Beispiel-Abiturprüfung

Größe: px
Ab Seite anzeigen:

Download "Beispiel-Abiturprüfung"

Transkript

1 Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch der jeweils m linken Rnd der Aufgbenstellung vermerkten, mximl erreichbren Anzhl von Bewertungseinheiten (BE) zu richten. Die Lösungshinweise enthlten keine vollständigen Lösungen der Aufgben. Nicht gennnte, ber gleichwertige Lösungswege sind entsprechend zu bewerten.

2 Geometrie Aufgbengruppe Q b z. B.: j:x Q λ, λ IR 0 u 0 b Volumen der Pyrmide: Die Pyrmide nimmt etw 7 % des Würfelvolumens ein. c Schnittpunkte: 0 0, 0 0 d e Eine prllel zu M verlufende Ebene knn den Würfel in einem Punkt, in einem Dreieck oder in einem Sechseck schneiden. Für p 0;6 ist die Schnittfigur ein Sechseck. 0

3 Geometrie Aufgbengruppe z. B.: g:x 0 λ, λ IR 0 0 b Abstnd: z. B.: Mn bestimmt zunächst die Koordinten des Fußpunkts F des Lots durch B uf AC. Die Koordinten des Punkts D ergeben sich us D B BF. 0 F fliegt in Richtung Nordosten. Die Flughöhe von F wird durch die x Koordinte der Gerden g beschrieben, die einen konstnten Wert besitzt. b Die Größe des Steigungswinkels beträgt etw 8,0. c Die Flugzeuge kollidieren nicht zwingend, d nicht feststeht, dss sie den Schnittpunkt ihrer Flugbhnen gleichzeitig erreichen. d Der Prmeter μ beschreibt im Modell die während des Fluges vergehende Zeit. e 6 Länge der Flugstrecke: 80 km 0 0 Die von einem Prüfling in den Prüfungsteilen A und B insgesmt erreichten Bewertungseinheiten werden gemäß folgender Tbelle in Notenpunkte umgesetzt: Intervll Bewertungseinheiten Notenpunkte Notenstufe % % % % % % 0 0 6

4 Anlysis Aufgbengruppe x ln, x 0, x, x 6 D IR \ ; y x z. B.: cx x x Term der Stmmfunktion: x I: fx, II: ex mit r, III: gx mit s 0 Nullstellen: x, x b 6 Die Flächeninhlte der Rechtecke lssen sich durch die Funktion :x x x 0; beschreiben. x mit Definitionsbereich x x 0 x D ußerdem x 0 für x und x 0 für x gilt, ist A 6. 9 c 6 6 h x dx x x Ds Rechteck nimmt etw 7,7 % des Flächenstücks ein. x für lle x IR p x e 0 streng monoton fllend., lim p x x lim p x 0 x, d. h. der Grph von p ist in IR Stochstik Aufgbengruppe Ein zufällig usgewählter Angestellter gilt nicht ls ufgeschlossen oder ht keine nch rechts geneigte Hndschrift. b z. B.: R R A 0, 0,8 0,7 A 0, 0,8 0, 0, 0,6 c PA PR 0,70, 0, PA R d geänderter Wert: 60 % 0 0, 0, 0, 0, 7,% 9 0 b 0 P0, X0,% % c 0 Pp X0 0,9 Die Whrscheinlichkeit dfür, sich bei einer Schriftprobe richtig zu entscheiden, muss für den Bewerber mindestens 80 % betrgen. d Nullhypothese: Die Whrscheinlichkeit dfür, sich bei einer Schriftprobe richtig zu entscheiden, beträgt für einen Bewerber höchstens 0 %. Ablehnungsbereich: ;...;0 0 P0, X,% b Die Aussge ist flsch. Begründung z. B. durch Angbe eines Gegenbeispiels 0 9

5 Stochstik Aufgbengruppe Die Terme I und V beschreiben die Whrscheinlichkeit dfür, dss genu fünf der usgewählten Personen Linkshänder sind. b % 0 % 6% b % % 8% c z. B.: Die Zeitungsmeldung knn mit der Abbildung unter der Vorussetzung in Einklng stehen, dss in der Bevölkerung die Anzhl der 0 bis jährigen Männer größer ist ls die der bis 9jährigen. 0,7 0,78 0,89 66,0% PA 6,7%, PB 8,0% b 0 P0, X k 0,0 ; Ablehnungsbereich: 6;...;0 0 oder: P0, X,0% Dmit wird die Annhme des Skeptikers uf einem Signifiknzniveu von % durch ds Ergebnis der Befrgung nicht gestützt. 0 8 b p0 p π 0,6 pπ 0, pπ 0,09 pπ 0,0 c Der Fktor e x verändert die Amplitude der Kosinusfunktion so, dss der Grph von q zwischen den Grphen der Funktionen p und p verläuft. Die Nullstellen von q stimmen mit denen der Kosinusfunktion überein, die Punkte nπ q nπ liegen jeweils uf einem der Grphen von p und p. d 6 x q x e cos x sin x 0 tn x 0, Für die Extremstellen der Kosinusfunktion gilt x nπ mit n Z und dmit tnx 0. e α) Die Aussge ist flsch, d lim p x gilt und die Kosinusfunktion zwischen und oszilliert. β) Die Aussge ist richtig, d x IR gilt. lim p x 0 und cos x für lle x f π 0 qxdx Qπ Q 0 0,9 0 Der Grph von q schließt für x 0;π mit den Koordintenchsen und der Gerden x π Flächenstücke ein. Der Gesmtinhlt der beiden Flächenstücke, die oberhlb der xachse liegen, ist größer ls der Inhlt des Flächenstücks, ds unterhlb der xachse liegt. g z. B.: π Begründung: Der Grph von q schließt für jeweils zwei benchbrte positive Nullstellen von q mit dem zwischen den Nullstellen liegenden Teil der xachse ein Flächenstück ein. Der Inhlt dieser Flächenstücke nimmt in positiver xrichtung b. D die Aufgbenstellung die Existenz geeigneter Werte von vorgibt, muss der ngegebene Wert von die Ungleichung erfüllen. 0

6 Anlysis Aufgbengruppe p: IR \, keine Nullstelle q: ;, Nullstelle x r: y x 0, ;, Nullstelle x Der Grph von t schließt mit der xachse und den Gerden x und x Flächenstücke ein. Je zwei dieser Flächenstücke sind wegen der Punktsymmetrie inhltsgleich, gehen jedoch in die Berechnung des Integrls mit unterschiedlichen Vorzeichen ein. b z. B.: tx x, xdx x 0 Term III nähert den Term von u für große Werte von x m besten. Die Antwort knn z. B. nhnd der Differenzterme plusibel gemcht werden. 0 lim f lim f x x, x b z. B.: x f x e 0 x ln D ußerdem f x 0 für x ln und f x 0 für x ln gilt, besitzt G f usschließlich den Hochpunkt ln ln. c f0 0 f 0, 6 d e 0 f t dt t e t,7 t 0 f Der Grph von F besitzt im Punkt F einen Hochpunkt (Begründung z. B. mithilfe einer Betrchtung von G f ) und berührt dort die xachse (Hochpunkt und Übereinstimmung der Integrtionsgrenzen). g Ds Ergebnis der Aufgbe e stimmt bis uf ds Vorzeichen mit dem Funktionswert von F n der Stelle x 0 überein. b 6 z. B.: I x x T x 0 f 0 T T D ußerdem I T x 0 für x T und I T x 0 für x T gilt, besitzt die Funktion I T bei x T ihr einziges Mximum. c Näherungswert: 6,0 0 K d I: 000 K, II: 6000 K, III: 8000 K Begründung: Der Hochpunkt des Grphen von I T verschiebt sich für zunehmende Werte von T in positive xrichtung, d die xkoordinte des Hochpunkts direkt proportionl zu T ist. e z. B.: I T T T e ; I T T ist lso direkt proportionl zu T 0 7

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Beispiel-Abiturprüfung. Fach Mathematik

Beispiel-Abiturprüfung. Fach Mathematik Beispiel-Abiturprüfung in den Bildungsgängen des Berufskollegs. Leistungskurs Fch Mthemtik Fchbereich Technik mthe_lk_tech_beispielufg09_0085.doc Seite von 9 Konstruktionsmerkmle der Aufgbe rten Aufgbe

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog.

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. Anlysis I Ein Aufschrieb der Vorlesung Anlysis I n der Uni Krlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. GeTEXt von Andres Klöckner (k@ixion.net). Für Kommentre und Berichtigungen

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

Stoffumfang 1.Semester - Lektionen. Grundbegriffe 1 2 3 4 5 6

Stoffumfang 1.Semester - Lektionen. Grundbegriffe 1 2 3 4 5 6 FH Augsburg Ingenieurmthemtik Stoffumfng.Semester - Lektionen Grundbegriffe 4 5 6 Differenzition 7 8 9 0 Höhere Funktionen 4 Koordinten, Gerde, Steigung Funktionen und Grphen, Umkehrfunktion Trigonometrische

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014 Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 04 Schwerpunkt: grundlegendes Anforderungsniveau 0 Inhaltsverzeichnis Inhaltsverzeichnis Seite Vorbemerkungen... Aufgabenvariationen und Ergänzungen

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schriftliche Abiturprüfung Mathematik 0 () Ableitung Anforderungen wie bisher, allerdings ohne Quotientenregel Pflichtteil Durch den Wegfall der Quotientenregel müssen echte gebrochenrationale Funktionen

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten 2 Reguläre Sprchen und endliche Automten Sei Σ = {, b,...} ein endliches Alphbet. Ein endliches Wort über Σ ist eine Folge w = 0... n 1, wobei i Σ für i = 0,...,n 1. Wir schreiben w für die Länge von w,

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die eigenen vier Wände, der Schritt in die

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

XING Events. Kurzanleitung

XING Events. Kurzanleitung XING Events Kurznleitung 00 BASIC nd PLUS Events 2 Die Angebotspkete im Überblick Wählen Sie zwischen zwei Pketen und steigern Sie jetzt gezielt den Erfolg Ihres Events mit XING. Leistungen Event BASIS

Mehr

Karlsruhe - Mannheim - Aachen

Karlsruhe - Mannheim - Aachen Deutsche Finnzdtenbnk - DFDB Krlsruhe - Mnnheim - Achen - Krlsruhe - Die Bereinigung von Aktienkursen - Ein kurzer Uberblick uber Konzept und prktische Umsetzung - Andres Suer Version 10, August 1991 Projektleitung:

Mehr

Bestellformular - Adresslisten

Bestellformular - Adresslisten Industrie- und Hndelskmmer Heilbronn-Frnken Bestellformulr - Adresslisten Sehr geehrte Dmen und Herren, wie besprochen, erhlten Sie unser Bestellformulr für Adresslisten von Unternehmen in unserem Kmmerbezirk

Mehr

Integrieren wie geht das?

Integrieren wie geht das? Integrieren wie geht ds? Ich knn Dir ds Integrieren nur erklären, wenn wir zuvor ds Differenzieren wiederholen. Ds mchen wir gnz forml, ohne die zugrundeliegenden Ideen zu esprechen. Nur so viel: Aleitung

Mehr

LM1. INFINITESIMALRECHNUNG

LM1. INFINITESIMALRECHNUNG Seite (von 11) LM1. INFINITESIMALRECHNUNG BE I. 1. Gegeben ist die Funktion wird mit G f bezeichnet. ln(x ) f : x a, D f = IR \{0}. Der Graph von f x 6 a) Untersuchen Sie das Symmetrieverhalten von G f.

Mehr

Wo liegen die Unterschiede?

Wo liegen die Unterschiede? 0 VERGLEICH VON MSA UND VDA BAND 5 Wo liegen die Unterschiede? MSA steht für Mesurement System Anlysis. Dieses Dokument wurde erstmls 1990 von der Automotive Industry Action Group (AIAG) veröffentlicht.

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Kapitalerhöhungen börsennotierter Gesellschaften ohne börslichen Bezugsrechtshandel

Kapitalerhöhungen börsennotierter Gesellschaften ohne börslichen Bezugsrechtshandel Kpitlerhöhungen börsennotierter Gesellschften ohne börslichen Bezugsrechtshndel Udo Terstege* ) / Gunnr Strk** ) Diskussionsbeitrg Nr. 390 2006 * PD Dr. Udo Terstege ist Hochschuldozent m Lehrstuhl für

Mehr

Das Coulombsche Gesetz

Das Coulombsche Gesetz . ei r = 0 befindet sich eine Ldung Q = 4,0nC und bei r = 40cm eine Ldung Q = 5,0nC ortsfest, so dss sie sich nicht bewegen können. Ds Coulombsche Gesetz Q = 4,0nC Q = 5,0nC r Lösung: Wo muss eine Ldung

Mehr

Über die sog. «Ein-Franken-pro-Todesfall» -Kassen.

Über die sog. «Ein-Franken-pro-Todesfall» -Kassen. Über die sog. «Ein-Frnken-pro-Todesfll» -Kssen. Eine versicherungstechnische Studie von HEINRICH JECKLIN (Zürich). (AIs Mnuskript eingegngen m 25. Jnur 1940.) In der versicherungstechnischen Litertur finden

Mehr

bei Problemen die Theorie und die Beispiele am Anfang jeder Lerneinheit durcharbeiten

bei Problemen die Theorie und die Beispiele am Anfang jeder Lerneinheit durcharbeiten Ds knnst du schon º Terme umformen º Gleichungen ufstellen und lösen º Funktionsgrphen zeichnen º Whrscheinlichkeiten erechnen Erfolge mithilfe des Aschlusstests üerprüfen ei Prolemen die Theorie und die

Mehr

Streuungsmaße. Grundbegriffe

Streuungsmaße. Grundbegriffe Grundbegriffe Untersuchungseinheiten U,...,U n Merkml X Urliste x,...,x n geordnete Urliste x (),...,x (n) Es gilt i.llg.: xi x() i, i, Κ, n In einer westdeutschen Großstdt gibt es insgesmt drei Träger

Mehr

HUMAN-CENTRIC WORKFLOW SOLUTION FOR SHAREPOINT

HUMAN-CENTRIC WORKFLOW SOLUTION FOR SHAREPOINT HUMAN-CENTRIC WORKFLOW SOLUTION FOR SHAREPOINT Tool zur grfischen Modellierung von Workflows in ShrePoint Einfches Gestlten von Prozessen und Chnge Mngement Gemeinsme Arbeitsplttform für kufmännische Abteilungen

Mehr

Hinweise zur Berechnung von statisch bestimmten Systemen

Hinweise zur Berechnung von statisch bestimmten Systemen Hinweise zur Berechnung von sttisch bestimmten Systemen. Knn ds System eindeutig us sttisch bestimmten Grundsystemen ufgebut werden, ohne Hilfsfesseln einzuführen? Wenn j, Teilsysteme ncheinnder entsprechend

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

STATUS DES WINDENERGIEAUSBAUS

STATUS DES WINDENERGIEAUSBAUS Jhr STATUS DES WINDENERGIEAUSBAUS AN LAND Im Auftrg von: Deutsche WindGurd GmbH - Oldenburger Strße 65-26316 Vrel 4451/9515 - info@windgurd.de - www.windgurd.de Jährlich zu- / bgebute Leistung [MW] Kumulierte

Mehr

Article Negative Einlagezinsen im Euroraum? Lehren aus Dänemark

Article Negative Einlagezinsen im Euroraum? Lehren aus Dänemark econstor www.econstor.eu Der Open-Access-Publiktionsserver der ZBW Leibniz-Informtionszentrum Wirtschft The Open Access Publiction Server of the ZBW Leibniz Informtion Centre for Economics Klose, Jens

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

1. Elektrostatische Felder E

1. Elektrostatische Felder E 1. Elektrosttishe Felder E Zusmmenfssung wihtiger Formeln Die Elektrosttik beshäftigt sih mit den Feldern zeitlih konstnter Ldungsverteilungen. Grundlge dfür ist die Coulomb-Krft uf eine infinitesimle

Mehr

Digitaltechnik. 3 Sequenzielle. Schaltungen. Revision 1.1

Digitaltechnik. 3 Sequenzielle. Schaltungen. Revision 1.1 igitltechnik 3 Sequenzielle Schltungen A Revision 1.1 Trnsitionssysteme Synchroner sequenzieller Entwurf Timing-Anlyse Pipelining Mely und Moore Mschinen Zustndsmschinen in Verilog Sequentielle Schltungen

Mehr

5.4 CMOS Schaltungen und VLSIDesign

5.4 CMOS Schaltungen und VLSIDesign Kp5.fm Seite 447 Dienstg, 7. Septemer 2 :55 3 5.4 CMOS Schltungen und VLSI Design 447 r u u r id + + A. 5.39: Progrmmierrer Gitterustein 5.4 CMOS Schltungen und VLSIDesign Die Boolesche Alger eginnt mit

Mehr

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie Krlsruher Institut für Technologie Lehrstuhl für Progrmmierprdigmen Sprchtechnologie und Compiler WS 2010/2011 Dozent: Prof. Dr.-Ing. G. Snelting Üungsleiter: Mtthis Brun Lösung zu Üungsltt 1 Ausge: 18.04.2012

Mehr

EasyMP Multi PC Projection Bedienungsanleitung

EasyMP Multi PC Projection Bedienungsanleitung EsyMP Multi PC Projection Bedienungsnleitung Inhltsverzeichnis 2 Informtionen zu EsyMP Multi PC Projection Verschiedene Meeting-Möglichkeiten mit EsyMP Multi PC Projection... 5 Meetings mit mehreren Bildern

Mehr

pdftoolbox Server Handbuch

pdftoolbox Server Handbuch pdftoolbox Server Hndbuch Hndbuch Seite 2 Hndbuch Letzte Änderung: 3. Mi 2011 2009-2011 by clls softwre gmbh, Berlin, Germny All rights reserved Alle Rechte vorbehlten Alle Wrenzeichen sind Eigentum ihrer

Mehr

Erfolg im Mathe-Abi 2015

Erfolg im Mathe-Abi 2015 Gruber I Neumann Erfolg im Mathe-Abi 2015 Übungsbuch Hilfsmittelfreier Teil mit Tipps und Lösungen Inhaltsverzeichnis Vorwort... 5 Der hilfsmittelfreie Teil der Abiturprüfung... 7 Die Anforderungsbereiche

Mehr

Gedanken stoppen und entschleunigen

Gedanken stoppen und entschleunigen 32 AGOGIK 2/10 Bertie Frei, Luigi Chiodo Gednken stoppen und entschleunigen Individuelles Coching Burn-out-Prävention Probleme knn mn nie mit derselben Denkweise lösen, durch die sie entstnden sind. Albert

Mehr

Unterhaltung in voller Bandbreite! Produktübersicht und Entgelte für Fernsehen, Internet & Telefon UPC Cablecom (Auszug)

Unterhaltung in voller Bandbreite! Produktübersicht und Entgelte für Fernsehen, Internet & Telefon UPC Cablecom (Auszug) UPC Cblecom Austri GmbH Färbergsse 17, 6850 Dornbirn Eventuelle Stz- oder Druckfehler und Entgeltänderungen vorbehlten. Unterhltung in voller Bndbreite! Produktübersicht und Entgelte für Fernsehen, Internet

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

DAS JUGENDKONTO, das NICHT NUR AUF

DAS JUGENDKONTO, das NICHT NUR AUF DAS JUGENDKONTO, ds NICHT NUR AUF dein GELD AUFPASST. Hndy oder Lptop 1 Jhr grtis Versichern!* Mitten im Leben. *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN STEHEN! Mit 14 Lebensjhren mcht

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Whitepaper epayslip Moderne und sichere Kommunikation mit Mitarbeitern

Whitepaper epayslip Moderne und sichere Kommunikation mit Mitarbeitern For better Whitepper epyslip Moderne und sichere Kommuniktion mit Mitrbeitern Ws Sie zum Them Digitlisierung von Verdienstbrechnungen und nderen Dokumenten wissen müssen. INHALTSVERZEICHNIS 2 2 3 4 5 5

Mehr

Antrag auf Gewährung von Leistungen nach dem Unterhaltsvorschussgesetz (UVG)

Antrag auf Gewährung von Leistungen nach dem Unterhaltsvorschussgesetz (UVG) Antrg uf Gewährung von Leistungen nch dem Unterhltsvorschussgesetz (UVG) - Eingngsstempel - b dem Mont der Antrgstellung 1 Mont rückwirkend ( Angben unter Nr. 12 erforderlich) Bitte dzugehöriges Merkbltt

Mehr

Abiturprüfung ab dem Jahr 2014

Abiturprüfung ab dem Jahr 2014 STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Abteilung Gymnasium Referat Mathematik Mathematik am Gymnasium Abiturprüfung ab dem Jahr 2014 Wesentliche Rahmenbedingungen Die Länder Bayern,

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Auf einen Blick. In Schlagworten 6,5. Bruttoanfangsrendite in % Spitzenmiete in. /m²/monat 5,5 4,5. 01 02 03 04 05 06 07 08 09e ÜBERBLICK

Auf einen Blick. In Schlagworten 6,5. Bruttoanfangsrendite in % Spitzenmiete in. /m²/monat 5,5 4,5. 01 02 03 04 05 06 07 08 09e ÜBERBLICK CB RICHARD ELLIS Mrktbericht Wiener mrkt Jhresende 8 ÜBERBLICK Auf einen Blick Veränderung gegenüber Q3 8 Q 7 Angebot Vermietung Leerstndsrte Spitzenmiete Rendite Inv.volumen In Schlgworten vermietungsleistung

Mehr

Q1 2011. im Vergleich zu. Q1 2011 aus Expertensicht ÜBERBLICK. Berlin hat unter den deutschen Großstädten eine besondere Bedeutung, die weit über

Q1 2011. im Vergleich zu. Q1 2011 aus Expertensicht ÜBERBLICK. Berlin hat unter den deutschen Großstädten eine besondere Bedeutung, die weit über CB RICHARD ELLIS MrketView Büromrkt Berlin www.cbre.de Q1 211 ÜBERBLICK Q1 211 im Vergleich zu Q4 1 Q1 1 Umstz Leerstnd Spitzenmiete Spitzenrendite Fertigstellungen Q1 211 us Expertensicht Mtthis Huff,

Mehr

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder DAS Einzige Konto, ds uch uf dein HANDY ODER DEINEN LAPTOP AUFPASST. Versichert Hndy oder Lptop 1 Jhr grtis!* Mitten im Leben. monsterhetz.t *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN

Mehr

1. Raster- und Vektorgrafiken

1. Raster- und Vektorgrafiken Zeichnen und Illustrieren - 1 1. Rster- und Vektorgrfiken Ausschnittsvergößerung einer Rstergrfik Ausschnittsvergößerung einer Vektorgrfigrfik Whrscheinlich hben die meisten schon einml mit dem Windows

Mehr

Diplomarbeit. Niederlassung Frankfurt Hanauer Landstraße 182 60314 Frankfurt am Main

Diplomarbeit. Niederlassung Frankfurt Hanauer Landstraße 182 60314 Frankfurt am Main Diplomrbeit Untersuchung von Vrinten der Wärmerückgewinnung unter energetischen und wirtschftlichen Aspekten m Neubu eines Bürogebäudes mit Penthouse-Geschoss Vorgelegt m: 17. August 009 Vorgelegt von:

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Schriftliche Abiturprüfung. Mathematik. Ergänzungsheft. Hinweise und Beispiele für den hilfsmittelfreien Prüfungsteil

Schriftliche Abiturprüfung. Mathematik. Ergänzungsheft. Hinweise und Beispiele für den hilfsmittelfreien Prüfungsteil Freie und Hansestadt Hamburg Behörde für Schule und Ber ufsbildung Schriftliche Abiturprüfung Mathematik Ergänzungsheft Hinweise und Beispiele für den hilfsmittelfreien Prüfungsteil Impressum Herausgeber:

Mehr

VERTRAUEN IN WERBUNG WELTWEIT

VERTRAUEN IN WERBUNG WELTWEIT VERTRAUEN IN WERBUNG WELTWEIT GEWINNER-STRATEGIEN FÜR EINE MEDIENLANDSCHAFT IM WANDEL SEPTEMBER 2015 Copyright 2015 The Nielsen Compny 1 VON DER REICHWEITE ZUR REAKTION WELTWEIT Bei den vertruenswürdigsten

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen Kp. 4.2 inäre Schäme ff Kp. 4.: VL-äme Professor r. Lehrsthl für lgorithm Engineering, LS11 Fkltät für Informtik, TU ortmnd Motition Wrm soll ich hete hier leien? lncierte äme rchen Sie immer wieder! Ws

Mehr

Sicherheitssysteme Digitale Videoüberwachung

Sicherheitssysteme Digitale Videoüberwachung Sicherheitssysteme Digitle Videoüberwchung PM11 M11_A- 6-4- 1 Sie hben lles unter Kontrolle. Für Objekte ller Größen Viele Unternehmen benötigen mehr ls nur eine punktuelle Videoüberwchung. Kom- Lösungen.

Mehr

Wirtschaftsinformatik Informatik Grundlagen

Wirtschaftsinformatik Informatik Grundlagen C:\WINDOWS\TEMP\wiweig.doc Wirtschftsinformtik Informtik Grundlgen Grundlgen der Codierung Informtion und Kommuniktion Kommuniktion ist der Austusch von Informtionen. Dies setzt Verschlüsselung der Informtion

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

7. Portfolioinvestitionen und Wechselkursschwankungen. Literatur. Prof. Dr. Johann Graf Lambsdorff Universität Passau SS 2008

7. Portfolioinvestitionen und Wechselkursschwankungen. Literatur. Prof. Dr. Johann Graf Lambsdorff Universität Passau SS 2008 Prof. Dr. Johnn Grf Lmsdorff Universität Pssu SS 2008 Litertur r IS 0 r 0 P 0 P x MP 7. Portfolioinvestitionen und Wechselkursschnkungen + Z Jrcho, H.-J. und P. Rühmnn (2000) : Monetäre Außenirtschft I.

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7

Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7 Lösungen zu delta Fit für die Oberstufe Lösungen zu den Seiten 6 und 7. a) 4 = ; 9 = 4; = 6 X G; L = { 6} b) ( 4) + 8 = ( + 4); 8 + 8 = 4; + 0 = ; 4 = ; = =, X G; L = {,} 4 c) + 7 = 0; + 7 = 0; = 7 G;

Mehr

EasyMP Network Projection Bedienungsanleitung

EasyMP Network Projection Bedienungsanleitung EsyMP Network Projection Bedienungsnleitung Inhltsverzeichnis 2 Info zu EsyMP Network Projection Funktionen von EsyMP Network Projection... 5 Zhlreiche Funktionen für die Bildschirmübertrgung...5 Instlltion

Mehr

Kommunikation und Marketing. Marketing-Dienstleistungen. Für Sie und Ihre Kunden

Kommunikation und Marketing. Marketing-Dienstleistungen. Für Sie und Ihre Kunden Kommuniktion und Mrketing Mrketing-Dienstleistungen Für Sie und Ihre Kunden Kommuniktion und Mrketing KNV Servicenummern Koch, Neff & Volckmr GmbH Stuttgrt Husnschrift: Schockenriedstrße 37 70565 Stuttgrt

Mehr

Kapitel 6 E-Mails schreiben und organisieren

Kapitel 6 E-Mails schreiben und organisieren Kpitel 6 E-Mils shreien und orgnisieren Die Kommuniktion vi E-Mil ist heute essenziell. Und Ihr M ist estens gerüstet für den Empfng, ds Verfssen und die Orgnistion von E-Mils. Wie Sie effektiv mit dem

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

LIZENZMANAGEMENT. Richtig und optimal lizensiert. PROFI Engineering Systems AG Martin Lange Business Development

LIZENZMANAGEMENT. Richtig und optimal lizensiert. PROFI Engineering Systems AG Martin Lange Business Development Richtig und optiml lizensiert PROFI Engineering Systems AG Mrtin Lnge Business Development AGENDA 01 Generelles zum Them Lizenzmngement 02 Wrum ist die richtige Lizenzierung so schwer? 03 Veränderungen

Mehr

Vorbereitung auf das Abitur: Sinusfunktionen

Vorbereitung auf das Abitur: Sinusfunktionen Niedersachsen 11./1. Schuljahr Grundlegendes und erhöhtes Niveau Herausgegeben von Heinz Griesel, Andreas Gundlach, Helmut Postel, Friedrich Suhr Vorbereitung auf das Abitur: Sinusfunktionen Vorbereitung

Mehr

EasyMP Slide Converter Bedienungsanleitung

EasyMP Slide Converter Bedienungsanleitung EsyMP Slide Converter Bedienungsnleitung Inhltsverzeichnis 2 Übersicht über EsyMP Slide Converter EsyMP Slide Converter - Übersicht... 4 Unterstützte Dteitypen für EsyMP Slide Converter... 4 Instlltion

Mehr

Der Holztreppenbau. EUROPA-FACHBUCHREIHE für holzverarbeitende Berufe. Lektorat: Wolfgang Nutsch, Stuttgart. 5. Auflage

Der Holztreppenbau. EUROPA-FACHBUCHREIHE für holzverarbeitende Berufe. Lektorat: Wolfgang Nutsch, Stuttgart. 5. Auflage EUROPA-FACHBUCHREIHE für holzverrbeitende Berufe Der Holztreppenbu Lektort: Wolfgng Nutsch, Stuttgrt 5. Auflge VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer GmbH & Co. KG Düsselberger Strße 78 Hn-Gruiten Europ-Nr.:

Mehr

Momente der Klassenzahlen binärer quadratischer Formen mit ganzalgebraischen Koeffizienten

Momente der Klassenzahlen binärer quadratischer Formen mit ganzalgebraischen Koeffizienten ACTA ARITHMETICA LXX.1 1995) Momente der Klssenzhlen binärer qudrtischer Formen mit gnzlgebrischen Koeffizienten von Mnfred Peter Freiburg) 1. Einleitung und Formulierung des Ergebnisses. Für die Anzhl

Mehr

Einschub: Zahlendarstellung und Codes

Einschub: Zahlendarstellung und Codes Einschu: Zhlendrstellung und Codes (Unvollständige Drstellung) DST SS23 - Codes und KMAPs P. Fischer, TI, Uni Mnnheim, Seite Binärzhlen N-stellige Binärzhl:... Einzelne Stellen heißen Bits (inry digits)

Mehr

Lektion 2: Du und ich

Lektion 2: Du und ich Lektion 2: Du und ich Lernziele Stellung nehmen Über sttistische Angben sprechen Vergleiche formulieren Einen Forumsbeitrg schreiben Argumente gegenüberstellen Ein Interview mchen 2 d(r)/wo(r) + Präposition

Mehr

Institut für Volkswirtschaftslehre und Wirtschaftspolitik. Prof. Dr. Andreas Thiemer. VWL-Semesterprojekt Nr. 4 WS 2007/2008. Bayessche Lemminge

Institut für Volkswirtschaftslehre und Wirtschaftspolitik. Prof. Dr. Andreas Thiemer. VWL-Semesterprojekt Nr. 4 WS 2007/2008. Bayessche Lemminge Institut für Volkswirtschftslehre und Wirtschftspolitik Prof. Dr. ndres Thiemer VWL-Semesterprojekt Nr. 4 WS 007/008 yessche Lemminge Ein Experiment mit Informtionskskden Unter Mitreit von: Olg eder xel

Mehr

Reinigung 146. Reinigen des Hindernissensors. Reinigung der Projektoroberfläche. Reinigen des Projektionsfensters. Warnung. Warnung.

Reinigung 146. Reinigen des Hindernissensors. Reinigung der Projektoroberfläche. Reinigen des Projektionsfensters. Warnung. Warnung. Reinigung 146 Bei Verschmutzung oder Bildverschlechterung muss der Projektor gereinigt werden. Schlten Sie den Projektor vor der Reinigung us. Reinigung der Projektoroberfläche Reinigen Sie die Projektoroberfläche

Mehr