Q(x) 3 R(f (x), c) und R(z, f (y)) 4 R(f (x), c) und R(f (f (c)), y) 5 R(f (x), c) und R(f (f (c)), x) 6 R(x, y) und R(y, y) 7 P(x) und P(f (x)) 8 P(x) und P(f (y))

11 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 202 Allgemeinste Unifikatoren Def.: Seien σ, ρ zwei Substitutionen. Dann heißt σ allgemeiner als ρ, geschrieben σ ρ, falls es eine Substitution ζ gibt, so dass für alle Variablen x gilt: ρ(x) =ζ(σ(x)) Bsp.: [x f (y), y c] [x f (f (y)), y c] [x f (y), y c] und [x f (f (y)), y z] sind unvergleichlich bzgl. [x y] [y x] und umgekehrt! Def. σ heißt allgemeinster Unifikator (MGU) von 1,..., n,falls σ ρ für jeden Unifikator ρ von 1,..., n

12 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 203 Allgemeinste Unifikatoren ein paar Fakten über Unifikation Unifikatoren müssen nicht immer existieren: P(f (x)), P(g(y)) gibt es Unifikator, so gibt es auch MGU MGUs müssen nicht eindeutig sein: P(x), P(y) hat MGUs [x y], [y x] MGUs lassen sich berechnen

13 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 204 Faktoren Def.: Sei C = 1,..., n, C Klausel, σ MGU von 1,..., n.dann heißt σ( 1 ), C Faktor von C Resolution muss auf Faktoren ausgeführt werden: Bsp: {P(x), P(y)}, { P(c), P(d)} unerfüllbar, aber leere Klausel nicht herleitbar durch Resolution auf einzelnen Literalen im folgenden Faktorisierung gleich in Resolutionsschritt eingebaut

14 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 205 Prädikatenlogische Resolution Def.: Seien C und D Klauseln. Dann heißt E Resolvente von C und D, falls 1 es C, D gibt, die aus C und D durch evtl. Umbenennen von Variablen entstehen und keine Variablen gemeinsam haben, so dass 2 C = α 1,...,α n, C und D = β 1,..., β m, D, 3 es MGU σ von α 1,...,α n,β 1,...,β m gibt und 4 E = σ(c D ) Def.: Resolutionsbeweis für Klauselmenge Φ mit dieser Resolutionsregel wie üblich definiert

15 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 206 Beispiel Bsp.: Betrachte C = {C 1, C 2, C 3 } mit C 1 = { P(y, c), P(y, x), P(x, y)} C 2 = {P(y, f (y)), P(y, c)} C 3 = {P(f (y), y), P(y, a)}

16 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 207 Notwendigkeiten Notwendigkeit zu Faktorisieren bereits gezeigt Variablenumbenennung ebenfalls essentiell: {P(c, y)}, {Q(x, d)}, { P(x, c), Q(d, y)} ist unerfüllbar, ohne Variablenumbenennung nicht zu zu resolvieren MGUs ebenfalls essentiell: { Q(y)}, {Q(x), P(x)}, {Q(x), P(x)} führt z.b. mit Unifikatoren [y c, x c] einerseits und [y d, x d] andererseits nicht zum Ziel

17 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 208 Korrektheit und Vollständigkeit Theorem 39 Sei C Klauselmenge. Es gibt Resolutionsbeweis für C gdw. C unerfüllbar ist. Beweisskizze: Wie bisher: Zeige, dass erfüllbare Menge unter Hinzunahme von Resolventen erfüllbar bleibt. SeiC unerfüllbar. Nach Thm. 38 gibt es Grundresolutionsbeweis mit Instanziierungen zu Grundtermen. Dieser lässt sich in einen Resolutionsbeweis umbauen, welcher die Instanziierungen mittels MGUs teilweise und nur an benötigter Stelle macht.

18 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 209 Beschränkung auf zwei Terme noch zu tun: Berechnung von MGUs Lemma: Seien t 1,...,t n, n > 1 Terme ohne Funktionssymbol f. Jeder Unifikator für t 1,...,t n ist auch ein Unifikator für f (t 2,...,t n ), f (t 1,...,t 1 ) und umgekehrt. Beweis: Übung. Soll heißen: bei der Berechnung von MGUs können wir uns auf den Fall zweier Terme t, t beschränken. Beachte: Für Unifikation kein Unterschied zwischen Funktions- und Prädikatsymbolen.

19 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 210 Berechnung von MGUs Algorithmus arbeitet auf Menge von Paaren von Termen M = {(t 1, t 1 ),...,(t n, t n)} Aufruf mit zu unifizierendem Paar (t, t ) iteriere, solange noch eine der folgenden Regeln die Menge M ändert entferne Paare der Form (t, t) aus M ersetze jedes (t, x) in M durch (x, t), fallsx Variable, t nicht Variable gibt es (t, t ) M mit t = f (s 1,...,s m ), t = f (u 1,...,u m ), so ersetze M durch (M \{(t, t )}) {(s 1, u 1 ),...,(s m, u m )} ist M = {(x, t), (t 1, t 1 ),...,(t n, t n)}, sodassx nicht in t vorkommt, so ersetze M durch {(x, t), (σ(t 1 ),σ(t 1 )),...,(σ(t m),σ(t m))}, wobei σ =[x t]

20 Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 211 Berechnung von MGUs Termination nicht trivial; aber Regeln nicht beliebig lange anwendbar zwei Fälle bei Termination: 1 M = {(x 1, t 1 ),...,(x n, t n )}, wobei x 1,...,x n paarweise verschieden und kommen nicht in t 1,...,t n vor [x 1 t 1,...,x n t n ] ist MGU 2 keine Regel anwendbar, aber M nicht von obiger Form Eingabe nicht unifizierbar Theorem 40 (ohne Beweis) Obiger Algorithmus terminiert immer und berechnet einen MGU für die Eingabeterme.

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1)

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Wissensrepräsentation: Resolution (im PK1) 2. Resolution Vorbild für Formalismus : exakt, präzise, (theoretisch) beherrscht Aufbau: Zeichen

Mehr

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat Logik-Programme Definition: Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat die Form {P }. Eine Prozedurklausel ist eine Klausel der Form {P, Q 1, Q 2,..., Q k } mit k 1. P

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Logik & Semantik 7. Vorlesung Prädikatenlogik 1. Syntax der Prädikatenlogik Semantik der Prädikatenlogik: Grundbegriffe (Variablen-)Substitutionen

Logik & Semantik 7. Vorlesung Prädikatenlogik 1. Syntax der Prädikatenlogik Semantik der Prädikatenlogik: Grundbegriffe (Variablen-)Substitutionen Logik & Semantik 7. Vorlesung Prädikatenlogik 1 Syntax der Prädikatenlogik Semantik der Prädikatenlogik: Grundbegriffe (Variablen-)Substitutionen 1 Definition eines logischen Systems: Generelles Schema

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies Kapitel 7 Dr. Jérôme Kunegis Logische Kalküle WeST Web Science & Technologies Lernziele Grundideen des Domain-Relationenkalküls (DRK) und des Tupel-Relationenkalküls (TRK) Relationale Datenbank als Formelmenge

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Prädikatenlogik: Grundlagen

Prädikatenlogik: Grundlagen Prädikatenlogik: Grundlagen Vorversion der Folien des Kap. 9! Stand 15.05.2007 Im Verlauf der Vorlesungen zu diesem Kapitel werden Änderungen und Ergänzungen erfolgen. Sie sollten daher sorgfältig auf

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

4.0 VU Theoretische Informatik und Logik (Logik-Teil)

4.0 VU Theoretische Informatik und Logik (Logik-Teil) 4.0 VU Theoretische Informatik und Logik (Logik-Teil) Christian Fermüller unter Mitwirkung von Marion Oswald, Rudi Freund, Alex Leitsch, Gernot Salzer sowie 15 TutorInnen Institut für Computersprachen

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Einführung in die Informatik Grammars & Parsers

Einführung in die Informatik Grammars & Parsers Einführung in die Informatik Grammars & Parsers Grammatiken, Parsen von Texten Wolfram Burgard Cyrill Stachniss 12.1 Einleitung Wir haben in den vorangehenden Kapiteln meistens vollständige Java- Programme

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls 4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls δ(q, a, Z) + δ(q, ɛ, Z) 1 (q, a, Z) Q Σ. Die von einem DPDA, der mit leerem Keller akzeptiert,

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Institut für Informatik der Bayerischen Julius Maximilians Universität Würzburg Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Studienarbeit von Christian

Mehr

Endlicher Automat (EA)

Endlicher Automat (EA) Endlicher Automat (EA) siehe auch Formale Grundlagen 3 1 Motivation: Automaten für die Modellierung, Spezifikation und Verifikation verwenden! Definition Ein Endlicher Automat A = (S,I,Σ,T,F) besteht aus

Mehr

Technische Informatik II

Technische Informatik II Institut für Technische Informatik und Kommunikationsnetze Technische Informatik II Übung 1: Prozesse und Threads Aufgabe 1: Prozesse und Threads a) Wie verhält sich eine Applikation die aus mehreren Prozessen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Foundations of System Development

Foundations of System Development Foundations of System Development Martin Wirsing in cooperation with Axel Rauschmayer WS 05/06 Verfeinerung und Strukturierung 2 Verfeinerung und Strukturierung Bisher haben wir einfache ( flache ) TLA-Spezifikationen

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Modellierungsmethoden in der Informatik

Modellierungsmethoden in der Informatik Modellierungsmethoden in der Informatik Probeklausur WS 2007/08 UNIVERSITÄT D U I S B U R G E S S E N Disclaimer Die Aufgaben sind lediglich Beispiele Sie decken nicht den ganzen klausurrelevanten Stoff

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt: Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Sichten II. Definition einer Sicht. Sichten. Drei-Ebenen-Schema-Architektur. Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank

Sichten II. Definition einer Sicht. Sichten. Drei-Ebenen-Schema-Architektur. Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank Vorteile Vereinfachung von Anfragen Strukturierung der Datenbank Sichten II logische Datenunabhängigkeit (Sichten stabil bei Änderungen der Datenbankstruktur) Beschränkung von Zugriffen (Datenschutz) Definition

Mehr

Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC:

Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Hashe m {0, 1} auf einen Hashwert in {0, 1} n. Verwende Π MAC3 für Nachrichten fixer Länge auf dem Hashwert. Wir konstruieren Π MAC3 mittels

Mehr

Kopf und Rest einer Liste (head and tail): Trennung durch. Listenkopf: kann mehrere Elemente umfassen

Kopf und Rest einer Liste (head and tail): Trennung durch. Listenkopf: kann mehrere Elemente umfassen Prolog Syntax Liste, Variable [ Term Liste ] Listenelemente: Trennung durch Komma [1, pferd, klaus] Kopf und Rest einer Liste (head and tail): Trennung durch [K R] = [1, pferd, klaus] (K = 1, R = [pferd,

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einfhrung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einfhrung Vorbemerkungen 1 Einfhrung Vorbemerkungen

Mehr

Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3

Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3 Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3 Aufgabe 1 (20 Punkte) Dialogische Logik a) Was isteine formal wahrebehauptung? Welche Aussageschematasindallgemeingültig? b) Überprüfen

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Rechnerstrukturen und Programmierparadigmen

Rechnerstrukturen und Programmierparadigmen Informatik A: Rechnerstrukturen und Programmierparadigmen Prof. Dr. Norbert Fuhr SS 2003 Universität Duisburg-Essen, Abteilung Duisburg Fakultät 5 Autor des Skriptes: Prof. Dr. Wolfram Luther. Zuletzt

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Formale Methoden im Software Engineering

Formale Methoden im Software Engineering Formale Methoden im Software Engineering Eine praktische Einführung Dominik Haneberg, Florian Nafz, Bogdan Tofan 1 Organisatorisches Vorlesung: Mittwoch 12:15 Uhr - 13:45 Uhr (1058 N) Versuche: (Raum 3017

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Lösungshinweise zu Kapitel 13

Lösungshinweise zu Kapitel 13 L-112 Lösungshinweise zu Kapitel 13 zu Selbsttestaufgabe 13.2 (Eigenschaften der bedingten Unabhängigkeit) Sei P eine Wahrscheinlichkeitsverteilung über V. Wir setzen im Folgenden stillschweigend voraus,

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Syntax WS 2006/2007 Manfred Pinkal Einführung in die Computerlinguistik 2006/2007 M. Pinkal UdS 1 Morphologie und Syntax Gegenstand der Morphologie ist die Struktur

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

5. Verschiedene Repräsentanten

5. Verschiedene Repräsentanten 5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Logisches Programmieren

Logisches Programmieren Logisches Programmieren Allgemeines zu Prolog: 1. Idee des automatischen Beweisens von Fakten aus einer gegebenen Menge von Axiomen: (Eingeschränktes) Resolutionsprinzip als grundlegende Rechenmethode,

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Effiziente Modellprüfung des µ-kalküls mit binären Entscheidungsdiagrammen. Dissertation

Effiziente Modellprüfung des µ-kalküls mit binären Entscheidungsdiagrammen. Dissertation Effiziente Modellprüfung des µ-kalküls mit binären Entscheidungsdiagrammen Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften von der Fakultät für Informatik der Universität Karlsruhe

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische nformatik inheit 3 Kontextfreie Sprachen 1. Kontextfreie Grammatiken 2. Pushdown Automaten 3. igenschaften kontextfreier Sprachen Theoretische nformatik inheit 3.1 Kontextfreie Grammatiken

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik Einleitung von Visual Studio C++ SS 2012 Miscrosoft Visual studio C++ Express unterladen 2 weiter Gehen Sie auf die im Rote gekreiste Seite siehe Oben bzw. auf

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner. KANTON AARGAU Abschlussprüfung der Bezirksschule Aargau 2013 Mathematik 1. Serie Bestimmungen: Die Prüfungsdauer beträgt 120 Minuten. Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Wie viele Nullstellen hat ein Polynom?

Wie viele Nullstellen hat ein Polynom? Wie viele Nullstellen hat ein Polynom? Verena Pölzl 0812265 Sabine Prettner 8930280 Juni 2013 1 Inhaltsverzeichnis 1 Warum will man wissen, wie viele Nullstellen ein Polynom hat? 3 2 Oligonome 4 3 Die

Mehr

1 Das Lemma von Burnside und seine Anwendungen

1 Das Lemma von Burnside und seine Anwendungen Das Lemma von Burnside und seine Anwendungen Mit dem Lemma von Burnside lassen sich Zählprobleme lösen, bei denen Symmetrien eine Rolle spielen. Betrachten wir als einführendes Beispiel die Anzahl der

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Datenstrukturen DCG Grammatiken. Tutorial I Operationen auf Datenstrukturen II Bäume DCGs und Semantik II

Datenstrukturen DCG Grammatiken. Tutorial I Operationen auf Datenstrukturen II Bäume DCGs und Semantik II Datenstrukturen DCG Grammatiken Tutorial I Operationen auf Datenstrukturen II Bäume DCGs und Semantik II Bäume Repräsentation von Mengen durch binäre Bäume: Eine häufige Anwendung von Listen ist es Mengen

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Algorithmen

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Das Lastverteilungsproblem

Das Lastverteilungsproblem Das Lastverteilungsproblem Approximationsalgorithmen Referent Franz Brauße Veranstaltung Proseminar Theoretische Informatik Universität Trier, FB IV Dozent Prof. Dr. Henning Fernau 23.02.2012 Übersicht

Mehr

Einführung in PROLOG. Christian Stocker

Einführung in PROLOG. Christian Stocker Einführung in PROLOG Christian Stocker Inhalt Was ist PROLOG? Der PROLOG- Interpreter Welcher Interpreter? SWI-Prolog Syntax Einführung Fakten, Regeln, Anfragen Operatoren Rekursion Listen Cut Funktionsweise

Mehr