Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy."

Transkript

1 Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom Aufgabe V.1 + Punkte) Gegeben seien die Funktionen f, g : R R, fx, y) = x + y) + xy + 3x, gx, y) = xy + e xy. Berecnen Sie die Gradienten der Funktionen und bestimmen Sie alle Punkte x, y) R derart, dass fx, y) = 0 bzw. gx, y) = 0. Aufgabe V Punkte) Sei f : R R definiert durc fx, y) = {xy x y, x +y falls x, y) 0, 0), 0, falls x, y) = 0, 0). a) Zeigen Sie, dass die Funktion f stetig differenzierbar ist, d.. f C 1 R ). b) Beweisen Sie x yf0, 0) y xf0, 0). c) Zeigen Sie, dass der Satz von Scwarz für die Funktion f nict anwendbar ist. Hinweis: Zeigen Sie ierzu, dass eine Voraussetzung des Satzes verletzt wird. Aufgabe V.3 +3 Punkte) a) Sei f : R 3 R definiert durc fx, y, z) = x siny)z. Berecnen Sie alle partiellen Ableitungen erster und zweiter Ordnung von f. b) Zeigen Sie, dass die Funktion g : R R, definiert durc { xy, falls x, y) 0, 0), x gx, y) = +y 0, falls x, y) = 0, 0), auf R partiell differenzierbar ist, jedoc im Nullpunkt nict stetig ist. Zeigen Sie zudem, dass die partiellen Ableitungen für jede Kugel B r0) R unbescränkt sind. Aufgabe V. 3+ Punkte) a) Berecnen Sie die Rictungsableitungen der folgenden Funktionen an den Stellen ξ in den Rictungen v/ v. Bestimmen Sie auc die Rictung des steilsten Anstiegs der Funktion an der Stelle ξ. i) f : R R, x sin 1 x1x), ξ = 1, ), v = 1, 3 ii) f : R 3 R, x expx 1x x 3), ξ = 1, 1, 1), v = 1,, 1). b) Sei f : R R definiert durc fx, y) = { x + y, falls x = 0 oder y = 0, 1, sonst. Bestimmen Sie alle v R mit v = 1 derart, dass die Rictungsableitung von f im Nullpunkt in Rictung v existiert. ). Erreicbare Punktzal: 0

2 Übungsblatt V Lösungen Seite Aufgabe V.1 i) Es gilt für alle x, y) R : Folglic ist: Lösungsvorscläge x fx, y) = + y + 6x und y fx, y) = + x. fx, y) = ) + y + 6x. + x Aus der partiellen Ableitung in Rictung y folgt: y fx, y) = 0 x =. Einsetzen in + y + 6x = 0 liefert y = 10. Also gilt fx, y) = 0 x, y) =, 10). ii) Es gilt für alle x, y) R : x gx, y) = y ye xy und y gx, y) = x xe xy. Folglic ist: ) y ye xy gx, y) = x xe xy. Es gilt x gx, y) = 0 x = 0 oder y = 0. Folglic sind x = 0, y R und y = 0, x R Lösungen von y gx, y) = 0. Analog gilt y gx, y) = 0 y = 0 oder x = 0. Somit löst y = 0, x R und x = 0, y R dioe Gleicung y gx, y) = 0. Also gilt gx, y) = 0 x, y) {x, y) R x = 0 oder y = 0}. Somit verscwindet der Gradient auf den Acsen. Aufgabe V. a) Wir müssen zeigen, dass alle partiellen Ableitungen erster Ordnung existieren und stetig sind. Sei x, y) 0, 0). Dann ist f offensictlic partiell differenzierbar und es gilt nac der Quotientenregel: Sei nun x, y) = 0, 0). Dann gilt: x fx, y) = x + x y y x + y ) y, y fx, y) = x x y y x + y ) x. f, 0) f0, 0) x f0, 0) = 0, f0, ) f0, 0) y f0, 0) = 0. Also ist f in allen Punkten x, y) R partiell differenzierbar. Die partiellen Ableitungen sind in allen Punkten x, y) 0, 0) als Verkettung stetiger Funktionen

3 Übungsblatt V Lösungen Seite 3 selbst wieder stetig. Es muss also noc die Stetigkeit im Nullpunkt geprüft werden: x fx, y) x f0, 0) = x + x y y x + y ) y x y x + y ) + x x + y ) + y x + y ) y 1 y 0. Die Stetigkeit von y fx, y) im Nullpunkt zeigt man analog. Somit ist f C 1 R ). b) Es gilt: y f, 0) y f0, 0) x y f0, 0) x f0, ) x f0, ) y x f0, 0) Also gilt: x y f0, 0) = = y x f0, 0) =. =, c) Die zweiten partiellen Ableitungen der Funktion f sind nict stetig im Nullpunkt. Wir zeigen dies für y x f. Seien x, y) 0, 0). Dann gilt: und somit y x fx, y) = x6 + 9x y 9x y y 6 x + y ) 3 lim y x fx, 0) = x6 x 0 x 6 =, lim y x f0, y) = y6 y 0 y 6 =. Folglic ist y x f im Nullpunkt nict stetig. Aufgabe V.3 a) Für die partiellen Ableitungen erster Ordnung gilt: x fx, y, z) = siny)z, y fx, y, z) = x cosy)z, z fx, y, z) = x siny)z. Für die Ableitungen zweiter Ordnung gilt: x x fx, y, z) = 0, y x fx, y, z) = cosy)z, z x fx, y, z) = siny)z, x y fx, y, z) = cosy)z, y y fx, y, z) = x siny)z, z y fx, y, z) = x cosy)z, x z fx, y, z) = siny)z, y z fx, y, z) = x cosy)z, z z fx, y, z) = x siny).

4 Übungsblatt V Lösungen Seite b) Sei x, y) 0, 0). Dann ist g offensictlic partiell differenzierbar und es gilt: x gx, y) = yx + y ) xy x x + y ) = yy x ) x + y ), y gx, y) = xx y ) x + y ). Sei nun x, y) = 0, 0). Dann gilt: g, 0) g0, 0) x f0, 0) = 0, g0, ) g0, 0) y f0, 0) = 0. Also ist g partiall differenzierbar auf R. Die Funktion g ist im Nullpunkt nict stetig, denn 1 lim g n n, 1 ) ) = n n n = 1 0. Wir zeigen nun, dass die partiellen Ableitungen von g auf jeder Kugel B r 0) unbescränkt sind. Sei r > 0 beliebig und n 0 N derart, dass 1 n 0 < r. Wir betracten zunäcst x g. Wäle die Folge 0, 1 ) n n N,n n 0 B r 0). Dann gilt x g 0, 1 ) = n für n. n Analog zeigen wir, dass y g unbescränkt ist. Hierzu betracten wir die Folge 1 n, 0) n N,n n 0 B r 0). Dann gilt ) 1 y g n, 0 = n für n. Aufgabe V. a) In beiden Teilaufgaben wird die Regel von l Hospital verwendet, um die entsprecenden Grenzwerte zu bestimmen. i) Es ist v = 1. Für die gesucte Rictungsableitung gilt ) sin t ) + t 3 ) sin1) v fξ) t 1 + t 3 + t ) + 3t 8 sin1) sin 3 = t cos1). ) t cos 1 + t 3 + t ) + 3t 8 1

