Magnetostatik. Magnetfeld eines Leiters

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Magnetostatik. Magnetfeld eines Leiters"

Transkript

1 Magnetostatik 1. Pemanentmagnete 2. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss mpeesches Gesetz iii. Feldbeechnungen mit mpeschen Gesetz i. Das Vektopotenzial. Biot-Saatsches Gesetz und nwendungen 3. Käfte auf bewegte Ladungen im Magnetfeld 4. Mateie im Magnetfeld Magnetfeld eines Leites Stom 1

2 Magnetfeld des elektischen Stomes Stomduchflossene Leite B N S Magnetnadel Stomduchflossene Leite ist on einem Magnetfeld umgeben Feldlinien: konzentische Keise Wenn de abgespeizte Daumen de echten Hand in die technische Stomichtung zeigt, so gibt die Richtung de andeen Finge die Richtung des Magnetfeldes an. Feldbeechnung in de Elektostatik Wie kann aus eine ogegebenen Ladungseteilung das elektische Feld beechnet weden? Supepositionspinzip Übelageung de Felde de Teilladungen, imme möglich, abe mathematisch aufwändig bis unmöglich Gauß sche Satz Feld duch Hüllfläche, gilt imme, abe Feldbeechnung nu fü nodnungen mit Symmetien möglich Feldbeechung aus Potenzial Übelageung de Potenziale de Teilladungen und Bildung des Gadienten, fü beliebige nodnungen mit endlichem ufwand lösba (Lösung de Poissongleichung) 2

3 Magnetische Fluss Fakt: Stom ist Usache des magnetischen Feldes Magnetfeld eines Leites: konzentische Keise Fage: Wie goß ist das Magnetfeld? nleihe Elektostatik: Ladungen Usache on E-Feld Satz on Gauss zu Feldbeechnung Elektische Fluss Φel = Ed =Q / ε Magnetische Fluss duch eine Φm = B d Maß fü nzahl de Feldlinien duch eine Magnetische Fluss Fü Feldbeechnungen Fluss duch geschlossene B d =? Magnetische Feldlinien sind geschlossen Egal wie ich wähle Bd 3

4 Bd Bd V Magnetische Monopole? dib dv dib = Satz on Gauß Mathematische Fomulieung de expeimentellen Beobachtung, dass keine magnetischen Monopole existieen N und S kommen imme nu gemeinsam o ds mpeesches Gesetz 1 Elektisches Feld = konseaties Kaftfeld Eds = beit zu Veschiebung eine Ladung längs eines geschlossenen Weg = st das Magnetfeld auch ein konseaties Feld? Stom beit = Fds Kaft F B pop. zu Feldstäke B beit längs geschlossene Kue (Keis um Leite = Feldlinie) = Fds = k Bds weil B = konst und B ds Magnetisches Feld ist kein konseaties Kaftfeld!! 4

5 mpeesches Gesetz 2 Expeimentell gefunden: Bei einem geschlossenen Umlauf ist das Linienintegal de magnetischen Fehlstäke gleich dem umfassten Stom. Fü n-fachen Umlauf de n-fache Stom ds ds Bds = ds = µ B mpeesches Gesetz (klassisch) N fach Hds = Mit modene magnetischen Feldstäke Bds = µ Bds = Nµ Diffeenzielle Fom des mpeeschen Gesetzes 1 ntegale Fom des mpeeschen Gestzes Stom = Bds = µ = µ jd ntegal übe Stomdichte jd Bds = Einneung Elektostatik: diffeenzielle Fom fü Feldbeechnungen oft besse geeignet: integale Fom Ed = Q / ε Umfomung mit Gauß schen ntegalsatz µ diffeenzielle Fom die = ρ / ε Kann ich eine ähnliche Fomulieung fü das Magnetfeld finden? 5

6 Mathematik Wiedeholung Keuzpodukt zweie Vektoen Keuzpodukt mit Nabla Opeato: Rotation Diffeenzielle Fom des mpeeschen Gesetzes 2 B Magnetfeld Geschlossene Kue Fü mpeesches Gesetz Fage: Wie goß ist das Ringintegal? Γ c = Bds =? ds B Ring kann in Teile zelegt weden Vozugsweise Quadate mit Γ q Kue F Γ c = Γqi = i i quadat Bds 6

7 Diffeenzielle Fom des mpeeschen Gesetzes 3 Ringintegal fü diffeenziell kleines Quadat quadat quadat des Quadats Entspicht z-komponente on ot B Diffeenzielle Fom des mpeeschen Gesetzes 4 quadat Bds = ( ) Bds = quadat Bds = ( ) B d Bds Bds = µ B d ( B) d = µ B = µ j ot B = µ j jd bzw. Diffeenzielles Quadat ntegal übe = Summe übe Quadate Stoke sche ntegalsatz mpeesches Gesetz Stoke und Stomdichtedefinition mpeesches Gesetz in diffeenzielle Fom: Rotation eines Magnetfeldes ist gleich de lokalen Stomdichte 7

8 n einem Wibelfeld gilt: Wibelfeld - Quellenfeld Feld bildet Wibel um Quelle heum, d.h. Feldlinien sind geschlossene Kuen (keine Quellen und Senken) beit längs eine geschlossenen Kue ungleich null Rotation eines Vektofeldes Maß fü die Stäke de Wibel n einem Quellenfeld gilt: Feld geht on Quelle aus, d.h. Feldlinien beginnen und/ode enden bei Quellen des Feldes beit längs eine geschlossenen Kue ist null Diegenz eines Vektofeldes Maß fü die Stäke de Quellen Hat das elektostatische Feld Wibel? Definition eines konseatien Kaftfeldes Eds = Eds = ( E) d = ( ot E) d = Stoke sche ntegalsatz ot E Wibeldichte = ltenatie Übepüfung Quellenfeld als Gadient eines Potenzials dastellba E = gadϕ Wie goß ist die Wibelstäke (Beechnung on ot) ot E = ot ( gadϕ) = ϕ Keuzpodukt paallele Vektoen = Elektostatisches Feld hat keine Wibel! llgemein: jedes Feld, das als Gadient eines skalaen Potenzials dagestellt weden kann ist wibelfei 8

9 Elektostatik Magnetostatik Wibeldichte Magnetfeld B = µ j bzw. ot B = µ j Elektisches Feld E = bzw. ot E = Quelldichte B = bzw. di B = E = ρ / ε bzw. di E = ρ / ε Magnetfeld: Quellenfeies Wibelfeld (Statisches) elektisches Feld: Wibelfeies Quellenfeld Fü > ein = B( ) = µ 2π B- Feld eines geaden Leites ds B Fü < ein = B( ) = µ 2 π ( / ) 2 2 Homogene Leite mit Radius Von Stom duchflossen Feldlinien keisfömig B auf Keis konstant B ds B( ) ds = 2π B( ) = µ ein ein eingeschlossene Stom B 1 9

10 Magnetfeld eine Spule Magnetfeld eine Spule Expeimentelle Egebnisse homogenes Feld im nneen an Enden diegentes Feld zwischen den Windungen weitgehende Kompensation im ußenaum eschwindet das Feld (sofen Spule lang) Feld hat seh einfache Konfiguation: Beechnung mit mpeeschen Gesetz möglich! 1

11 L Magnetfeld eine Spule 1 2 Spule N Windungen Länge L mpeesche Vekettungssatz Rechteckfömige ntegationsweg ( ) : 2 3 : 3 4 : B ds B ds B ds Bs Bs Bs = BL = = B 3 4 : B ds Bs3 4 = B ds = BL = µ N N B = µ Magnetfeld im nneen eine Spule L Exakte Feldbeechnungen Spulen Feld eine langen dünnen Spule: innen homogen außen enachlässigba Feld eine kuzen dicke Spule: innen inhomogen außen nicht enachlässigba 11

12 Ringspule Zylindespule zu Ring gebogen B Windungszahl N Symmetie B( ) = B( ) eϕ B ( ) ds = 2π B( ) () µ = µ N µ N = 2 π B Magnetfeld im nneen nicht homogen mpeeschen Gesetz: B eschwindet außen mpeesches Gesetz Gültigkeit /nwendungen mpeesches Gesetz nu gültig, wenn keine zeitlich eändelichen E-Felde inoliet B +Q -Q Zwei geladene Kugeln ebunden: Ladungsaustausch Magnetfeld nicht mit G beechenba (Maxwell sche Eweiteung) Leiteschleife ntegationsweg mpeesches Gesetz gültig, be Symmetie nicht auseichend fü Beechnung : nu fü nodnungen mit hohen Gad an Symmetie 12

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik)

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik) 19. Volesung EP III Elektizität und Magnetismus 19. Magnetische Felde (Magnetostatik) Vesuche: Feldlinienbilde (B-Feld um Einzeldaht, 2 Dähte, Spule) Kaftwikung von Stömen Dehspulinstument Fadenstahloh

Mehr

Anhang 1: Gradient, Divergenz, Rotation

Anhang 1: Gradient, Divergenz, Rotation Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen

Mehr

Magnetostatik II Bewegte Ladungen und Magnetfelder

Magnetostatik II Bewegte Ladungen und Magnetfelder Physik A VL32 (1.1.213) Magnetostatik ewegte Ladungen und Magnetfelde Das Magnetfeld eines geaden stomduchflossenen Leites j Das Ampee sche Gesetz ode Duchflutungsgesetz g Ezeugung homogene Magnetfelde

Mehr

Zwei konkurrierende Analogien in der Elektrodynamik

Zwei konkurrierende Analogien in der Elektrodynamik Zwei konkuieende Analogien in de Elektodynamik Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Analogien: Elektodynamik 1 Physikalische Gößen de Elektodynamik elektische Ladung Q

Mehr

Felder ausgewählter Konfigurationen

Felder ausgewählter Konfigurationen Felde ausgewählte Konfiguationen Anwendung von Supepositionspinzip Gauß sche Satz Feldbeechung aus Potenzial. Feld und Potenzial innehalb und außehalb eine Vollkugel. Feld und Potenzial innehalb und außehalb

Mehr

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion 19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde

Mehr

4.3 Magnetostatik Beobachtungen

4.3 Magnetostatik Beobachtungen 4.3 Magnetostatik Gundlegende Beobachtungen an Magneten Auch unmagnetische Köpe aus Fe, Co, Ni weden von Magneten angezogen. Die Kaftwikung an den Enden, den Polen, ist besondes goß. Eine dehbae Magnetnadel

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik 17. Volesung EP III. Elektizität und Magnetismus 17. Elektostatik Vesuche: Reibungselektizität Alu-Luftballons (Coulombkaft) E-Feldlinienbilde Influenz Faaday-Beche Bandgeneato 17. Elektostatik 17. Volesung

Mehr

Kap. 0 Mathematische Grundlagen

Kap. 0 Mathematische Grundlagen Kap. 0 Mathematische Gundlagen 1. Vektoen 1. Vektoopeationen (Skala- und Vektopodukt) 2. Diffeentialopeatoen (Nabla- und Laplace-Opeato) 2. Tigonometische Beziehungen 3. Komplexe Zahlen und komplexe Zahlenebene

Mehr

Zusammenfassung Wechselwirkung mit einzelnen Teilchen

Zusammenfassung Wechselwirkung mit einzelnen Teilchen 4b Magnetismus 1 Magnetische Kaftwikung otsabhängig Maximale Kaft an den Enden Zusammenfassung Wechselwikung mit einzelnen Teilchen ++++++++++++ ++++++++++++ ++++++++++++ ++++++++++++ Elektische Kaftwikung

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6 PDD. S.Metens M. Hummel Theoetische Physik II Elektodynamik Blatt 6 SS 29 6.5.29 I M 1. Halbunendliche Leiteschleife. Gegeben sei die abgebildete Leiteschleife aus zwei einseitig unendlichen (4Pkt.) Dähten

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Einführung in die Physik I. Elektromagnetismus 3

Einführung in die Physik I. Elektromagnetismus 3 infühung in die Physik lektomagnetismus 3 O. on de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die magnetische

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

Vorlesung 4: Magnetismus

Vorlesung 4: Magnetismus Volesung 4: Magnetismus, geog.steinbueck@desy.de Folien/Mateial zu Volesung auf: www.desy.de/~steinbu/physikzahnmed geog.steinbueck@desy.de 1 WS 2016/17 Magnetismus: Vesuch zu magnetischen Feldlinien Pinzip:

Mehr

Um was geht es in dieser Vorlesung wirklich?

Um was geht es in dieser Vorlesung wirklich? Inhalt de Volesung 1. Elektostatik 2. Elektische Stom 3. Leitungsmechanismen 4. Magnetismus 5. Elektomagnetismus 6. Induktion 7. Maxwellsche Gleichungen 8. Wechselstom 9. Elektomagnetische Wellen 1 Um

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

In der Experimentalphysik-Vorlesung haben Sie die Maxwell schen Gleichungen der Magnetostatik in ihrer integralen Form kennengelernt:

In der Experimentalphysik-Vorlesung haben Sie die Maxwell schen Gleichungen der Magnetostatik in ihrer integralen Form kennengelernt: 13 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Grundaussagen der Elektrostatik

Grundaussagen der Elektrostatik Gundaussagen de Elektostatik (1) Es gibt zwei Aten von elektischen Ladungen (bezeichnet als positiv und negativ, da sie einande neutalisieen können) () Gleichnamige Ladungen stoßen einande ab, ungleichnamige

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik 5. Elektodynamik 6. Schwingkeise

Mehr

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0 Fomelsammlung - Glagen de Elektotechnik II Elektische Ladung Coulumbsches Geset F12 = 1 q1 q 2 4π 12 2 ê 12 = 1 q 1 q 2 4π 2 1 2 2 1 2 1 Elektisches Feld d E ( ) = 1 4π dq 2 ê Elektostatische Kaft F =

Mehr

Ladungstransport in Gasen

Ladungstransport in Gasen Ladungstanspot in Gasen Gase bestehen nomaleweise aus el. neutalen Molekülen und leiten den Stom nicht. Ladungstanspot titt est auf, wenn die Moleküle ionisiet weden e.g. duch Ehitzen (Plasma) Schnell

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker. 4. Vorlesung Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch

PN 2 Einführung in die Experimentalphysik für Chemiker. 4. Vorlesung Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch PN 2 Einfühung in die alphysik fü Chemike 4. Volesung 9.5.08 Evelyn Plötz, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik Ludwig-Maximilians-Univesität München

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

Das Umlaufintegral der magnetischen Feldstärke ist gleich der Summe der vorzeichenbehafteten Stromstärken der vom Integrationsweg umfassten Ströme.

Das Umlaufintegral der magnetischen Feldstärke ist gleich der Summe der vorzeichenbehafteten Stromstärken der vom Integrationsweg umfassten Ströme. of. D.-ng. Hezig Voleung "Gundlagen de Elektotechnik " 4 etv. Biot-Savatche Geetz Biot, Jean Baptite 774-86 Savat, Felix 79-84.. Duchflutunggeetz, Beechnung de Feldtäke H d = Θ = ν O. Maxwellche Geetz:

Mehr

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor.

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor. De elektische Dipol Sind zwei unteschiedliche Ladungen in einem Abstand d angeodnet, dann liegt ein elektische Dipol vo. +q d q Man definiet das Dipolmoment: p q d Das Diplomoment ist ein Vekto, de entlang

Mehr

Formelsammlung Elektrizitätslehre

Formelsammlung Elektrizitätslehre Elektizitaetslehe.nb Fomelsammlung Elektizitätslehe Mehfachintegale Katesische Koodinaten x Wegstecke s : s dx x x 0 a d y x dx dy Fläche : a a 0 y y 0 x x 0 z y x dx dy dz olumen : d z z 0 y y 0 x x 0

Mehr

1.2.4 Das elektrostatische Potenzial, Spannung

1.2.4 Das elektrostatische Potenzial, Spannung peimentalphsik II U Dotmund SS Shaukat Khan @ U - Dotmund. de Kapitel..4 Das elektostatische otenial Spannung Benötigte Abeit um eine Ladung im -Feld u bewegen W Kaft Weg F ds q ds Fü die Ladung q im Feld

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP Vewandte Begiffe Elektisches Feld, Feldstäke, elektische Fluss, elektische Ladung, Gauß-Regel, Obeflächenladungsdichte, Induktion, magnetische Feldkonstante, Kapazität, Gadient, Bildladung, elektostatisches

Mehr

7 Maxwell - Gleichungen

7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz Eds= t Bd A beschreibt, dass die zeitliche Veränderung des magnetischen Flusses durch eine Fläche wirbelförmige

Mehr

Kapitel 7: Maxwell-Gleichungen

Kapitel 7: Maxwell-Gleichungen Kapitel 7: Maxwell-Gleichungen 1831-1879 Physik-II - Christian Schwanenberger - Vorlesung 50 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz B beschreibt,

Mehr

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld i) Feldbegiff, Definitionen ii) Dastellung von Felden iii) Feldbeechnungen

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen Gundlagen de Elektotechnik - Einfühung Bachelo Maschinenbau Bachelo Witschaftsingenieuwesen Maschinenbau Bachelo Chemieingenieuwesen Jun.-Pof. D.-Ing. Katin Temmen Fachgebiet Technikdidaktik Institut fü

Mehr

Oberfläche des Zylinders

Oberfläche des Zylinders Zylinde und Kegel Zylinde: Jede Zylinde hat zwei keisfömige Gundflächen (G), die zueinande paallel sind. Die gekümmte Seitenfläche heißt Mantelfläche (M). De Abstand de beiden Gundflächen voneinande ist

Mehr

5 Gravitationstheorie

5 Gravitationstheorie 5 Gavitationstheoie Ausgeabeitet von G. Knaup und H. Walitzki 5.1 Gavitationskaft - Gavitationsfeld Die Gundidee zu Gavitationstheoie stammt von Newton (1643-1727): Die Kaft, die einen Apfel fallen lässt,

Mehr

Klausur 2 Kurs Ph11 Physik Lk

Klausur 2 Kurs Ph11 Physik Lk 26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut fü Expeimentelle Kenphysik, KIT Übungen zu Klassischen Physik II (Elektodynamik) SS 216 Pof. D. T. Mülle D. F. Hatmann Blatt 3 Beabeitung: 11.5.216 1. 3D Integation (a) Einfache Ladungsveteilung

Mehr

Experimentalphysik II

Experimentalphysik II Expeimentalphysik II (Kompendium) Heausgegeben von Jeffey Kelling Felix Lemke Stefan Majewsky Stand: 23 Oktobe 2008 1 Inhaltsvezeichnis Elektizität und Magnetismus 3 Elektisches Feld 3 Magnetisches Feld

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt.

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt. Statische Magnetfelde In de Antike wa natülich vokommende Magnetstein und seine anziehende Wikung auf Eisen bekannt.. Jahhundet: Vewendung von Magneten in de Navigation. Piee de Maicout 69: Eine Nadel,

Mehr

4 Statische Magnetfelder

4 Statische Magnetfelder 4.1 Magnetismus und Ströme 4 Statische Magnetfelder 4.1 Magnetismus und Ströme In der Natur treten zahlreiche magnetische Effekte auf, die hier kurz zusammenfassend dargestellt und später quantitativ diskutiert

Mehr

Aktoren. Wirbelstrom- und Hysteresebremse

Aktoren. Wirbelstrom- und Hysteresebremse Aktoen Wibelstom- und Hysteesebemse Inhalt 1. Physikalisches Gundpinzip Magnetische Induktion De magnetische Fluß Faadaysches Gesetz und Lenzsche Regel Wibelstöme 2. Wibelstom- und Hysteesebemsen Aufbau

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 5

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 5 6 lektomagnetische Wellen egeben sich als Lösungen fü - und B-Felde aus den Maxwel-Gleichungen. Veschiedene Fomen: - Radio- und Mikowellen (Sende): Wellenlängen l 1 3 bis 1 - m, Fequenzen f 1 5 bis 1 11

Mehr

7.5 Auflösungsvermögen optischer Geräte

7.5 Auflösungsvermögen optischer Geräte 7.5 Auflösungsvemögen optische Geäte Voübelegungen eugungsmuste eine Lochblende (Kap. 7.3) 1-tes Minimum unte dem Winkel α = 1,0 λ/d (7.3.1) Optische Geäte weden duch keisfömige lenden begenzt Jede punktfömige

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

Zusammenfassung magnetische Kraft auf elektrische Ladung

Zusammenfassung magnetische Kraft auf elektrische Ladung 24b Magnetismus 1 Zusammenfassung magnetische Kaft auf elektische Ladung Kaftwikung am elektisch geladenen Isolato ist otsunabhängig Kaftwikung am Magneten ist otsabhängig Maximale Kaft an den Enden Magnete

Mehr

3.5 Potential an der Zellmembran eines Neurons

3.5 Potential an der Zellmembran eines Neurons VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 3.5 Potential an de Zellmemban eines Neuons Goldmann Gleichung fü mehee Ionen allgemein E R T F ln n k 1 n k 1 z z k k P k P k m [ X ] + z P[

Mehr

Vektoranalysis Teil 1

Vektoranalysis Teil 1 Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder Physk II T Dotmund SS8 Götz hg Shaukat Khan Kaptel Maxwellsche Glechungen Bshe: Elektostatk m Vakuum (kene Felde n Matee), kene Magnetfelde dffeenzelle Fom ntegale Fom ( ) Gauß E E da dv V E Stokes E d

Mehr

5 t % = 0, j = 0 entstehen. Für diese gelten die Gleichungen E = % 0. E = 0 Eds = 0 (5.2) B = 0 Bd A = 0 (5.3) j Bds = µ 0 I (5.

5 t % = 0, j = 0 entstehen. Für diese gelten die Gleichungen E = % 0. E = 0 Eds = 0 (5.2) B = 0 Bd A = 0 (5.3) j Bds = µ 0 I (5. 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Inhalt der Vorlesung Teil 2

Inhalt der Vorlesung Teil 2 Physik A/B SS 7 PHYSIK B Inhalt de Volesung Teil 3. Elektizitätslehe, Elektodynamik Einleitung Elektostatik Elektische Stom Magnetostatik Zeitlich veändeliche Felde - Elektodynamik Wechselstomnetzweke

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Feienkus Expeimentalphysik zum Übungsblatt : Elektische Stom und Magnetostatik Tutoen: Kathaina Hischmann und Gabiele Semino Elektische Stom. Widestandsnetzwek Gegeben sei die folgende Schaltung. Es liegen

Mehr

Dienstag Punktmechanik

Dienstag Punktmechanik Einneung 2.11.2004 Bücheflohmakt Dienstag 2.11.2004 4. Punktmechanik 12:30 4.1 Kinematik eines Massenpunktes vo Studentenseketaiat Koodinatensysteme Geschwindigkeit im Raum Beschleunigung im Raum Supepositionspinzip

Mehr

Zusammenfassung: Ladungen, KrÄfte, Felder

Zusammenfassung: Ladungen, KrÄfte, Felder Gundlagen de Eletotechni Ç Eletostati Eletische Ladungen Zusammenfassung: Ladungen, Kfte, Felde spung Atommodell Ladung quantisiet Elementaladung KÅfte zwischen Ladungen Coulombsches Gesetz Eletische Feldste

Mehr

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter Bioignalveabeitung Studiengang Medizin-Infomatik Inhalt Gundlagen de Elektizitätlehe Signale Fouieanalye Digitaliieung von Signalen lineae zeitinvaiante Syteme (LTI-Syteme) digitale Filte adaptive Filte

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

29. Grundlegendes zu Magnetfeldern

29. Grundlegendes zu Magnetfeldern Elektizitätslehe Gundlegendes zu Magnetfelden 9. Gundlegendes zu Magnetfelden 9.1. Die LORENTZ-Kaft Ladungen weden nicht nu von elektischen Felden beeinflusst (COULOMB- Kaft, Gl. (5-4)), sonden auch von

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Vorlesung 4 Magnetostatik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 16.09.2010 1 Allgemeines In der Magnetostatik gibt es viele Analogien zur Elektrostatik. Ein

Mehr

Theoretische Physik III Elektrodynamik

Theoretische Physik III Elektrodynamik Volesungsmitschift Theoetische Physik III Elektodynamik Dozent Pof. D. Ulich Schwaz WS 24/5 Stand Januay 25, 25 Univesität Heidelbeg Institut fü Theoetische Physik Inhaltsvezeichnis Elektostatik 3. Notation....................................

Mehr

Bachelor of Science Luft- und Raumfahrttechnik Modulprüfung Statik Kernmodul

Bachelor of Science Luft- und Raumfahrttechnik Modulprüfung Statik Kernmodul UNIVERSITÄT STUTTGART Institut fü Statik und Dynamik de Luft- und Raumfahtkonstuktionen Komm. Leite: Pof. D.-Ing. R. Reichel Bachelo of Science Luft- und Raumfahttechnik Modulpüfung Statik Kenmodul Fühjah

Mehr

Ein Beitrag zur Elektrodynamik. Bernhard Riemann [Annalen der Physik und Chemie. Bd. 131.]

Ein Beitrag zur Elektrodynamik. Bernhard Riemann [Annalen der Physik und Chemie. Bd. 131.] Ein Beitag zu Elektodynamik. Benhad Riemann [Annalen de Physik und Chemie. Bd. 131.] Tanscibed by D. R. Wilkins Peliminay Vesion: Decembe 1998 Coected: Apil 2 Ein Beitag zu Elektodynamik. Benhad Riemann

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Kap. 7 Strömungsmechanik

Kap. 7 Strömungsmechanik Kap. 7 Stömungsmechanik. Gundbegiffe. Die Kontinuitätsgleichung 3. Die Gleichung von Benoulli 4. Laminae Stömungen 5. Auftieb und Wibelbildung M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik

Mehr

Björn Schulz Über die Maxwell-Gleichungen Berlin, den S. 1 / 5. Wahlthema Maxwellsche Gleichungen

Björn Schulz Über die Maxwell-Gleichungen Berlin, den S. 1 / 5. Wahlthema Maxwellsche Gleichungen jön chulz Übe ie Maxwell-Gleichungen elin, en 8923 / 5 I Wahlthema Maxwellsche Gleichungen Es gibt 5 Gleichungen: ie beischeiben as elektomagnetische Fel, seine Ezeugung, Eigenschaften un Wikungen un geben

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr