= T Jährliche Ratentilgung Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

Größe: px
Ab Seite anzeigen:

Download "= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:"

Transkript

1 E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche Raeilgug Ei Kredi i Höhe vo. bei % jährliche Kredizise soll über 5 Jahre geilg werde ud zwar bei jährlich-achschüssiger Raeilgug. Wie sieh der Tilgugspla aus? T. = = 5. Dr. A. Brik Dr. A. Brik Dr. A. Brik Dr. A. Brik.. Jährliche Raeilgug Tilgugspla: Z T R () () ()=() % () (5)=()+() (6)=() () Jährliche Raeilgug ell ma keie Tilgugspla auf, ka ma die Were auch bereche: z.b.: Resschuld am Ede des -e Jahres = T ( ) Dr. A. Brik Dr. A. Brik Dr. A. Brik Dr. A. Brik

2 .. Jährliche Raeilgug z.b. Ziszahlug Z für die -e Periode: Z ( + ) i = T z.b. Auiä R der -e Periode:.. Uerjährige Raeilgug Ausgagspuk: Bei uerjähriger Raeilgug erfolge die Tilgugszahluge halb- oder viereljährlich oder sogar moalich. Bei m jährlich vorzuehmede Tilgugszahluge sid über die Gesamlaufzei isgesam m Tilgugsvorgäge durchzuführe. R ( + ( + ) i) = T Dr. A. Brik Dr. A. Brik 5 5 Dr. A. Brik Dr. A. Brik Uerjährige Raeilgug Die eizele Tilgugsrae ergib sich zu: T m =.. Uerjährige Raeilgug Ei Kredi i Höhe vo. bei % jährliche Kredizise soll über 5 Jahre viereljährlich geilg werde ud zwar bei jährlich-achschüssiger Raeilgug. Wie sieh der Tilgugspla aus? T =. 5 = Dr. A. Brik Dr. A. Brik 7 7 Dr. A. Brik Dr. A. Brik 8 8

3 .. Uerjährige Raeilgug Beache: Obwohl die Zise ers jährlich-achschüssig fällig werde, is es üblich, mi jeder Tilgugsrae eie periodisch aeilige Zis zu zahle! ==> eifache Zise auf die jeweilige Resschuld i rel i = m om = % =,5 Dr. A. Brik Dr. A. Brik Uerjährige Raeilgug Tilgugspla (Teil ): k k-, Z k, T k, R k, k, () () () ()= (), (5) (6)= ()+(5) (7)= ()-(5) Dr. A. Brik Dr. A. Brik.. Uerjährige Raeilgug Tilgugspla (Teil ): k k-, Z k, T k, R k, k, Dr. A. Brik Dr. A. Brik.. Uerjährige Raeilgug ell ma keie Tilgugspla auf, ka ma die Were auch bereche: z.b.: Resschuld v, ach v Periode des -e Jahres v, ( m ( + ) v) = T Dr. A. Brik Dr. A. Brik

4 .. Uerjährige Raeilgug z.b.: Ziszahlug Z v, der v-e Periode des -e Jahres Z v, z.b.: Auiä der v-e Periode des -e Jahres R v, = T + Zv, ( m [( ) m + ( v )]) irel = T.. Jährliche Auiäeilgug Ausgagspuk: Bei kosae Rückzahlugsberäge (Tilgug + Zise) sprich ma vo Auiäeilgug. Zuächs gil es, die Höhe der kosae Auiä zu besimme, aschließed köe Zis- ud Tilgugsaeil ermiel werde. Dr. A. Brik Dr. A. Brik Dr. A. Brik Dr. A. Brik.. Jährliche Auiäeilgug Vorgehesweise: Ma eil die Zahlugsfolge des Kredis, die mi eier Eizahlug i Höhe der chuldsumme begi ud der aschließed ur Auszahluge i Form vo Tilgugs- ud Zisberäge folge, i zwei Zahlugsfolge auf... Jährliche Auiäeilgug. Zahlugsfolge: Die. Zahlugsfolge beseh ausschließlich aus der Eizahlug zu Begi der Laufzei. Ohe Tilgug wächs die chuldsumme bis zum Ede der Kredilaufzei auf eie besimme Edwer a. Dr. A. Brik Dr. A. Brik 5 5 Dr. A. Brik Dr. A. Brik 6 6

5 .. Jährliche Auiäeilgug. Zahlugsfolge: Die. Zahlugsfolge umfaß alle Auiäe. We diese zum selbe Zissaz agesammel werde, der für de ursprügliche Krediberag gezahl werde muss, soll die Auiä geau de Edwer ausmache, der sich aus der. Zahlugsfolge ergib. Da is ma (am Ede der Laufzei) i der Lage, die ursprügliche chuldsumme plus die aufgelaufee Zise zu begleiche... Jährliche Auiäeilgug. Zahlugsfolge. Zahlugsfolge EW EW Dr. A. Brik Dr. A. Brik 7 7 Dr. A. Brik Dr. A. Brik Jährliche Auiäeilgug.. Jährliche Auiäeilgug Formel: R = q Ei Kredi i Höhe vo. bei % jährliche Kredizise soll über Jahre jährlich geilg werde ud zwar bei jährlich-achschüssiger Auiäeilgug. Wie sieh der Tilgugspla aus?, R =., = 6.7,5, Dr. A. Brik Dr. A. Brik 9 9 Dr. A. Brik Dr. A. Brik

6 .. Jährliche Auiäeilgug Tilgugspla:.. Jährliche Auiäeilgug Die Were lasse sich wie folg bereche: - Z T R () () ()= () % ()=(5) () (5) (6)=() () , 9.75,6 86.8,7 79., , , 5.588,.7,8 8.5,8.795,5., 9.7, ,5 7.9, 7.87, , 5.58,8.7,.8,5.79,5 6.7,5 6.9, ,9 8.5, 9.86,55.5,.5,7.7,.5,.795, 6.7,5 6.7,5 6.7,5 6.7,5 6.7,5 6.7,5 6.7,5 6.7,5 6.7,5 6.7,5 9.75,6 86.8,6 79., , , 5.588,.7,8 8.5,8.795,5, Dr. A. Brik Dr. A. Brik z.b.: Resschuld ach Jahre = q q q Dr. A. Brik Dr. A. Brik.. Jährliche Auiäeilgug z.b.: Tilgugsrae i der -e Periode T = q i q z.b.: Ziszahluge der -e Periode Z = q q i Dr. A. Brik Dr. A. Brik.. Uerjährige Auiäeilgug Die Jahresauiä R is der Berag, auf de die uerjährige Tilgugsrae awachse müsse, wobei zu diese Rae am Jahresede och die im Verlauf des Jahres agefallee eifache Zise zu berücksichige sid. Die im Laufe des Jahres gezahle Auiäe selle i vollem Umfage Tilgugszahluge dar ud ehale keie Zisbesadeile. Lezere werde ers am Jahresede bereche ud dem chulder agelase. Dr. A. Brik Dr. A. Brik

7 .. Uerjährige Auiäeilgug Bei eier Azahl vo m Tilgugsrae pro Jahr r, r,, r m = r ergib sich die Jahresauiä R aalog zur jahreskoforme Ersazreerae r e zu: Formel: i R = r m + m ( ).. Uerjährige Auiäeilgug Problem: r ubeka;, i, beka Die Jahresauiä R läss sich bei vorgegebeer chuldsumme aalog zur Reerechug r besimme: Formel: R = q Dr. A. Brik Dr. A. Brik 5 5 Dr. A. Brik Dr. A. Brik Uerjährige Auiäeilgug.. Uerjährige Auiäeilgug Ei Kredi i Höhe vo. bei % jährliche Kredizise soll über Jahre geilg werde ud zwar bei moalich-achschüssiger Auiäeilgug. Wie sieh der Tilgugspla aus?, R =., = 5.76,9, 5.76,9 r = = 59,, + ( ) Zisbelasug am Jahresede: Z = i r m Dr. A. Brik Dr. A. Brik 7 7 Dr. A. Brik Dr. A. Brik 8 8

8 .. Uerjährige Auiäeilgug Die Resschuld zu Begi eies Jahres erhäl ma, idem ma vo der Resschuld zu Begi des Vorjahres die m Tilgugsrae des Jahres abzieh ud die zu zahlede Zise hizureche: m r + i = m r.. Tilgug mi kosae Prozesäze Problem: Auiäeilgug i.d.r. keie glae -Beräge Buchugsvereifachug: sog. Prozeauiäe ==> Auiä als feser Prozesaz vo der ursprügliche chuldsumme Nach ud ach imm der Zisaeil ab, währed der Tilgugsaeil zuimm. Dr. A. Brik Dr. A. Brik 9 9 Dr. A. Brik Dr. A. Brik.. Tilgug mi kosae Prozesäze Ei Bauspardarlehe i Höhe vo. bei 5% jährlichem Darleheszis soll jährlich achschüssig im Umfag vo % des Darlehberages zurückgezahl werde. Wie sieh der Tilgugspla aus? Problem: Abschlusszahlug! Dr. A. Brik Dr. A. Brik.. Tilgug mi kosae Prozesäze Tilgugspla: - R T Z () () () ()=()-(5) (5)=,5 () (6)=() () , 9., 85.65, 77.9, , 6., ,6.5,95.56,5.8,6.95,76 7., 7.5, 7.77,5 8.,8 8.58,5 8.9,97 9.8, ,7.,9.859,.,6 5.,.65,.8,5.896,6.9,6.66,.69,.5,.657,8.,7 597,7 9., 85.65, 77.9, , 6., ,6.5,95.56,5.8,6.95,76 55,5 Dr. A. Brik Dr. A. Brik

9 .. Tilgug mi kosae Prozesäze Die Laufzei der Tilgug ka auch formelhaf besimm werde. Die Laufzei ede, we die Resschuld gleich Null is: log R logt = logq.. Tilgug mi kosae Prozesäze Die verbleibede Abschlusszahlug läss sich folgedermaße ermiel: g = AZ g = q g g R Dr. A. Brik Dr. A. Brik Dr. A. Brik Dr. A. Brik

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t 6. Tilggsrechg 6.. Eiführg Gegesad der Tilggsrechg is die Feslegg der Rückzahlge für eimalig asgezahle Kredie eischließlich der Kredizise d -gebühre eweder a) am Fälligkeisag i eier mme (sog. gesamfällige

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrstuhl für Fiazwirtschaft Lösuge zu Kotrollfrage Fiazwirtschaft Prof. Dr. Thorste Poddig Fachbereich 7: Wirtschaftswisseschaft 2 Forme der Fremdfiazierug (Kapitel 6) Allgemeier Überblick 89. Ma ka die

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung Fakulä Iformaik, Professur Wirschafsiformaik, isb. Mulimedia Markeig ud Fiazierug Kapiel Grudbegriffe der Orgaisaorisches Doze: Prof. Dr. rer. pol. Thomas Urba Professur Wirschafsiformaik, isb. Mulimedia

Mehr

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung Fakulä Iformaik, Professur Wirschafsiformaik, isb. Mulimedia Markeig Kapiel Grudbegriffe der Orgaisaorisches Doze: Prof. Dr. rer. pol. Thomas Urba Professur Wirschafsiformaik, isb. Mulimedia Markeig www.muli-media-markeig.org

Mehr

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK Progoseverfahre. Eiführug....................................... 8.. Wisseschafliche Progose.................... 8.. Daebasis ud saisische Progosemodelle......... Beispiel: Umsazprogose........................

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Zur Integration von Private Equity in die Portfoliosteuerung Ein Vorschlag

Zur Integration von Private Equity in die Portfoliosteuerung Ein Vorschlag Zur Iegraio vo Privae Equiy i die Porfolioseuerug Ei Vorschlag Prof. Dr. Chrisoph Kaserer, TU Müche Dipl.-Kfm. Axel Bucher, TU Müche Ivesiioe i Privae Equiy uerscheide sich zumides i eiem weseliche Puk

Mehr

Investitionsrechnung - Vorbemerkung

Investitionsrechnung - Vorbemerkung Ivesiiosrechug - Vorbemerkug Es gib ich ur eie Rechugsmehode, soder viele. Was bedeue das für Sie? Uerschiedliche heoreische Asäze kee lere Für ud Wider abwäge Eigee Sadpuk beziehe Eigee Sadpuk argumeaiv

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Zum systematischen Vergleich von Lebensversicherungs- und Investmentprodukten unter Performance- und Risikoaspekten

Zum systematischen Vergleich von Lebensversicherungs- und Investmentprodukten unter Performance- und Risikoaspekten Tras 27 h ICA Peer Albrech (Germay) Zum sysemaische Vergleich vo Lebesversicherugs- ud Ivesmeproduke uer Performace- ud Risikoaspeke Peer Albrech Germay Zusammefassug I der vorliegede Uersuchug wird zuächs

Mehr

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 131

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 131 Maheimer Mauskripe zu Risikoheorie, Porfolio Maageme ud Versicherugswirschaf Nr. 131 Zum sysemaische Vergleich vo Lebesversicherugs- ud Ivesmeproduke uer Performace- ud Risikoaspeke vo PETER ALBRECHT Maheim

Mehr

BEWERTUNG VON ANLEIHEN...

BEWERTUNG VON ANLEIHEN... Eie Zusammefassug der Vorlesug vo Herr Prof. Webersike am 8.2.26, Herr Prof. Bessler am 24.3.26, Herr Ligema am 23.6.26, Herr Rauleder am 3.5.26, Herr Hammes am 2.5.26 im Rahme des CIAA 7 mi eiige Erweieruge.

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Seminar Derivate Finanzprodukte aus mathematischer Sicht Up-and-out Call Option

Seminar Derivate Finanzprodukte aus mathematischer Sicht Up-and-out Call Option Semiar Derivate Fiazprodukte aus mathematischer Sicht Up-ad-out Call Optio UIVERSITÄT TRIER Fachbereich IV Wirtschaftswisseschafte / Mathematik Witersemester 22/3 Leiter: Prof. Dr. H. Luschgy Eigereicht

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Sichtbar im Web! Websites für Handwerksbetriebe. Damit Sie auch online gefunden werden.

Sichtbar im Web! Websites für Handwerksbetriebe. Damit Sie auch online gefunden werden. Sichtbar im Web! Websites für Hadwerksbetriebe. Damit Sie auch olie gefude werde. Professioelles Webdesig für: Hadwerksbetriebe Rudum-sorglos-Pakete Nur für Hadwerksbetriebe Webdesig zu Festpreise - ukompliziert

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Finanzmathematik. srdp orientierte. Seminar in Salzburg, HLW Annahof. Inhalt: I Display und Screenshots 2. II Grundbegriffe 3

Finanzmathematik. srdp orientierte. Seminar in Salzburg, HLW Annahof. Inhalt: I Display und Screenshots 2. II Grundbegriffe 3 Semiar i Salzburg, HLW Aahof srdp orietierte Fiazmathematik mit TI 82 stats Ihalt: I Display ud Screeshots 2 II Grudbegriffe 3 III Eifache Verzisug 3 IV Ziseszis 4 VI Äquivalezprizip 4 VII Uterjährige

Mehr

HiPath 4000 Hicom 300 E/300 H. Bedienungsanleitung optipoint 500 entry

HiPath 4000 Hicom 300 E/300 H. Bedienungsanleitung optipoint 500 entry s HiPah 4000 Hicom 300 E/300 H Bedieugsaleiug oipoi 500 ery Zur vorliegede Bedieugsaleiug Zur vorliegede Bedieugsaleiug Diese Bedieugsaleiug beschreib das Telefo oipoi 500 ery am Commuicaio Server HiPah

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Leitfaden zu den Strategieindizes der Deutsche Börse AG

Leitfaden zu den Strategieindizes der Deutsche Börse AG Leifade zu de Sraegieidizes der Deusche Börse AG Versio 2.22 Sraegieidizes der Deusche Börse AG Seie 2 Allgemeie Iformaio Um die hohe Qualiä der vo der Deusche Börse AG berechee Idizes sicherzuselle, wird

Mehr

Der Käufer einer Option (Optionsinhaber) erwirbt das Recht, nicht aber die Verpflichtung, innerhalb einer bestimmten Frist (Optionsfrist)

Der Käufer einer Option (Optionsinhaber) erwirbt das Recht, nicht aber die Verpflichtung, innerhalb einer bestimmten Frist (Optionsfrist) . Opioe Der Käfer eier Opio (Opiosihaber erwirb as Rech, ich aber ie Verpflichg, ierhalb eier besimme Fris (Opiosfris eie besimme Mege eies besimme Basisweres z eiem vereibare Preis (Basispreis / Asübgspreis

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Bau- und Wohncenter Stephansplatz

Bau- und Wohncenter Stephansplatz Viele gute Grüde, auf us zu baue Bau- ud Wohceter Stephasplatz Parter der Bak Austria Silvia Nahler Tel.: 050505 47287 Mobil: 0664 20 22 354 Silvia.ahler@cityfiace.at Fiazservice GmbH Ralph Decker Tel.:

Mehr

Das Digitale Archiv des Bundesarchivs

Das Digitale Archiv des Bundesarchivs Das Digitale Archiv des Budesarchivs 2 3 Ihaltsverzeichis Das Digitale Archiv des Budesarchivs 4 Techische Ifrastruktur 5 Hilfsmittel zur Archivierug 5 Archivierugsformate 6 Abgabe vo elektroische Akte

Mehr

Die Risiken der privaten Altersvorsorge und deren Handling durch die Anbieter

Die Risiken der privaten Altersvorsorge und deren Handling durch die Anbieter Die ud dere Hadlig durch die Abieter 1 Übersicht Sichere Altersvorsorge: Was erwarte wir vo der private Altersvorsorge? Was macht die private Altersvorsorge usicher? Altersvorsorge i volatile Kapitalmärkte

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

cubus EV als Erweiterung für Oracle Business Intelligence

cubus EV als Erweiterung für Oracle Business Intelligence cubus EV als Erweiterug für Oracle Busiess Itelligece... oder wie Oracle-BI-Aweder mit Essbase-Date vo cubus outperform EV Aalytics (cubus EV) profitiere INHALT 01 cubus EV als Erweiterug für die Oracle

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

Prof. Dr. R. Elschen Aufgabenkompendium Antworten Villaverde Seite 1 von 25

Prof. Dr. R. Elschen Aufgabenkompendium Antworten Villaverde Seite 1 von 25 Ivesiio & Fiazierug Prof. Dr. R. Elsche Aufgabekompedium Awore Villaverde Seie vo 25. Welche primäre Aufgabe ha die Uerehmesführug ud welche Bedeuug ha die Ivesiosrechug für die Erfüllug dieser Aufgabe?

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV LS Retail Die Brachelösug für de Eizelhadel auf Basis vo Microsoft Dyamics NAV akquiet Focus auf das Wesetliche User Focus liegt immer auf der Wirtschaftlichkeit: So weig wie möglich, soviel wie ötig.

Mehr

Lang & Schwarz Aktiengesellschaft. Nachtrag Nr. 1 vom 23. Juli 2012. nach 16 Absatz 1 WpPG. zum

Lang & Schwarz Aktiengesellschaft. Nachtrag Nr. 1 vom 23. Juli 2012. nach 16 Absatz 1 WpPG. zum Lag & Schwarz Aktiegesellschaft Nachtrag Nr. 1 vom 23. Juli 2012 ach 16 Absatz 1 WpPG zum Basisprospekt der Lag & Schwarz Aktiegesellschaft vom 20. Jui 2013 über derivative Produkte Optiosscheie auf Aktie/aktievertretede

Mehr

Finanzmathematik II: Barwert- und Endwertrechnung

Finanzmathematik II: Barwert- und Endwertrechnung D. habl. Bukhad Uech Beufsakademe Thüge Saalche Sudeakademe Sudeabelug Eseach Sudebeech Wschaf Wschafsmahemak Wesemese 004/0 Fazmahemak II: Bawe- ud Edweechug. Bawee ud Edwee vo Zahlugsehe. Effekve Jaheszssaz

Mehr

Vertragsangebot für Darlehenskonto 2004760786

Vertragsangebot für Darlehenskonto 2004760786 Für Ihre Uterlage Vertragsagebot für Darleheskoto 2004760786 Darlehesehmer Max Musterma Vorgagsummer 0840759173 (0) Ihr Darlehesatrag vom 01.06.2015 Beleihugsobjekt Musterstr. 100, 12345 Musterstadt Nutzugsart

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima.

3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima. Fakultät für Physik ud Geowisseschafte Physikalisches Grudpraktikum O 17a Beuu (Laserlicht) Aufabe 1. Bestimme Sie durch Beuu (Frauhofer, Fresel) vo Laserlicht am Eifachspalt desse Breite. Messe Sie hierzu

Mehr

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen 2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht.

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht. Ziseszisechug. Auf welche Betag wächst ei Kapital vo K 0 bei jähliche Vezisug zu p % i Jahe a. a. K 0 5.200,- p 4 ½ % 6 Jahe b. K 0 3.250,- p 6 % 7 Jahe c. K 0 7.500,- p 5 ½ % 5 Jahe d. K 0 8.320,- p 5

Mehr

Digitales Belegbuchen

Digitales Belegbuchen Digitales Belegbuche Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Belege scae ud sede... 5 3.2 Belege buche... 6 3.3 Schelle Recherche... 7 3.4

Mehr

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++ Das FSB Geldkoto Eifache Abwicklug ud attraktive Verzisug +++ Verzisug aktuell bis zu 3,7% p.a. +++ zuverlässig servicestark bequem Kompeteter Parter für Ihr Wertpapiergeschäft Die FodsServiceBak zählt

Mehr

I m m o b i l i e n k a p i ta lv e r z e h r Darlehen auf den Kopf gestellt

I m m o b i l i e n k a p i ta lv e r z e h r Darlehen auf den Kopf gestellt I m m o b i l i e k a p i a lv e r z e h r Darlehe auf de Kopf gesell I de USA ud Großbriaie is es für älere Mesche ichs Besoderes mehr, selbs geuze Immobilie gege lebeslages Wohrech zu verree, um auch

Mehr

Neu! 19,99. D-Netz Qualität zum besten Preis! 729, Supergünstig! Mai 2013. ab 9,99 /Monat. Surfen & Telefonieren inkl. Tablet-PC ab 0,!

Neu! 19,99. D-Netz Qualität zum besten Preis! 729, Supergünstig! Mai 2013. ab 9,99 /Monat. Surfen & Telefonieren inkl. Tablet-PC ab 0,! Mai 2013 1&1 All-Net-Flat D-Netz Qualität zum beste Preis! * 729, 1&1 Tablet-FLAT 1&1 DSL ab 9, /Moat Surfe & Telefoiere ikl. Tablet-PC ab!* Mehr auf Seite 6-9. * Weitere Iformatioe fide Sie auf de Folgeseite.

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

Inflation, Wachstum und Unternehmensbewertung. Gunther Friedl und Bernhard Schwetzler

Inflation, Wachstum und Unternehmensbewertung. Gunther Friedl und Bernhard Schwetzler Iflaio, Wachsum ud erehmesbewerug Guher Friedl ud Berhard Schwezler Versio v. 9.3.28 Prof. Dr. Guher Friedl Techische iversiä Müche Fakulä für Wirschafswisseschafe Lehrsuhl für Beriebswirschafslehre -

Mehr

betrieblichen Altersvorsorge

betrieblichen Altersvorsorge Reforme i der Alterssicherug 13 1. Basisiformatioe zur eue betriebliche Altersvorsorge 1.1 Reforme i der Alterssicherug Nach de große Reforme i der Alterssicherug der Jahre 2000/2001 u. a. mit dem Altersvermögesgesetz,

Mehr

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Übersicht über die Vorlesug Solareergie Vorläufige Termiplaug Vorlesug Solareergie WS 2005/2006 Stad: 10.11.2005 Termi Thema Dozet Di. 25.10. Wirtschaftliche Lemmer/Heerig Aspekte/Eergiequelle Soe Fr.

Mehr

QUALITÄT ZAHLT SICH AUS. ZERTIFIKATE-KNOW-HOW FÜR PRIVATANLEGER. Im FinanzVerbund der Volksbanken Raiffeisenbanken

QUALITÄT ZAHLT SICH AUS. ZERTIFIKATE-KNOW-HOW FÜR PRIVATANLEGER. Im FinanzVerbund der Volksbanken Raiffeisenbanken w QUALITÄT ZAHLT SICH AUS. ZERTIFIKATE-KNOW-HOW FÜR PRIVATANLEGER Im FiazVerbud der Volksbake Raiffeisebake » Die Kraft steckt i der Qualität. «(Friedrich Wilhelm Nietzsche, deutscher Philosoph, 1844 1900)

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

FIBU Offene-Posten- Buchführung

FIBU Offene-Posten- Buchführung FIBU Offee-Poste- Buchführug Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Rechugsprüfug i der Buchugserfassug... 4 2.2 Sammelbuchug... 5 2.3 Zahlugslauf aus offee Poste eilese... 6

Mehr

S-PENSION. Sparen Sie sich eine Zusatzrente für morgen an und genießen Sie sofortige Steuervorteile.

S-PENSION. Sparen Sie sich eine Zusatzrente für morgen an und genießen Sie sofortige Steuervorteile. S-PENSION Spare Sie sich eie Zusatzrete für morge a ud geieße Sie sofortige Steuervorteile. Ihalt 1. Es ist Zeit, die Iitiative zu ergreife 4 2. Geieße Sie sofortige Steuervorteile 5 3. Die Kapitalbildugsphase:

Mehr

Potenzial-Evaluations-Programm

Potenzial-Evaluations-Programm T e l. + 4 1 3 1 3 1 2 0 8 8 0 i m d e @ i m d e. e t w w w. i m d e. e t Potezial-Evaluatios-Programm für Maagemet, Verkauf ud Sachbearbeitug vo Persoalexperte für Persoalexperte. Vorauswahl (MiiPEP)

Mehr

Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten:

Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten: md cloud Syc / FAQ Häufig gestellte Frage Allgemeie Date zur Eirichtug Die allgemeie Date zur Eirichtug vo md cloud Syc auf Ihrem Smartphoe laute: Kototyp: Microsoft Exchage / ActiveSyc Server/Domai: mailsyc.freeet.de

Mehr

Remote Control Services. www.r-c-t.biz www.r-c-s.biz ON / OFF. Messen Kommunizieren Auswerten Agieren

Remote Control Services. www.r-c-t.biz www.r-c-s.biz ON / OFF. Messen Kommunizieren Auswerten Agieren Remote Cotrol www.r-c-t.biz www.r-c-s.biz C ON / OFF 0...5 V Messe Kommuiziere Auswerte Agiere Die RCS Web Applikatio Itelligete Ferberwachug via Iteret Alle Takihalte, Zählerstäde, Temperature, Gebäude

Mehr

Die Instrumente des Personalmanagements

Die Instrumente des Personalmanagements 15 2 Die Istrumete des Persoalmaagemets Zur Lerorietierug Sie solle i der Lage sei:! die Ziele, Asätze ud Grüde eier systematische Persoalplaug darzulege;! die Istrumete der Persoalplaug zu differeziere;!

Mehr

DMS Dokumenten- Management-System

DMS Dokumenten- Management-System DMS Dokumete- Maagemet-System Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Scae, verschlagworte ud archiviere i eiem Arbeitsgag... 5 3.2 Dokumete

Mehr

9 Der bipolare Transistor

9 Der bipolare Transistor 9 Der bipolare Trasistor Der bipolare Trasistor ist ei Halbleiter-auelemet, bei dem mit eiem kleie Steuerstrom ei großer Hauptstrom gesteuert wird. 9.1 Aufbau ud Herstellugsverfahre Der bipolare Trasistor

Mehr

Benutzerhandbuch packetalarm SSL VPN Client. Copyright 2010 Funkwerk Enterprise Communications GmbH Version 1.1x.xx

Benutzerhandbuch packetalarm SSL VPN Client. Copyright 2010 Funkwerk Enterprise Communications GmbH Version 1.1x.xx Beutzerhadbuch packetalarm SSL VPN Cliet Copyright 2010 Fukwerk Eterprise Commuicatios GmbH Versio 1.1x.xx Ziel ud Zweck Haftug Marke Copyright Richtliie ud Norme Dieses Dokumet ist Teil des Beutzerhadbuchs

Mehr

beck-shop.de 2. Online-Marketing

beck-shop.de 2. Online-Marketing beck-shop.de 2. Olie-Marketig aa) Dateschutzrechtliche Eiwilligug immer erforderlich Ohe Eiwilligug des Nutzers ist eie Erhebug persoebezogeer Date icht zulässig. Eie derartige Eiwilligug ka auch icht

Mehr

DCP Manufaktur - Digital Cinema Mastering

DCP Manufaktur - Digital Cinema Mastering DCP Maufaktur Sebastia Böhm ud Alexis Michaltsis GbR PREISLISTE (Stad: 05.02.2014) Alle Preise sid Nettopreise i EURO, zzgl. 19% MwSt. Mit Erscheie eier eue Preisliste verliere die hier agegebee Preise

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Zitiervorschlag: Dr. Bernd Kiefer, Fichtner Management Consulting AG an CVP-Tagung Energiewende von unten, 22. September 2012

Zitiervorschlag: Dr. Bernd Kiefer, Fichtner Management Consulting AG an CVP-Tagung Energiewende von unten, 22. September 2012 Bürgerbeteiliguge als Teil der Eergiewede CVP Kato Zürich vom 22. September 2012 Dr. Berd Kiefer Zitiervorschlag: Dr. Berd Kiefer, Fichter Maagemet Cosultig AG a CVP-Tagug Eergiewede vo ute, 22. September

Mehr

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung Fazmahemasche Grudlage zur Zs- ud Reerechug Fazmahemasche Grudlage zur Zs- ud Reerechug (Fassug - November 008) /3 Markus Scheche Emal: mal@markus-scheche.de Homepage: www.markus-scheche.de Fazmahemasche

Mehr

Die Hypothekar-Modelle der St.Galler Kantonalbank. Das kostenlose Immobilienportal Ihrer Kantonalbank.

Die Hypothekar-Modelle der St.Galler Kantonalbank. Das kostenlose Immobilienportal Ihrer Kantonalbank. Die Hypothekar-Modelle der St.Galler Katoalbak Das kostelose Immobilieportal Ihrer Katoalbak. Massgescheidert auf Ihre Wüsche ud Bedürfisse Fiazierugsmodelle gibt es viele. Gemeisam mit Ihe fide wir die

Mehr

Inhaltsverzeichnis. 1 Leistungsbeschreibung... 3. 2 Integration in das Agenda-System... 4

Inhaltsverzeichnis. 1 Leistungsbeschreibung... 3. 2 Integration in das Agenda-System... 4 USt Umsatzsteuer Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Kompakte Erfassugsmaske auf Basis der Steuerformulare... 5 3.2 Orgaschaft & Kosolidierug...

Mehr

Organisatorische Strukturen und Stammdaten in ERP-Systemen

Organisatorische Strukturen und Stammdaten in ERP-Systemen Attributame Beschreibug Name des Lerobjekts Autor/e Zielgruppe Vorwisse Lerziel Beschreibug Dauer der Bearbeitug Keywords Orgaisatorische Strukture ud Stammdate i ERP-Systeme FH Vorarlberg: Gasser Wirtschaftsiformatik

Mehr

Skript Mathematik. Inhaltsverzeichnis

Skript Mathematik. Inhaltsverzeichnis Skript Mathematik Ihaltsverzeichis Folge ud Reihe.... Arithmetische Folge ud Reihe.... Geometrische Folge ud Reihe.... Aufgabe... Zis- ud Ziseszisrechug...4. Eifache Verzisug...4. Ziseszisrechug...5. Gemischte

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

1 n n n WOHnEIGEnTUM ja ODER nein?

1 n n n WOHnEIGEnTUM ja ODER nein? 1 WOHEIGETUM ja ODER EI? objekt Welche Haus- oder Wohugsform kommt ifrage (allei stehedes Haus, Reihehaus, Stockwerkeigetum etc.)? Welche Architekturstil bzw. welche Art vo Objekt suche Sie (alt, klassisch,

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mahemaikaufgaben zu orienieren, benuzen Sie unbeding das Lesezeichen Ihres Acroba Readers: Das Icon finden Sie in der links sehenden

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

RATING KREDIT & PRAXIS. Renditewissen für Juristen. Auszug aus Kredit & Rating Praxis 2/2006, Seite 24 32. Zeitschrift der Finanzspezialisten

RATING KREDIT & PRAXIS. Renditewissen für Juristen. Auszug aus Kredit & Rating Praxis 2/2006, Seite 24 32. Zeitschrift der Finanzspezialisten Offizielles Orga Auszug aus Kredit & Ratig Praxis 2/2006, Seite 24 32 Reditewisse für Juriste Johaes Fiala, Edmud J. Raosch Uter Juriste gilt immer och die alte Weisheit: «iudex o calculat». Aber vor weige

Mehr

Optionsbewertung. Elke Korn Ralf Korn 1

Optionsbewertung. Elke Korn Ralf Korn 1 MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/~mamaeusch/ Optiosbewertug Elke Kor Ralf Kor Diese Veröffetlichug ist Teil des Buchprojektes Mathematik ud Ökoomie, das

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

1741 SWITZERLAND EQUAL WEIGHTED INDEX

1741 SWITZERLAND EQUAL WEIGHTED INDEX 1741 Switzerlad Idex Series 1741 SWITZERLAND EQUAL WEIGHTED INDEX Reglemet Versio vom 01.07.2015 1741 Switzerlad Equal Weighted Idex 2 INHALTSVERZEICHNIS 1 Eileitug 3 2 Idex Spezifikatioe 4 3 Idex Uiversum

Mehr

Das Privatkonto. Ihre Basis für alle Bankgeschäfte

Das Privatkonto. Ihre Basis für alle Bankgeschäfte Das Privatkoto Ihre Basis für alle Bakgeschäfte Nehme Sie eies für alles Das Privatkoto ist ei Servicekoto, das Ihe alle Diestleistuge für de tägliche Gebrauch bietet als Lohkoto oder als Drehscheibe für

Mehr

HS Auftragsbearbeitung für DATEV

HS Auftragsbearbeitung für DATEV HS Auftragsbearbeitug für DATEV Optimales Zusammespiel mit DATEV für Effiziez, Sicherheit ud Komfort. Flexibel, praxisgerecht, wirtschaftlich Die Herausforderug EFFIZiENTE PROZESSE EINFACH, FLEXIBEL, KOSTENGÜNSTIG

Mehr

XIII. Verkehrsstrafen-Überblick

XIII. Verkehrsstrafen-Überblick Ahag: XIII. Verkehrsstrafe-Überblick XIII. Verkehrsstrafe-Überblick Strafe ud Rechtsfolge ach Verkehrsdelikte i Österreich (Beispiele) Die folgede Tabelle listet häufige Verkehrsübertretuge auf. Es hadelt

Mehr

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur.

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur. PS - OPTIK P. Redulić 2007 LICHT STRAHLENOPTIK LICHT. Lichtquelle ud beleuchtete Körper Sichtbare Körper sede teilweise Licht aus, teilweise reflektiere sie aber auch das auf sie fallede Licht. Lichtquelle

Mehr

Erwartungswert und Varianz bei Verteilungen und Glücksspielen

Erwartungswert und Varianz bei Verteilungen und Glücksspielen HL Saalfelde Erwartugswert / Variaz Seite vo 7 Wilfried Rohm Erwartugswert ud Variaz bei Verteiluge ud Glücksspiele Mathematische / Fachliche Ihalte i Stichworte: Erwartugswerte ud Variaz (Stadardabweichug)

Mehr

Rainer Mohr Manfred Schubert. Funkuhrtechnik und Funkuhrentwicklung

Rainer Mohr Manfred Schubert. Funkuhrtechnik und Funkuhrentwicklung Raier Mohr Mafred Schubert Fukuhrtechik ud Fukuhretwicklug 76 I Deutschlad ist die Physikalisch Techische Budesastalt (PTB) i Brauschweig für die Verbreitug der gesetzliche Zeit veratwortlich (Zeitgesetz).

Mehr