5 Übungsblatt V Lösungen Seite 5 Der Gradient an der Stelle ξ gibt die Rictung des steilsten Anstiegs an: ) 1 1 fξ) = ξ cos ξ 1ξ, 1 )) 1 ξ 1 cos ξ 1ξ = cos1), 1 ) cos1). Alternativ kann man auc den Gradienten verwenden, um die Rictungsableitung zu bestimmen: v fξ) = fξ) v) = + 3 cos1). ii) Es ist v = 6. Setze c = 1 6. Für die gesucte Rictungsableitung gilt damit exp [1 + ct)1 + ct)1 ct)] exp1) v fξ) t exp1 + ct c t c 3 t 3 ) exp1) t c c t 6c 3 t ) exp1 + ct c t c 3 t 3 ) = ce = e 3. Der Gradient an der Stelle ξ gibt die Rictung des steilsten Anstiegs an: fξ) = ξ ξ 3 expξ 1 ξ ξ 3 ), ξ 1 ξ 3 expξ 1 ξ ξ 3 ), ξ 1 ξ expξ 1 ξ ξ 3 )) = e, e, e). Alternativ kann man auc den Gradienten verwenden, um die Rictungsableitung zu bestimmen: v fξ) = c fξ), v = e 3. b) Sei 0. Wir bezeicnen die Standardeineitsvektoren des R mit e j für j {1, }. Es gilt: f0, 0) + ±e j ) f0, 0) = ± = ±1 ±1 für 0. Foglic ist f im Nullpunkt in die Rictungen 1, 0), 1, 0), 0, 1), 0, 1) differenzierbar. Wir zeigen nun, dass für jeden anderen Vektor v R \{1, 0), 1, 0), 0, 1), 0, 1)} mit v = 1 die Rictungsableitung im Nullpunkt nict existiert. Da v R \ {1, 0), 1, 0), 0, 1), 0, 1)} mit v = 1 müssen beide Koordinaten des Vektors v von Null verscieden sein. Also ist auc v von Null verscieden. Es gilt: f0, 0) + v) f0, 0) = 1 0 = 1 für 0. Also sind 1, 0), 1, 0), 0, 1), 0, 1) die einzigen Rictungen, entlang derer f im Nullpunkt differenzierbar ist.

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Stetigkeit und Dierenzierbarkeit im R n

Stetigkeit und Dierenzierbarkeit im R n Stetigkeit und Dierenzierbarkeit im R n 1 Stetigkeit Wir übertragen den Stetigkeitsbegri auf mehrstellige reellwertige Funktionen. Denition 1. Sei M R n. Eine Funktion f : M R heiÿt stetig in a M gdw.

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Differenzierbarkeit und Taylor-Entwicklung Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet.. Jacobi-Matrix Man bestimme die Jacobi-Matrix

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim A Analysis, Woche 8 Partielle Ableitungen A 8. Partielle Ableitungen Wir haben vorhin Existenzkriterien für Extrema betrachtet, aber wo liegen sie genau? Anders gesagt, wie berechnet man sie? In einer

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

Richtungsableitungen.

Richtungsableitungen. Richtungsableitungen. Definition: Sei f : D R, D R n offen, x 0 D, und v R n \ {0} ein Vektor. Dann heißt D v f(x 0 f(x 0 + tv) f(x 0 ) ) := lim t 0 t die Richtungsableitung (Gateaux-Ableitung) von f(x)

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Multivariate Kettenregel

Multivariate Kettenregel Multivariate Kettenregel Für die Hintereinanderschaltung h = g f : x y = f (x) z = g(y), stetig differenzierbarer Funktionen f : R m R l und g : R l R n gilt h (x) = g (y)f (x), d.h. die Jacobi-Matrix

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen 6.1 Funktionen von mehreren Variablen Eine Abbildung f : D R, D R n, ordnet jedem n-tupel x = (x 1, x 2,...,x n ) D (eindeutig) eine

Mehr

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch Tangentialebene Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch implizit definierten Fläche. f (x 1,..., x n ) = c Tangentialebene 1-1

Mehr

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) =

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) = Bemerkungen Die Erweiterung der Definition von partiellen Ableitungen 1. Ordnung für Funktionen u = f (x 1,..., x n ) mit n > 2 Veränderlichen ist offensichtlich: f xi (x 1,..., x n ) = f (x 1,..., x i

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester 2015 14.07.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Á 5. Differenzierbarkeit

Á 5. Differenzierbarkeit Á. Differenzierbarkeit Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 . Differenzierbarkeit Zur Berecnung der Steigung

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Klausur Analysis II

Klausur Analysis II WS 28/9 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis II 6.2.28 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

122 KAPITEL 7. POTENZREIHEN

122 KAPITEL 7. POTENZREIHEN Kapitel 7 Potenzreien 7.1 Der Konvergenzradius Definition 7.1: (Komplexe Potenzreien) Eine Potenzreie um den Punt z 0 C ist eine Reie der Form a (z z 0 ), a, z, z 0 C. Dort, wo die Reie onvergiert, definiert

Mehr

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )}

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )} Die Tangentialebene Der Graph der linearen Approximation ist Tangentialebene an den Graph der Funktion. In Symbolen: Es sei D R 2. Es sei f : D R, (x, y) f(x, y) differenzierbar. Dann ist {(x, y, z) z

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 3. Mai 203 *Aufgabe. Bestimmen Sie alle Punkte (x 0, y 0 ), an denen der Gradient der Funktion f(x, y) = (xy 2 8)e x+y Null ist. Untersuchen Sie, ob diese Punkte lokale

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Satz von Taylor, Taylor-Reihen

Satz von Taylor, Taylor-Reihen Satz von Taylor, Taylor-Reihen Die Kenntnis von f liefert gewisse Rücschlüsse auf die Funtion f selbst, zb Monotonie, mögliche loale Extrema Die Kenntnis von f liefert darüberhinaus eine Information, ob

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 13

Mathematische Grundlagen der Ökonomie Übungsblatt 13 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H3 6+4+5+++1 = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1 Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 2017 Aufgabe 1 Übungen zur Vorlesung Mathematik II 4. Übung,

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 24. Mai 2013 *Aufgabe 1. Bestimmen Sie für die folgenden Funktionen jeweils die Gleichung der Tangentialebene für alle Punkte auf der Fläche. Wann ist die Tangentialebene

Mehr

Mathematik n 1

Mathematik n 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 0 Mathematik + Übung 6 Besprechung der Aufgaben ) - ) des Übungsblatts am jeweils ersten Übungstermin zwischen Montag, 7..0 und Donnerstag,

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Differenzierbare Funktionen

Differenzierbare Funktionen 47 Kapitel 6 Differenzierbare Funktionen 1 Topologische Strukturen Inhalt: Umgebungen, innere Punkte, offene Mengen, abgeschlossene Mengen, Häufungspunkte, offener Kern und abgeschlossene Hülle, Rand einer

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Facbereic atematik Prof. Dr. R. Farwig C. omo J. Prasiswa R. Sculz SS 29 6.7.29 2. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Jordan-essbarkeit Die enge R n sei Jordan-messbar. Zeigen Sie, dass

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Taylor-Entwicklung und lokale Extrema

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Taylor-Entwicklung und lokale Extrema Vorlesung: Analysis II für Ingenieure Wintersemester 09/10 Michael Karow Themen: Taylor-Entwicklung und lokale Extrema Motivierendes Beispiel: die Funktion f(x, y) = x(x 1) 2 2 y 2. Dieselbe Funktion von

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

50 Partielle Ableitungen

50 Partielle Ableitungen 50 Partielle Ableitungen 217 50 Partielle Ableitungen 501 Beispiel Die Differenzierbarkeit von Funktionen von mehreren Veränderlichen kann nach jeder Variablen einzeln untersucht werden, wobei die anderen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Analysis II. Vorlesung 44. Partielle Ableitungen

Analysis II. Vorlesung 44. Partielle Ableitungen Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 44 Sei f: K n K eine durch Partielle Ableitungen (x 1,...,x n ) f(x 1,...,x n ) gegebene Abbildung. Betrachtet man für einen fixierten Index

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr