Magnetostatik. Magnetfeld eines Leiters

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Magnetostatik. Magnetfeld eines Leiters"

Transkript

1 Magnetostatik 1. Pemanentmagnete 2. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss mpeesches Gesetz iii. Feldbeechnungen mit mpeschen Gesetz i. Das Vektopotenzial. Biot-Saatsches Gesetz und nwendungen 3. Käfte auf bewegte Ladungen im Magnetfeld 4. Mateie im Magnetfeld Magnetfeld eines Leites Stom 1

2 Magnetfeld des elektischen Stomes Stomduchflossene Leite B N S Magnetnadel Stomduchflossene Leite ist on einem Magnetfeld umgeben Feldlinien: konzentische Keise Wenn de abgespeizte Daumen de echten Hand in die technische Stomichtung zeigt, so gibt die Richtung de andeen Finge die Richtung des Magnetfeldes an. Feldbeechnung in de Elektostatik Wie kann aus eine ogegebenen Ladungseteilung das elektische Feld beechnet weden? Supepositionspinzip Übelageung de Felde de Teilladungen, imme möglich, abe mathematisch aufwändig bis unmöglich Gauß sche Satz Feld duch Hüllfläche, gilt imme, abe Feldbeechnung nu fü nodnungen mit Symmetien möglich Feldbeechung aus Potenzial Übelageung de Potenziale de Teilladungen und Bildung des Gadienten, fü beliebige nodnungen mit endlichem ufwand lösba (Lösung de Poissongleichung) 2

3 Magnetische Fluss Fakt: Stom ist Usache des magnetischen Feldes Magnetfeld eines Leites: konzentische Keise Fage: Wie goß ist das Magnetfeld? nleihe Elektostatik: Ladungen Usache on E-Feld Satz on Gauss zu Feldbeechnung Elektische Fluss Φel = Ed =Q / ε Magnetische Fluss duch eine Φm = B d Maß fü nzahl de Feldlinien duch eine Magnetische Fluss Fü Feldbeechnungen Fluss duch geschlossene B d =? Magnetische Feldlinien sind geschlossen Egal wie ich wähle Bd 3

4 Bd Bd V Magnetische Monopole? dib dv dib = Satz on Gauß Mathematische Fomulieung de expeimentellen Beobachtung, dass keine magnetischen Monopole existieen N und S kommen imme nu gemeinsam o ds mpeesches Gesetz 1 Elektisches Feld = konseaties Kaftfeld Eds = beit zu Veschiebung eine Ladung längs eines geschlossenen Weg = st das Magnetfeld auch ein konseaties Feld? Stom beit = Fds Kaft F B pop. zu Feldstäke B beit längs geschlossene Kue (Keis um Leite = Feldlinie) = Fds = k Bds weil B = konst und B ds Magnetisches Feld ist kein konseaties Kaftfeld!! 4

5 mpeesches Gesetz 2 Expeimentell gefunden: Bei einem geschlossenen Umlauf ist das Linienintegal de magnetischen Fehlstäke gleich dem umfassten Stom. Fü n-fachen Umlauf de n-fache Stom ds ds Bds = ds = µ B mpeesches Gesetz (klassisch) N fach Hds = Mit modene magnetischen Feldstäke Bds = µ Bds = Nµ Diffeenzielle Fom des mpeeschen Gesetzes 1 ntegale Fom des mpeeschen Gestzes Stom = Bds = µ = µ jd ntegal übe Stomdichte jd Bds = Einneung Elektostatik: diffeenzielle Fom fü Feldbeechnungen oft besse geeignet: integale Fom Ed = Q / ε Umfomung mit Gauß schen ntegalsatz µ diffeenzielle Fom die = ρ / ε Kann ich eine ähnliche Fomulieung fü das Magnetfeld finden? 5

6 Mathematik Wiedeholung Keuzpodukt zweie Vektoen Keuzpodukt mit Nabla Opeato: Rotation Diffeenzielle Fom des mpeeschen Gesetzes 2 B Magnetfeld Geschlossene Kue Fü mpeesches Gesetz Fage: Wie goß ist das Ringintegal? Γ c = Bds =? ds B Ring kann in Teile zelegt weden Vozugsweise Quadate mit Γ q Kue F Γ c = Γqi = i i quadat Bds 6

7 Diffeenzielle Fom des mpeeschen Gesetzes 3 Ringintegal fü diffeenziell kleines Quadat quadat quadat des Quadats Entspicht z-komponente on ot B Diffeenzielle Fom des mpeeschen Gesetzes 4 quadat Bds = ( ) Bds = quadat Bds = ( ) B d Bds Bds = µ B d ( B) d = µ B = µ j ot B = µ j jd bzw. Diffeenzielles Quadat ntegal übe = Summe übe Quadate Stoke sche ntegalsatz mpeesches Gesetz Stoke und Stomdichtedefinition mpeesches Gesetz in diffeenzielle Fom: Rotation eines Magnetfeldes ist gleich de lokalen Stomdichte 7

8 n einem Wibelfeld gilt: Wibelfeld - Quellenfeld Feld bildet Wibel um Quelle heum, d.h. Feldlinien sind geschlossene Kuen (keine Quellen und Senken) beit längs eine geschlossenen Kue ungleich null Rotation eines Vektofeldes Maß fü die Stäke de Wibel n einem Quellenfeld gilt: Feld geht on Quelle aus, d.h. Feldlinien beginnen und/ode enden bei Quellen des Feldes beit längs eine geschlossenen Kue ist null Diegenz eines Vektofeldes Maß fü die Stäke de Quellen Hat das elektostatische Feld Wibel? Definition eines konseatien Kaftfeldes Eds = Eds = ( E) d = ( ot E) d = Stoke sche ntegalsatz ot E Wibeldichte = ltenatie Übepüfung Quellenfeld als Gadient eines Potenzials dastellba E = gadϕ Wie goß ist die Wibelstäke (Beechnung on ot) ot E = ot ( gadϕ) = ϕ Keuzpodukt paallele Vektoen = Elektostatisches Feld hat keine Wibel! llgemein: jedes Feld, das als Gadient eines skalaen Potenzials dagestellt weden kann ist wibelfei 8

9 Elektostatik Magnetostatik Wibeldichte Magnetfeld B = µ j bzw. ot B = µ j Elektisches Feld E = bzw. ot E = Quelldichte B = bzw. di B = E = ρ / ε bzw. di E = ρ / ε Magnetfeld: Quellenfeies Wibelfeld (Statisches) elektisches Feld: Wibelfeies Quellenfeld Fü > ein = B( ) = µ 2π B- Feld eines geaden Leites ds B Fü < ein = B( ) = µ 2 π ( / ) 2 2 Homogene Leite mit Radius Von Stom duchflossen Feldlinien keisfömig B auf Keis konstant B ds B( ) ds = 2π B( ) = µ ein ein eingeschlossene Stom B 1 9

10 Magnetfeld eine Spule Magnetfeld eine Spule Expeimentelle Egebnisse homogenes Feld im nneen an Enden diegentes Feld zwischen den Windungen weitgehende Kompensation im ußenaum eschwindet das Feld (sofen Spule lang) Feld hat seh einfache Konfiguation: Beechnung mit mpeeschen Gesetz möglich! 1

11 L Magnetfeld eine Spule 1 2 Spule N Windungen Länge L mpeesche Vekettungssatz Rechteckfömige ntegationsweg ( ) : 2 3 : 3 4 : B ds B ds B ds Bs Bs Bs = BL = = B 3 4 : B ds Bs3 4 = B ds = BL = µ N N B = µ Magnetfeld im nneen eine Spule L Exakte Feldbeechnungen Spulen Feld eine langen dünnen Spule: innen homogen außen enachlässigba Feld eine kuzen dicke Spule: innen inhomogen außen nicht enachlässigba 11

12 Ringspule Zylindespule zu Ring gebogen B Windungszahl N Symmetie B( ) = B( ) eϕ B ( ) ds = 2π B( ) () µ = µ N µ N = 2 π B Magnetfeld im nneen nicht homogen mpeeschen Gesetz: B eschwindet außen mpeesches Gesetz Gültigkeit /nwendungen mpeesches Gesetz nu gültig, wenn keine zeitlich eändelichen E-Felde inoliet B +Q -Q Zwei geladene Kugeln ebunden: Ladungsaustausch Magnetfeld nicht mit G beechenba (Maxwell sche Eweiteung) Leiteschleife ntegationsweg mpeesches Gesetz gültig, be Symmetie nicht auseichend fü Beechnung : nu fü nodnungen mit hohen Gad an Symmetie 12

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik)

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik) 19. Volesung EP III Elektizität und Magnetismus 19. Magnetische Felde (Magnetostatik) Vesuche: Feldlinienbilde (B-Feld um Einzeldaht, 2 Dähte, Spule) Kaftwikung von Stömen Dehspulinstument Fadenstahloh

Mehr

Anhang 1: Gradient, Divergenz, Rotation

Anhang 1: Gradient, Divergenz, Rotation Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen

Mehr

Magnetostatik II Bewegte Ladungen und Magnetfelder

Magnetostatik II Bewegte Ladungen und Magnetfelder Physik A VL32 (1.1.213) Magnetostatik ewegte Ladungen und Magnetfelde Das Magnetfeld eines geaden stomduchflossenen Leites j Das Ampee sche Gesetz ode Duchflutungsgesetz g Ezeugung homogene Magnetfelde

Mehr

Zwei konkurrierende Analogien in der Elektrodynamik

Zwei konkurrierende Analogien in der Elektrodynamik Zwei konkuieende Analogien in de Elektodynamik Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Analogien: Elektodynamik 1 Physikalische Gößen de Elektodynamik elektische Ladung Q

Mehr

Felder ausgewählter Konfigurationen

Felder ausgewählter Konfigurationen Felde ausgewählte Konfiguationen Anwendung von Supepositionspinzip Gauß sche Satz Feldbeechung aus Potenzial. Feld und Potenzial innehalb und außehalb eine Vollkugel. Feld und Potenzial innehalb und außehalb

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion 19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

4.3 Magnetostatik Beobachtungen

4.3 Magnetostatik Beobachtungen 4.3 Magnetostatik Gundlegende Beobachtungen an Magneten Auch unmagnetische Köpe aus Fe, Co, Ni weden von Magneten angezogen. Die Kaftwikung an den Enden, den Polen, ist besondes goß. Eine dehbae Magnetnadel

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik 17. Volesung EP III. Elektizität und Magnetismus 17. Elektostatik Vesuche: Reibungselektizität Alu-Luftballons (Coulombkaft) E-Feldlinienbilde Influenz Faaday-Beche Bandgeneato 17. Elektostatik 17. Volesung

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6 PDD. S.Metens M. Hummel Theoetische Physik II Elektodynamik Blatt 6 SS 29 6.5.29 I M 1. Halbunendliche Leiteschleife. Gegeben sei die abgebildete Leiteschleife aus zwei einseitig unendlichen (4Pkt.) Dähten

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Um was geht es in dieser Vorlesung wirklich?

Um was geht es in dieser Vorlesung wirklich? Inhalt de Volesung 1. Elektostatik 2. Elektische Stom 3. Leitungsmechanismen 4. Magnetismus 5. Elektomagnetismus 6. Induktion 7. Maxwellsche Gleichungen 8. Wechselstom 9. Elektomagnetische Wellen 1 Um

Mehr

Vorlesung 4: Magnetismus

Vorlesung 4: Magnetismus Volesung 4: Magnetismus, geog.steinbueck@desy.de Folien/Mateial zu Volesung auf: www.desy.de/~steinbu/physikzahnmed geog.steinbueck@desy.de 1 WS 2016/17 Magnetismus: Vesuch zu magnetischen Feldlinien Pinzip:

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

Einführung in die Physik I. Elektromagnetismus 3

Einführung in die Physik I. Elektromagnetismus 3 infühung in die Physik lektomagnetismus 3 O. on de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die magnetische

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik 5. Elektodynamik 6. Schwingkeise

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Grundaussagen der Elektrostatik

Grundaussagen der Elektrostatik Gundaussagen de Elektostatik (1) Es gibt zwei Aten von elektischen Ladungen (bezeichnet als positiv und negativ, da sie einande neutalisieen können) () Gleichnamige Ladungen stoßen einande ab, ungleichnamige

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0 Fomelsammlung - Glagen de Elektotechnik II Elektische Ladung Coulumbsches Geset F12 = 1 q1 q 2 4π 12 2 ê 12 = 1 q 1 q 2 4π 2 1 2 2 1 2 1 Elektisches Feld d E ( ) = 1 4π dq 2 ê Elektostatische Kaft F =

Mehr

Ladungstransport in Gasen

Ladungstransport in Gasen Ladungstanspot in Gasen Gase bestehen nomaleweise aus el. neutalen Molekülen und leiten den Stom nicht. Ladungstanspot titt est auf, wenn die Moleküle ionisiet weden e.g. duch Ehitzen (Plasma) Schnell

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

Das Umlaufintegral der magnetischen Feldstärke ist gleich der Summe der vorzeichenbehafteten Stromstärken der vom Integrationsweg umfassten Ströme.

Das Umlaufintegral der magnetischen Feldstärke ist gleich der Summe der vorzeichenbehafteten Stromstärken der vom Integrationsweg umfassten Ströme. of. D.-ng. Hezig Voleung "Gundlagen de Elektotechnik " 4 etv. Biot-Savatche Geetz Biot, Jean Baptite 774-86 Savat, Felix 79-84.. Duchflutunggeetz, Beechnung de Feldtäke H d = Θ = ν O. Maxwellche Geetz:

Mehr

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP Vewandte Begiffe Elektisches Feld, Feldstäke, elektische Fluss, elektische Ladung, Gauß-Regel, Obeflächenladungsdichte, Induktion, magnetische Feldkonstante, Kapazität, Gadient, Bildladung, elektostatisches

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld i) Feldbegiff, Definitionen ii) Dastellung von Felden iii) Feldbeechnungen

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen Gundlagen de Elektotechnik - Einfühung Bachelo Maschinenbau Bachelo Witschaftsingenieuwesen Maschinenbau Bachelo Chemieingenieuwesen Jun.-Pof. D.-Ing. Katin Temmen Fachgebiet Technikdidaktik Institut fü

Mehr

7 Maxwell - Gleichungen

7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz Eds= t Bd A beschreibt, dass die zeitliche Veränderung des magnetischen Flusses durch eine Fläche wirbelförmige

Mehr

Experimentalphysik II

Experimentalphysik II Expeimentalphysik II (Kompendium) Heausgegeben von Jeffey Kelling Felix Lemke Stefan Majewsky Stand: 23 Oktobe 2008 1 Inhaltsvezeichnis Elektizität und Magnetismus 3 Elektisches Feld 3 Magnetisches Feld

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt.

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt. Statische Magnetfelde In de Antike wa natülich vokommende Magnetstein und seine anziehende Wikung auf Eisen bekannt.. Jahhundet: Vewendung von Magneten in de Navigation. Piee de Maicout 69: Eine Nadel,

Mehr

Oberfläche des Zylinders

Oberfläche des Zylinders Zylinde und Kegel Zylinde: Jede Zylinde hat zwei keisfömige Gundflächen (G), die zueinande paallel sind. Die gekümmte Seitenfläche heißt Mantelfläche (M). De Abstand de beiden Gundflächen voneinande ist

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Aktoren. Wirbelstrom- und Hysteresebremse

Aktoren. Wirbelstrom- und Hysteresebremse Aktoen Wibelstom- und Hysteesebemse Inhalt 1. Physikalisches Gundpinzip Magnetische Induktion De magnetische Fluß Faadaysches Gesetz und Lenzsche Regel Wibelstöme 2. Wibelstom- und Hysteesebemsen Aufbau

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

7.5 Auflösungsvermögen optischer Geräte

7.5 Auflösungsvermögen optischer Geräte 7.5 Auflösungsvemögen optische Geäte Voübelegungen eugungsmuste eine Lochblende (Kap. 7.3) 1-tes Minimum unte dem Winkel α = 1,0 λ/d (7.3.1) Optische Geäte weden duch keisfömige lenden begenzt Jede punktfömige

Mehr

3.5 Potential an der Zellmembran eines Neurons

3.5 Potential an der Zellmembran eines Neurons VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 3.5 Potential an de Zellmemban eines Neuons Goldmann Gleichung fü mehee Ionen allgemein E R T F ln n k 1 n k 1 z z k k P k P k m [ X ] + z P[

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Feienkus Expeimentalphysik zum Übungsblatt : Elektische Stom und Magnetostatik Tutoen: Kathaina Hischmann und Gabiele Semino Elektische Stom. Widestandsnetzwek Gegeben sei die folgende Schaltung. Es liegen

Mehr

Dienstag Punktmechanik

Dienstag Punktmechanik Einneung 2.11.2004 Bücheflohmakt Dienstag 2.11.2004 4. Punktmechanik 12:30 4.1 Kinematik eines Massenpunktes vo Studentenseketaiat Koodinatensysteme Geschwindigkeit im Raum Beschleunigung im Raum Supepositionspinzip

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter Bioignalveabeitung Studiengang Medizin-Infomatik Inhalt Gundlagen de Elektizitätlehe Signale Fouieanalye Digitaliieung von Signalen lineae zeitinvaiante Syteme (LTI-Syteme) digitale Filte adaptive Filte

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

6.2 Erzeugung von elektromagnetischen Wellen

6.2 Erzeugung von elektromagnetischen Wellen 6.2. ERZEUGUNG VON ELEKTROMAGNETISCHEN WELLEN 29 6.2 Ezeugung von elektomagnetischen Wellen In diesem Abschnitt soll die Entstehung und die Emission von elektomagnetischen Wellen beschieben weden. Die

Mehr

29. Grundlegendes zu Magnetfeldern

29. Grundlegendes zu Magnetfeldern Elektizitätslehe Gundlegendes zu Magnetfelden 9. Gundlegendes zu Magnetfelden 9.1. Die LORENTZ-Kaft Ladungen weden nicht nu von elektischen Felden beeinflusst (COULOMB- Kaft, Gl. (5-4)), sonden auch von

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Vorlesung 4 Magnetostatik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 16.09.2010 1 Allgemeines In der Magnetostatik gibt es viele Analogien zur Elektrostatik. Ein

Mehr

Versuche: Transformator, Schmelzen von Draht und Metall, Hörnetblitz

Versuche: Transformator, Schmelzen von Draht und Metall, Hörnetblitz 4.4 Gegeninduktion Pimä- Sekundä-keis Up U S Vesuche: Tansfomato, Schmelzen von Daht und Metall, Hönetblitz 1 4.5 Zusammenfassung: Elekto-/Magnetodynamik langsam veändeliche Felde a. Elektostatik: (Vakuum)

Mehr

Bachelor of Science Luft- und Raumfahrttechnik Modulprüfung Statik Kernmodul

Bachelor of Science Luft- und Raumfahrttechnik Modulprüfung Statik Kernmodul UNIVERSITÄT STUTTGART Institut fü Statik und Dynamik de Luft- und Raumfahtkonstuktionen Komm. Leite: Pof. D.-Ing. R. Reichel Bachelo of Science Luft- und Raumfahttechnik Modulpüfung Statik Kenmodul Fühjah

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Ein Beitrag zur Elektrodynamik. Bernhard Riemann [Annalen der Physik und Chemie. Bd. 131.]

Ein Beitrag zur Elektrodynamik. Bernhard Riemann [Annalen der Physik und Chemie. Bd. 131.] Ein Beitag zu Elektodynamik. Benhad Riemann [Annalen de Physik und Chemie. Bd. 131.] Tanscibed by D. R. Wilkins Peliminay Vesion: Decembe 1998 Coected: Apil 2 Ein Beitag zu Elektodynamik. Benhad Riemann

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Björn Schulz Über die Maxwell-Gleichungen Berlin, den S. 1 / 5. Wahlthema Maxwellsche Gleichungen

Björn Schulz Über die Maxwell-Gleichungen Berlin, den S. 1 / 5. Wahlthema Maxwellsche Gleichungen jön chulz Übe ie Maxwell-Gleichungen elin, en 8923 / 5 I Wahlthema Maxwellsche Gleichungen Es gibt 5 Gleichungen: ie beischeiben as elektomagnetische Fel, seine Ezeugung, Eigenschaften un Wikungen un geben

Mehr

Kap. 7 Strömungsmechanik

Kap. 7 Strömungsmechanik Kap. 7 Stömungsmechanik. Gundbegiffe. Die Kontinuitätsgleichung 3. Die Gleichung von Benoulli 4. Laminae Stömungen 5. Auftieb und Wibelbildung M. zu Nedden / S. Kowaik Volesung Mechanik und Themodynamik

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Skript zur Vorlesung Physik III: Optik 1

Skript zur Vorlesung Physik III: Optik 1 Skipt zu Volesung Physik III: Optik 1 I. Einfühung Im ditten Semeste weden die Gundlagen de Optik bespochen. Volesungsbegleitend gibt es ein Skipt, das eine kuze Zusammenfassung de Volesungsinhalte wiedegibt.

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2) Lk Physik in 1/ 1. Klausu aus de Physik 4. 03. 003 latt 1 (von ) 1. Elektonenablenkung duch Zylindespule Eine Zylindespule mit Radius 6, 0 cm, Länge l 30 cm, Windungszahl N 1000 und Widestand R 5, 0 Ω

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, 76128 Karlsruhe Einleitung Ein Feldlinienbild ist wohl die am häufigsten benutzte Methode

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Induktivität einer Ringspule Berechnen Sie die Induktivität einer Ringspule von 320 Windungen, 2. Der Spulenkern sei:

Induktivität einer Ringspule Berechnen Sie die Induktivität einer Ringspule von 320 Windungen, 2. Der Spulenkern sei: TECHNOOGISCHE GRUNDAGEN ÖSUNGSSATZ INDUKTION, EINPHASEN-WECHSESTROM REPETITIONEN SEBSTINDUKTION, INDUKTIVITÄT UND ENERGIE IN DER SPUE RE.58 4 Induktivität eine Ringspule Beechnen Sie die Induktivität eine

Mehr

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

G = m g. W = F h = F h cos( (F;h)) = G h = m g h. Cusanus-Gymnasium Wittlich. Potentielle Energie im Gravitationsfeld. h=0. Gravitationsbeschleunigung

G = m g. W = F h = F h cos( (F;h)) = G h = m g h. Cusanus-Gymnasium Wittlich. Potentielle Energie im Gravitationsfeld. h=0. Gravitationsbeschleunigung CusanusGymnasium Wittlich hysik Elektostatik otentielle Enegie im Gavitationsfeld F h m G h= W = F h = F h cos( (F;h)) h = G h = m g h G = m g G g = m Gavitationsbeschleunigung ode Gavitationsfeldstäke

Mehr

Endliche Körper. Von Christiane Telöken und Stefanie Meyer im WS 03/04 Ausgewählte Titel der Kryptologie

Endliche Körper. Von Christiane Telöken und Stefanie Meyer im WS 03/04 Ausgewählte Titel der Kryptologie Endliche Köpe Von Chistiane Telöken und Stefanie Meye im WS 03/04 Ausgewählte Titel de Kyptologie Gliedeung. Einleitung. Kyptologie im Altetum. Definitionen de Kyptologie.3 Kyptologie heute. Endliche Köpe.

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Magnetostatik. Stromwaage

Magnetostatik. Stromwaage Magnetostatik 1. Pemanentmagnete 2. Magnetfeld stationäe Stöme 3. Käfte auf bewegte Ladungen im Magnetfeld i. Käfte im Magnetfeld Loentkaft ii. Käfte wischen Leiten iii.kaft auf eine bewegte Ladungen i.

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Expeimentalphysik II (Kip SS 29) Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Musteraufgaben. für den GET 1+2 Multiple-Choice Teil

Musteraufgaben. für den GET 1+2 Multiple-Choice Teil Musteaufgaben fü den GET + Multiple-Choice Teil Hinweis: Diese Musteaufgaben dienen dazu, sich mit den Multiple-Choice-Fagen de GET+ Klausu vetaut zu machen. Es soll damit die At und Weise de Fagestellung

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische hysik 7 Teil: Elektostatik I Siegfied ety Fassung vom 18 Janua 1 I n h a l t : 1 Elektische Ladungen Das COULOMB-Gesetz Die elektische Feldstäke 4 Fluss und Flussdichte des

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr