Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + =

Größe: px
Ab Seite anzeigen:

Download "Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + ="

Transkript

1 ist ( 6.4 Logistisches Wachstum Ein Nachteil des Modells vom beschränkten Wachstum besteht darin, dass für kleine t die Funktion ungefähr linear statt exponentiell wächst. Diese chwäche wird durch das logistische Modell behoben. Der Name stammt vom Belgier Verhulst (84-849). Bei diesem Modell verläuft das Wachstum anfänglich ungefähr exponentiell, gegen Ende des Beobachtungs- Zeitraumes nähert sich das Wachstum dem beschränkten Wachstum mit der ättigungsgrenze. Das bedeutet, dass die momentane Wachstumsrate proportional zu und zu ( ) ist. ) & k () Differentialgleichung des logistischen Wachstums k > Beispiel in der Abbildung k. und 3. Die Gleichung hat die Gleichgewichtslösungen und. Für < < ist & positiv und damit streng monoton wachsend. Das Wachstum ist bei ½ maximal. Für und kann die Gleichung umgeformt werden zu: & k () ( ) Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken eite in Teilbrüche zerlegt werden: a b a ( ) + b a + ( b a) + ( ) ( ) ( ) Die Konstanten sind damit bestimmt zu: a b Gleichung () kann damit neu in der folgenden Form dargestellt werden: & & & & + k oder k ( ) ( ) Integration ergibt: ln ln ln ln( ) ln kt + c wegen < < kt+ c e kt c e mit der Lösung kt + c e oder für den Kehrwert kt c oder e kt c bzw. ( + e ) logist_wachstum 3..3

2 Zur Zeit t erhält man den Anfangswert. + c Daraus ergibt sich für die Konstante der Wert c und die Lösung (3) logistisches Wachstum. kt kt + ( ) e + e Im einleitenden Beispiel ergibt sich für den Anfangswert die spezielle Lösung 3. t + e. 3 Bemerkung : Auf Überbevölkerung (Anfangswert > ) reagiert das Modell mit der Abnahme der Individuenzahl gegen die ättigungsgrenze. Bemerkung : Die Partialbruchzerlegung kann mit dem folgenden Kunstgriff vermieden werden: Man betrachtet die wegen f(t) definierte Hilfsfunktion g( t) f ( t) Wegen f& ( t) k f ( ) ( t) ( f ( t) ) k f ( t) ( f ( t) ) k g& t k k g t f ( t) f ( t) f ( t) f ( t) ist g(t) Lösung der inhomogenen linearen Differentialgleichung & k ( ) mit der Lösung kt kt g( t) + c e ( + c e ) Die Lösung der ursprünglichen Differentialgleichung () heisst damit kt + c e ( ( )) Die Differentialgleichung () kann auch die Ausbreitung einer unheilbaren aber nicht tödlichen Krankheit beschreiben. Es wird angenommen, dass diese Krankheit in einer isolierten Population mit Individuen umgeht. N(t) bezeichne die Anzahl der zur Zeit t infizierten Individuen. Modellvorstellung: Die Wachstumsrate N & ( t) ist proportional zur Anzahl der Kranken N(t) und zur Anzahl der Gesunden ( N(t)) (d.h. proportional zur Anzahl der Kontakte zwischen Kranken und Gesunden). Bezeichnet man N(t) mit so erhält man die bekannte Differentialgleichung & k. ( ) logist_wachstum 3..3

3 3 Beispiel: Ist in einer Population von 5 Menschen zu Beginn ein Bewohner infiziert und zählt man nach 4 Wochen 3 Kranke, dann gilt: 5 N ( t) 5 kt + ( 5 ) e t in Wochen Wegen 5 N ( 4) k e 3 k Im Zeitpunkt, wo die Hälfte der tammesbewohner krank ist gilt: N t 5. ( ) 5 5 4k e Auflösung die Gleichung ergibt t 5.9. Ab diesem Zeitpunkt sinkt die Ausbreitungsgeschwindigkeit der Krankheit (sogenannter Vitalitätsknick). Im folgenden Beispiel werden die Parameter aus den Daten geschätzt. Wachstum einer Hefekultur (Carlson 93) Zeit t [h] Hefemenge N(t) [mg] t N(t) logist_wachstum 3..3

4 4 Dazu wird die Gleichung (3) folgendermassen umformt: Zähler und Nenner mit kt / + ( ) e kt + e erweitern ln + e e kt kt + ln kt + e kt Das Ergebnis bedeutet, dass für die logistische Verteilung die Punkte einer Geraden mit der teigung m -k (4) und dem -Achsenabschnitt q ln (5) liegen. Im Folgenden sind für die vorgegebenen Daten die Punkte ln, ln auf, dargestellt. Dazu muss allerdings für die Kapazitätsgrenze eine plausible Annahme getroffen werden. Wählt man nach verschiedenen Versuchen so ergibt sich die folgende Tabelle mit besonders guter Übereinstimmung mit den Daten: Hefemenge N(t) [mg] / ln(/ - /) Regressionswerte Residuen N(t) logist_wachstum 3..3

5 5 Excel liefert für die teigung m und den -Achsenabschnitt q die Werte: m und q Mit (4) und (5) können damit die Parameter geschätzt werden: m m -k (4) oder k.8677 Aus Gleichung (5) für den -Achsenabschnitt q ln folgt e q q q q e + oder e e + und damit e q + logist_wachstum 3..3

6 6 Vergleich der Daten mit den Werten des logistischen Wachstums N ( t) mit den Parametern kt + ( ) e k m.8677 und q e + Zeit t [h] Hefemenge N(t) [mg] t N(t) Werte geschätzt Abweichungen logist_wachstum 3..3

3.3 Beschränktes(r) Wachstum/Zerfall und logistisches Wachstum

3.3 Beschränktes(r) Wachstum/Zerfall und logistisches Wachstum 3.3 Beschränktes(r) Wachstum/Zerfall und logistisches Wachstum Inhaltsverzeichnis 1 Beschränktes Wachstum und beschränkter Zerfall 2 2 Logistisches Wachstum 5 1 Beschr. Wachstum/Zerfall 30.10.2009 Theorie

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Zusätzliche Aufgabe 5:

Zusätzliche Aufgabe 5: D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum Abiturvorbereitung Wachstum S. 1 von 11 Themen: Exponentielles Wachstum Exponentielle Abnahme Beschränktes Wachstum Logistisches Wachstum Modellieren bei gegebenen Daten Übungsaufgaben Wachstum Exponentielles

Mehr

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab.

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab. 40 8. Anwendungen der Differentialrechnung Beispiele aus der Phsik: Momentangeschwindigkeit Die Bewegung eines Massenpunktes wird mathematisch durch die zugrundeliegende Weg- Zeitfunktion beschrieben,

Mehr

Exponentielles Wachstum:

Exponentielles Wachstum: Exponentielles Wachstum: Bsp.: Ein Wald hat zum Zeitpunkt t = 0 einen Holzbestand von N 0 = N(0) = 20 000 m 3. Nach 0 Jahren ist der Holzbestand auf 25 000 m 3 angewachsen. a) Nimm an, dass die Zunahme

Mehr

Beispiel: Evolution infizierter Individuen

Beispiel: Evolution infizierter Individuen Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t 1 6. Wachstumsformen Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t momentane Wachstumsrate: geometrisch: Tangentensteigung, unabhängig

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

Infektionskrankheit auf einer Kreuzfahrt

Infektionskrankheit auf einer Kreuzfahrt Prozentuales Wachstum Begrenztes Wachstum Aufgaben zum begrenzten Wachstum Tropfinfusion Bevölkerungsschwund Erwärmung Abkühlung Regelung Infektionskrankheit auf einer Kreuzfahrt Heißer Kaffee Prozentuales

Mehr

B 1 + k e λbt, f(t) =

B 1 + k e λbt, f(t) = 63 Mathematik für iologen, iotechnologen und iochemiker 53 Die logistischen Funktionen von Verhulst Wir betrachten wieder das Wachstum einer Population, es sei f(t) die Anzahl der Individuen zum Zeitpunkt

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen Übungsblatt Lösungen Beispiel 1: Man betrachtet das Wachstum der Weltbevölkerung im Zeitraum von 1950 (Zeitpunkt t = 0) bis 1990 (Zeitpunkt t = 40). Die Tabelle soll im Zuge der Rechnung von dir ausgefüllt

Mehr

Konstante Zu- und Abflüsse (Veränderungen)

Konstante Zu- und Abflüsse (Veränderungen) Konstante Zu- und Abflüsse (Veränderungen) Unser erstes Modell: Ein (großer) Eimer wird unter einen Wasserhahn gestellt. Der Wasserhahn wird geöffnet und ein konstanter Wasserstrom von 2 Litern pro Minute

Mehr

Kapitel 7. Differenzengleichungen

Kapitel 7. Differenzengleichungen apitel 7 Differenzengleichungen I n h a ltsverze ichnis DIFFERENZENGLEICHUNGEN... 3 EINFÜHRUNG UND BEISPIELE... 3 DIFFERENZENGLEICHUNG 1. ORDNUNG... 3 ELEMENTARE DIFFERENTIALGLEICHUNGEN... 4 GEWÖHNLICHE

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Differenzialgleichung

Differenzialgleichung Differenzialgleichung Die Differenzialgleichung ist die kontinuierliche Variante der Differenzengleichung, die wir schon bei den Folgen und Reihen als rekursive Form ( n+1 = n + 5) kennengelernt haben.

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

Exponentialfunktion*

Exponentialfunktion* Exponentialfunktion* Aufgabennummer: 1_435 Aufgabentyp: Typ 1 T Typ Aufgabenformat: offenes Format Grundkompetenz: FA 5.1 Gegeben ist der Graph einer Exponentialfunktion f mit f(x) = a b x mit a, b R +

Mehr

Informatik Kurs Simulation. Grundlegende Wachstumsformen

Informatik Kurs Simulation. Grundlegende Wachstumsformen Grundlegende Wachstumsformen Wachstumsprozesse sind grundsätzlich sehr vielseitig. Im Abschnitt Wachstumsformen geht es um grundlegende Typen. Dabei sollte man das Wort Wachstum nicht zu streng sehen,

Mehr

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen Aufgaben zum logistischen Wachstum Kürbis-Aufgabe Buscharten-Aufgabe Punktsymmetrie zum Wendepunkt Sonnenblumen-Aufgabe Typische Fragestellungen Aufgaben zum logistischen Wachstum 1. Eine Untersuchung

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

W (t) = W (t) mit. ) [7] dt 3.2 Zeigen Sie, dass die Zeitdifferenz zwischen zwei unmittelbar aufeinander folgenden Maxima der Auslenkung konstant t

W (t) = W (t) mit. ) [7] dt 3.2 Zeigen Sie, dass die Zeitdifferenz zwischen zwei unmittelbar aufeinander folgenden Maxima der Auslenkung konstant t Abschlussprüfungen zu: Exponentielle Zunahme / Abnahme AP 2000 AI 2.0 Für den Wert W(t) eines Autos (in DM) in Abhängigkeit von der Zeit t 0 (in Tagen) gelte der Zusammenhang W(t) = W o e kt mit einer

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Didaktische Bemerkungen

Didaktische Bemerkungen zu den Rekursionsformeln und der Arbeit mit Derive 6.0 1 Exponentielles Wachstumsmodell Es sei (i) f t =f 0 e k t und die Rekursionsformel zu (i) lautet: f t 1 =q f t bzw. f n 1 =q f n. Mit f(t+1) in (i)

Mehr

Nichtlineare Differenzengleichungen und Bevölkerungswachstum

Nichtlineare Differenzengleichungen und Bevölkerungswachstum Nichtlineare Differenzengleichungen und Bevölkerungswachstum Andreas Hock Inhaltsverzeichnis 1 Lineare Modelle 2 1.1 Diskrete Modelle............................... 2 1.2 Beispiel: Zellteilung unter Laborbedingungen................

Mehr

Biostatistik, WS 2010/2011 Differential- und Integralrechnung

Biostatistik, WS 2010/2011 Differential- und Integralrechnung 1/35 Biostatistik, WS 2010/2011 Differential- und Integralrechnung Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 12.11.2010 2/35 Inhalt Ableitung 1 Ableitung Änderung und

Mehr

2. Elementare Lösungsmethoden

2. Elementare Lösungsmethoden H.J. Oberle Differentialgleichungen I WiSe 2012/13 2. Elementare Lösungsmethoden A. Separierbare Differentialgleichungen. Eine DGL der Form y (t) = f(t) g(y(t)) (2.1) mit stetigen Funktionen f : R D f

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Modul 241. Systemen. Modellierung des Wachstums der. Weltbevölkerung - Definition

Modul 241. Systemen. Modellierung des Wachstums der. Weltbevölkerung - Definition Modul 241 Modellierung von Systemen Modellierung des Wachstums der Weltbevölkerung Weltbevölkerung - Definition Der Begriff Weltbevölkerung bezeichnet die geschätzte Anzahl der Menschen, die zu einem bestimmten

Mehr

Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt.

Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt. 7. Anwendungen ================================================================== 7.1 Exponentielles Wachstum ------------------------------------------------------------------------------------------------------------------

Mehr

(c) Nach wievielen Wochen ist etwa die Hälfte aller Einwohner erkrankt?

(c) Nach wievielen Wochen ist etwa die Hälfte aller Einwohner erkrankt? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 15.11.18 Übung 9 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 19. November 018 in den Übungsstunden Aufgabe 1 In einer Stadt breitet

Mehr

Analysis I. Teil 1. Bayern Aufgabe 1. Abitur Mathematik Bayern Abitur Mathematik: Musterlösung. D f =] 3; + [ x = 1

Analysis I. Teil 1. Bayern Aufgabe 1. Abitur Mathematik Bayern Abitur Mathematik: Musterlösung. D f =] 3; + [ x = 1 Abitur Mathematik: Bayern 2012 Teil 1 Aufgabe 1 a) DEFINITIONSMENGE f(x) = ln(x + 3) x + 3 > 0 x > 3 D f =] 3; + [ ABLEITUNG Kettenregel liefert f (x) = 1 x + 3 1 = 1 x + 3 b) DEFINITIONSMENGE 3 g(x) =

Mehr

Analysis I. Vorlesung 29

Analysis I. Vorlesung 29 Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 29 Homogene lineare gewöhnliche Differentialgleichungen Definition 29.1. Eine Differentialgleichung der Form y = gt)y mit einer Funktion

Mehr

Numerische Integration

Numerische Integration A1 Numerische Integration Einführendes Beispiel In einem Raum mit der Umgebungstemperatur T u = 21.7 C befindet sich eine Tasse heissen Kaffees mit der anfänglichen Temperatur T 0 80 C. Wie kühlt sich

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

Vergleich verschiedener Wachstumsmodelle

Vergleich verschiedener Wachstumsmodelle BspNr: D0420 Ziele Entscheiden können, welche Wachstumsmodelle bei einem konkreten Beispiel sinnvoll sind Analoge Aufgabenstellungen Übungsbeispiele Lehrplanbezug (Österreich): Quelle: Dr. Alfred Eisler,

Mehr

Biostatistik, WS 2013/2014 Differential- und Integralrechnung

Biostatistik, WS 2013/2014 Differential- und Integralrechnung 1/30 Biostatistik, WS 2013/2014 Differential- und Integralrechnung Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1314/ 15.11.2013 Ableitung 2/30 Isaac Newton (1643-1727) Gottfried

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Homogene lineare Differentialgleichung 1. Ordnung

Homogene lineare Differentialgleichung 1. Ordnung Homogene lineare Differentialgleichung. Ordnung Sanddünen und Integralkurven E Ma Lubov Vassilevskaa E Ma Lubov Vassilevskaa E3 Ma Lubov Vassilevskaa Lineare DGL. Ordnung Definition: Eine Differenzialgleichung.

Mehr

Übung 1: Angebot und Nachfrage

Übung 1: Angebot und Nachfrage Übung 1: Angebot und Nachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermdediate Microeconomics HS 11 Übung 1 1 / 21 2 / 21 Gleichgewicht in Wettbewerbsmärkten Aufgabe

Mehr

Lineares Wachstum/exponentielles Wachstum

Lineares Wachstum/exponentielles Wachstum Seite 1 / 9 Lineares Wachstum/exponentielles Wachstum 1. Herr Apfalterer und Frau Bader haben ein Jahresgehalt von 18.000. Für die jährliche Gehaltserhöhung stehen zwei verschieden Möglichkeiten zur Auswahl.

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6 D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger Serie 6 Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1.1

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 2006 Prof. Dr. H.-R.

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 2006 Prof. Dr. H.-R. FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 006 Prof. Dr. H.-R. Metz Aufgabe 1 Skizzieren Sie die Funktionen e x, ln(x) = log e (x) und e

Mehr

Exponentialfunktionen

Exponentialfunktionen Mathematik Buch / 3. Funktionen / Zuordnungen -288- Aufgabe: Exponentialfunktionen Eine Fläche ist zu Beginn der Baggerarbeiten 800 m 2 groß. Jede Woche schaffen die Bagger 550 m 2 neue Fläche dazu. Eine

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen

Mehr

Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k

Reaktionskinetik. bimolekularen Reaktion. Für die Konzentraton des Dinitrochlorbenzols [a] gilt: = k Versuche des Kapitel 7 Reaktionskinetik Einleitung Die Reaktion von Piperidin mit Dinitrochlorbenzol zum gelben Dinitrophenylpiperidin soll auf die Geschwindigkeitskonstante und die Arrheniusparameter

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Gleichgewichte von Differentialgleichungen

Gleichgewichte von Differentialgleichungen Gleichgewichte von Differentialgleichungen Gleichgewichte von Differentialgleichungen Teil 1 Zur Erinnerung: Zur Erinnerung: Wir hatten lineare Differentialgleichungen betrachtet: in R 1 : Zur Erinnerung:

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 2. Februar 2015 : Luftdruck Definition e: Populationsdynamik Satz von Picard und Lindelöf Folgerungen/Bemerkungen...von DGLn höherer Ordnung

Mehr

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach Logistisches Wachstum am Beispiel einer Hefekultur 16.04.2012 Inhaltsverzeichnis 1.0 Vorwort...3 2.0 Logistisches Wachstum allgemein...4 2.1

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion 1/22 Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 2/22 Inhalt Exponential- und Logarithmusfunktion

Mehr

II. Formalismus assoziativer Netze für VLSI - Implementierung

II. Formalismus assoziativer Netze für VLSI - Implementierung II. Formalismus assoziativer Netze für VLSI - Implementierung Um die Eigenschaften und die Verwendungsmöglichkeiten neuronaler Netzwerkmodelle beschreiben und vergleichen zu können, bedarf es einer allgemeinen,

Mehr

Mathematik Teil 2: Differentialgleichungen

Mathematik Teil 2: Differentialgleichungen Mathematik Teil 2: Differentialgleichungen M. Gutting Fakultät IV, Department Mathematik 19. Juni 2017 Natürliches Wachstum/Zerfall Wachstum/Zerfall (Zinsen, Population / Radioaktiver Zerfall) verhält

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Übung 1: Angebot und Nachfrage

Übung 1: Angebot und Nachfrage Übung 1: Angebot und Nachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermdediate Microeconomics HS 12 Übung 1 1 / 18 2 / 18 Zu Aufgaben 1 und 2 Worum geht es? Sie können

Mehr

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten - 1 - Gewöhnliche Differentialgleichungen Teil II: Lineare DGLs mit konstanten Koeffizienten Wir wenden uns jetzt einer speziellen, einfachen Klasse von DGLs zu, die allerdings in der Physik durchaus beträchtliche

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Populationsdynamik mit grafischer Modellbildung

Populationsdynamik mit grafischer Modellbildung Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik Populationsdynamik mit grafischer Modellbildung Bachelorarbeit im Studiengang polyvalenter Bachelor Lehramt im

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 23 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 23 1. Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : sin als Lösung besitzt. Welche der folgenden Aussagen

Mehr

Logistisches Wachstum ohne Zeitverzögerung

Logistisches Wachstum ohne Zeitverzögerung Logistisches Wachstum ohne Zeitverzögerung www.sustainicum.at Hans Peter Aubauer Universität Wien, Februar 2013 Logistisches Wachstum ohne Zeitverzögerung Diese Hintergrundinformation

Mehr

10 Zeit in Milliarden Jahren

10 Zeit in Milliarden Jahren a) Der radioaktive Zerfall von bestimmten Uran-Atomen lässt sich näherungsweise durch eine Exponentialfunktion N beschreiben (siehe nachstehende Abbildung). 100 Masse in mg 90 80 70 60 50 N 40 30 20 10

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Wahlteil Analysis 2 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 2015 1 Aufgabe

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Lösung 11. Allgemeine Chemie I Herbstsemester d[a] t. = k (1) Trennung der Variablen und Integration in den Randbedingungen führt auf: [A]

Lösung 11. Allgemeine Chemie I Herbstsemester d[a] t. = k (1) Trennung der Variablen und Integration in den Randbedingungen führt auf: [A] Lösung Allgemeine Chemie I Herbstsemester 20. Aufgabe Die Geschwindigkeitsgesetze finden Sie im Skript der Vorlesung und im Mortimer, p. 26-27. Für eine Reaktion, die Species A verbraucht, gilt bei einer

Mehr

Einführung in die Informatik mit Java

Einführung in die Informatik mit Java Vorlesung vom 08.01.2008 Übersicht 1 Polygonzüge und Anfangswertprobleme 2 Das Diffusionsmodell nach Bass 3 Erweiterung des Modells 4 Ein Parameteranpassungsproblem Polygonzüge und Anfangswertprobleme

Mehr

6.3 Exakte Differentialgleichungen

6.3 Exakte Differentialgleichungen 6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

Biostatistik, SS 2016 Differential- und Integralrechnung

Biostatistik, SS 2016 Differential- und Integralrechnung 1/43 Biostatistik, SS 2016 Differential- und Integralrechnung Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik16/ 6.5.2016 Ableitung 3/43 Isaac Newton (1643-1727) Gottfried Wilhelm Leibniz

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Dynamische Systeme in der Mikrobiologie

Dynamische Systeme in der Mikrobiologie Dynamische Systeme in der Mikrobiologie Verfasst von: Blank Patricia, Gattlen Jasmin, Kaspar Romana (DI Gruppe G) Betreut durch: Roman Kälin BBOM, Buchkapitel: 6.1, 6.3-6.6, Hilfsmittel: www.simolife.unizh.ch

Mehr

Teil 1 - Epidemische Modelle

Teil 1 - Epidemische Modelle Teil 1 - Epidemische Modelle 15. Januar 2013 Literatur: J.D.Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 2 3 4 5 Ziele meines Vortrags Ein grlegen Modell () zur

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Differenzialgleichungen, Wachstum Hans Walser: Modul 0, Differenzialgleichungen, Wachstum ii Inhalt Einführung: Wachstum.... Beispiel: 50% Wachstum

Mehr

Modellbildung und Simulation, Kap (S ) 10 Zwei-Spezies-Modelle

Modellbildung und Simulation, Kap (S ) 10 Zwei-Spezies-Modelle Erratum zu Modellbildung und Simulation, Kap. 1.3 (S. 256 261) 1 Zwei-Spezies-Modelle Interessanter als einzelne Populationen sind Modelle mit mehreren Arten, die miteinander in Wechselwirkung stehen,

Mehr

Integralrechnung. Aufgabe 62. Gegeben seien die beiden Funktionen f; g W R! R mit. f.x/ D 2x C 10 sowie g.x/ D x 2 C 2 :

Integralrechnung. Aufgabe 62. Gegeben seien die beiden Funktionen f; g W R! R mit. f.x/ D 2x C 10 sowie g.x/ D x 2 C 2 : Integralrechnung Aufgabe 62 Integralrechnung: Fläche zwischen Kurven (Flaeche2) Gegeben seien die beiden Funktionen f; g W R! R mit f.x/ D 2x C sowie g.x/ D x 2 C 2 : a) Bestimmen Sie die Schnittpunkte

Mehr

Wachstum mit oberer Schranke

Wachstum mit oberer Schranke 1 1.1 exponentielles Wir haben das eines Kontos mit festem Zinssatz untersucht. Der jährliche Zuwachs (hier die Zinsen) sind proportional zum Bestand (hier dem jeweiligen Kontostand). Die Annahme, daß

Mehr

Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel)

Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel) Pflichtteil (ohne Hilfsmittel) ) Berechne die. Ableitung. a) f(x) 3x sin( x ) b) f(x) 3x sin( x ) (VP) 3 ) Berechne und vereinfache x 3) Bestimme die Lösungsmenge der Gleichung sin( x) dx. (3VP) cos(x)

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann. Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr