Grundlagen der Programmierung II BMI Bakk.

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Programmierung II BMI Bakk."

Transkript

1 BMI Bakk. Teil 3 Rainer Schubert Institut für Biomedizinische Bildanalyse Inhalt Programmierung des Prozessors Nochmal: Ports lesen und setzen (inkl. Rätselauflösung) RISC / Akkumulator-Architektur des PIC Befehlssatz Erleichterungen durch den Assembler Zwischenfazit: Unterschiede Assembler/Hochsprache Taster und LED des LPC-Boards Das Debounce -Beispiel Analyse Experimente Hausübung

2 Grundbegriffe CISC: Complex Instruction Set Computing RISC: Reduced Instruction Set Computing Akku: Akkumulator, Arbeitsregister w: working register, Name des Akku beim PIC Ports, Rätselauflösung Die PIC Befehle mit Registeradressierung werden nach dem Read-Modify-Write-Prinzip ausgeführt, d.h. zunächst wird das gesamte Byte des Registers gelesen, dann entsprechend dem Befehl geändert und das geänderte Byte wieder zurückgeschrieben. Das Ergebnis der Read-Operation hängt von der Konfiguration des Ports als analog oder digital ab! Wenn ein Port auf analog gesetzt ist, wird die Leseoperation immer 0 ergeben und beim Zurückschreiben werden alle Bits mit Ausnahme des durch bsf gesetzten auf 0 gelöscht. Lösung:

3 Aus dem Datenblatt RISC-Konzept Reduced Instruction Set Computing Prozessor mit minimalem Befehlsvorrat Befehle einfach und in wenigen (möglichst nicht mehr als zwei) Zyklen ausführbar Vorteile: Sehr wenige (PIC:35!) und sehr einfache Befehle Konsequenz: Der gesamte Befehlssatz kann fest verdrahte werden. Keine Chip-interne Software zur Interpretation und Ausführung komplexer Befehle nötig, jeder Befehl entspricht einer realen Schalterund Leiterbahnkombination! Dadurch: Schneller Prozessor, günstige Herstellungskosten Programmablauf ist jederzeit nach nur einem oder zwei Taktzyklen möglich: Enormer Vorteil für alle Anwendungen, die sofort auf Ereignisse reagieren müssen (Steuerungen, Regelaufgaben, allgemein: Echtzeitaufgaben). Nachteile: Programmierung aufwändiger, auf Assemblerebene sind mehr Befehle pro Aufgabe nötig Durch maximalen Programmspeicher begrenzte Komplexität und Anwendbarkeit

4 CISC-Konzept Complex Instruction Set Computing Der Befehlsvorrat des Prozessors ist umfangreicher und enthält auch komplexe und mächtige Befehle (z.b. Rechenfunktionen (Multiplikation, Division, Potenzieren, Wurzeln etc.), flexible Operanden-Adressierung, flexible Vergleichs- und Verzweigungsoperationen etc. Vorteile: Einfacher zu programmieren, weniger Assemblerbefehle pro Aufgabe nötig Flexibler einzusetzen Nachteile: Befehlssatz kann nicht mehr in Hardware realisiert werden, Maschinensprache-Interpreter (Software) auf dem Chip nötig, um komplexe Assemblerbefehle auf den Hardware-Befehlssatz abzubilden. Dadurch reduzierte Geschwindigkeit und höhere Herstellungskosten Ausführung komplexer Befehle benötigt viele Taktzyklen, dabei nicht unterbrechbar, daher schlechtere Echtzeiteigenschaften Akkumulator-Architektur Eine der ältesten Architekturen zur Realisierung eines Prozessors, durch RISC wieder aktuell PIC-Prozessoren sind hier besonders archaisch Prinzip: Es gibt wenige oder nur ein (PIC!) Arbeitsregister (Akkumulator), das nicht direkt adressiert werden muss/kann, sondern implizit durch den jeweiligen Befehl angesprochen wird. Die tatsächliche Adressierung ist auf Hardwareeben festgelegt. Beim PIC ist dies für alle Befehle der Fall, die zwei Register/Speicherstellen ansprechen (z.b. Kopier-, Vergleichs- und Rechenbefehle. Bei diesen Befehlen ist nur eine der beiden Register adressierbar, das zweite ist immer (implizit) der Akkumulator. Bespiele (s. auch Befehlsübersicht im Datenblatt): movlw B (kopiert das angegebene Literal (hier Binärzahl) in w (=Arbeitsregister des PIC) movwf PORTC (kopiert das Byte in w ins Register PORTC) Der Akkumulator wird beim PIC etwas unüblich w (für working register) genannt!

5 PIC-Akkumulator-Architektur Quelle:

6 Nochmal: Das Status-Register Einige Bits (Flags) werden von vielen Befehlen beeinflusst und zeigen Ereignisse an (z.b. Null, Überlauf etc.), die für die weitere Programmausführung wichtig sind. Besonders wichtig: Z (Bit 2): Zero-Bit C (Bit 0): Carry (Überlauf)-Bit Akkumulator-Befehle - Kopieren Kopiert ein Literal in w Einzige Möglichkeit, Werte direkt ins Spiel zu bringen Soll ein bestimmter Wert im Speicher abgelegt werden, so muss dieser zunächst über movlw ins w-register geschrieben werden und kann dann von dort an eine Speicheradresse kopiert werden. Da w, wie alle Register/Speicherzellen genau ein Byte groß ist, können nur Werte zwischen 0 und 255 verarbeitet werden.

7 Kopiert den Inhalt von w an die Speicheradresse f Das ist der Mechanismus, mit dem man Speicherzellen als Variablen benutzen und mit Werten belegen kann! Kopiert den Inhalt von Speicheradresse f nach w, wenn d=0 f, wenn d=1 Mit d=0 hat man den Lese-Teil einer Variablen Mit d=1 erhält man eine Möglichkeit den Inhalt von f auf Null zu testen: Der Befehl setzt das Zero-Bit im STATUS-Register, wenn 0 kopiert wird Wenn der Inhalt der Speicherzelle f ungleich 0 ist, bleibt das Zero-Bit im STATUS- Register unbeeinflusst

8 Akkumulator-Befehle - Löschen Setzt alle Bits von W auf 0 Setzt das Zero-Bit des STATUS- Registers Entspricht einem movlw 00h, bei dem aber das Zero-Bit nicht beeinflusst wird! Akkumulator-Befehle - Addieren Addition eines Literals zum Inhalt von w. Ergebnis landet in w Überlauf: C-Bit wird gesetzt Null: Z-Bit wird gesetzt Addition des Inhalts der Speicherzelle f zum Inhalt von w Ergebnis landet in w (d=0) oder f (d=1) Überlauf: C-Bit wird gesetzt Null: Z-Bit wird gesetzt

9 Akkumulator-Befehle - Subtrahieren Subtraktion des Inhaltes von w vom Literal k Ergebnis landet in w Flags: s. Tabelle Subtraktion des Inhalts von w vom Inhalt des Registers f Ergebnis landet in w (d=0) oder f (d=1) Flags: s. Tabelle Akkumulator-Befehle logisches UND Ver-Undung des Inhaltes von w mit dem Literal k Ergebnis landet in w Flags: Z Ver-Undung des Inhalts von w vom Inhalt des Registers f Ergebnis landet in w (d=0) oder f (d=1) Flags: s. Tabelle

10 Akkumulator-Befehle logisches ODER Befehle mit w als Ergebnisspeicher: Byte-Manipulationen

11 Befehle mit w als Ergebnisspeicher: Byte-Manipulationen Befehle mit w als Ergebnisspeicher: Byte-Manipulationen

12 Befehle ohne Beteiligung von w: Bit-/Byte-Manipulationen Ablaufsteuerung: Bedingte Verzweigung, Sprünge

13 Ablaufsteuerung: Rück-Sprünge Sonstige Befehle

14 Erleichterungen durch den Assembler Zahlenformate: Übersetzungsbereich:

15 Adressierung: Zum Nachschauen nochmals die RAM-Tabelle und das STATUS-Register: Das Debounce-Beispiel Analyse des Codes in MPLAB

16 und sehr hilfreich Hausaufgabe 2 Auf Basis des Debounce-Beispiels schreiben Sie ein Programm mit folgender Funktionalität: Initialzustand ( Eingabe erste Zahl erwartet ): Die erste LED blinkt. Durch mehrmaliges kurzes Betätigen des Tasters können Zahlen von 1-5 eingeben werden (einmal Tasten=1, nochmal Tasten=2, etc.). Die Zahl wird dabei durch die LEDs binär angezeigt. Die Null (alle LEDs aus) wird initial angezeigt. Werden mehr als 5 Tastendrücke gezählt, fängt die Anzeige wieder von vorne an. Wenn der Taster für mehr als 2 Sekunden gedrückt gehalten wird, wird die Zahl übernommen (Sie müssen sie in den Speicher schreiben) und die zweite LED blinkt und signalisiert damit die Eingabebereitschaft für die zweite Zahl, die nach dem selben Schema eingeben und übernommen wird. Nach Übernahme der zweiten Zahl addieren Sie beide Zahlen und geben das Ergebnis über die vier LEDs als blinkende Anzeige aus. Ein kurzer Druck auf den Taster startet erneut die Eingabe der ersten Zahl.

17 Ergänzungs- und Verbesserungsmöglichkeiten Falls Sie Langeweile haben oder eine Tendenz zum Hardcore-Hacker bemerken: Eingabe der Zahlen über Poti! Dazu ist das Beispiel 12 Look- Up Table eine gute Grundlage. Die eingestellte Zahl kann dann mit einem einfachen Tastendruck übernommen werden. Eingabe von Zahlen bis 15 sind eigentlich kein Problem, die Ausgabe der Additionsergebnisse erfordert aber eine gute Idee Die Realisierung von Multiplikation, Division, Quadrieren, Wurzelziehen,. Literatur Dokumentation zum PIC16F690 bei Microchip: me=en Hier insbesondere das Data Sheet zum PIC16F690: Sehr gute private Seite zum Thema:

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 -

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikrocomputertechnik Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikroprozessor-Achritekturen Folie 2 Mikroprozessor-Achritekturen Klassifizierung anhand Wortbreite CPU-Architektur und Busleitungen

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Einführung in die Microchip PIC-Controller vergleichende Betrachtung zu anderen Microcontrollern CLUG 12.2.2016. Matthias Kupfer

Einführung in die Microchip PIC-Controller vergleichende Betrachtung zu anderen Microcontrollern CLUG 12.2.2016. Matthias Kupfer Einführung in die Microchip PIC-Controller vergleichende Betrachtung zu anderen Microcontrollern CLUG 12.2.2016 Matthias Kupfer maku@kupfer-it.de 1 Übersicht Überblick über Microchip PIC-Familie Eigenschaften

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Remote-Objekt-Überwachung. von Jan Schäfer und Matthias Merk

Remote-Objekt-Überwachung. von Jan Schäfer und Matthias Merk Remote-Objekt-Überwachung von Jan Schäfer und Matthias Merk Aufgabenstellung Steuerung von Sensoren zur Remote Objektüberwachung mit einem µc PIC16F874. Welcher Sensor hat gemeldet? Die Überwachung Mehrere

Mehr

Der von Neumann Computer

Der von Neumann Computer Der von Neumann Computer Grundlagen moderner Computer Technologie 1 Der moderne Computer ein weites Spektrum Typ Preis Anwendungsbeispiel embeded Computer 10-20 $ in Autos, Uhren,... Spielcomputer 100-200$

Mehr

7 Ein einfacher CISC-Prozessor

7 Ein einfacher CISC-Prozessor 7 Ein einfacher CISC-Prozessor In diesem Kapitel wird ein einfacher Prozessor vorgestellt. Die Architektur, die wir implementieren, wurde von R. Bryant und D. O Hallaron entworfen und verwendet eine Untermenge

Mehr

3. Grundlagen der Rechnerarchitektur

3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und Adressierungstechniken 3.4 Beispiel: der Prozessor

Mehr

3.1 Architektur des von-neumann-rechners. 3. Grundlagen der Rechnerarchitektur

3.1 Architektur des von-neumann-rechners. 3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.1 Architektur des von - Neumann - Rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen

Mehr

Vorlesung "Struktur von Mikrorechnern" (SMR)

Vorlesung Struktur von Mikrorechnern (SMR) Unterscheidung nach Instruktionsstruktur Kap. 6 / 34 Unterscheidung nach Befehlstypen: Übersicht Register-Register MOV r r, r 2 A Speicher/Peripherie Register Transferbefehle LDA addr STA addr Konstante

Mehr

9. Assembler: Der Prozessor Motorola 68000

9. Assembler: Der Prozessor Motorola 68000 9.1 Architektur des Prozessors M 68000 9.2 Adressierungsarten des M 68000 9-1 9.1 Beschreibung des Prozessors M 68000 Charakteristische Daten des 56 Maschinenbefehle 14 Adressierungsarten Zweiadressmaschine

Mehr

9. Assembler: Der Prozessor Motorola 68000

9. Assembler: Der Prozessor Motorola 68000 9.1 Architektur des Prozessors M 68000 9.2 Adressierungsarten des M 68000 9-1 9.1 Beschreibung des Prozessors M 68000 Charakteristische Daten des 56 Maschinenbefehle 14 Adressierungsarten Zweiadressmaschine

Mehr

10 Versuch Nr Anmerkungen zum Versuch Nr. 8

10 Versuch Nr Anmerkungen zum Versuch Nr. 8 10 Versuch Nr. 8 10.1 Anmerkungen zum Versuch Nr. 8 Während der letzten 4 Versuche haben Sie sich mit dem detaillierten Rechner-Entwurf beschäftigt. Im letzten Versuch konnten Sie abschließend einen kleinen

Mehr

Von Assembler zu Java

Von Assembler zu Java Von Assembler zu Java Prof. Dr.-Ing. Thomas Schwotzer 1 Einführung Die erste imperativen Programme wurden in den Urzeiten der IT tatsächlich direkt auf der Hardware der Maschinen geschrieben. Die verfügbaren

Mehr

MOP: Befehlsliste für den Mikrocontroller 8051

MOP: Befehlsliste für den Mikrocontroller 8051 Beuth Hochschule Berlin FB VI, Labor für Digitaltechnik MOP: Befehlsliste für den Mikrocontroller 8051 Erläuterung der Operanden Operand A addr11 addr16 bit /bit C #data #data16 direct DPTR PC Ri Rn rel

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC

Hochschule Düsseldorf University of Applied Sciences HSD RISC &CISC HSD RISC &CISC CISC - Complex Instruction Set Computer - Annahme: größerer Befehlssatz und komplexere Befehlen höhere Leistungsfähigkeit - Möglichst wenige Zeilen verwendet, um Aufgaben auszuführen - Großer

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005

Mikroprozessoren. Aufbau und Funktionsweise. Christian Richter. Ausgewählte Themen der Multimediakommunikation SS 2005 Mikroprozessoren Aufbau und Funktionsweise Christian Richter Ausgewählte Themen der Multimediakommunikation SS 2005 Christian Richter (TU-Berlin) Mikroprozessoren AT MMK 2005 1 / 22 Gliederung Was ist

Mehr

Grundlagen der Programmierung II BMI Bakk.

Grundlagen der Programmierung II BMI Bakk. BMI Bakk. Teil 2 Rainer Schubert Institut für Biomedizinische Bildanalyse Inhalt Aufbau eines µprozessors Grundbegriffe Allgemein PIC16F690 Ports Programmspeicher Datenspeicher RAM, ROM Spezialregister

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 10. Vorlesung Inhalt Rechenwerk (ALU) Steuerwerk Instruktionssatz-Architekturen Assembler-Programmierung Synchroner/asynchroner Systembus RISC vs. CISC Kontrollfluss/Datenfluss

Mehr

0 C (Carry) Überlauf des 8ten Bits. 1 DC (Digit Carry) Überlauf des 4ten Bits. Mnemonic Parameter Beschreibung Status-Flags.

0 C (Carry) Überlauf des 8ten Bits. 1 DC (Digit Carry) Überlauf des 4ten Bits. Mnemonic Parameter Beschreibung Status-Flags. 3. Assembler-Programmierung Der PIC 16F84A Microcontroller kennt 35 verschiedene Befehle. Für eine ausführliche Beschreibung aller Befehle siehe PIC16F84A-Datenblatt Kapitel 7.1. 3.1 Wichtige Flaggen im

Mehr

AVR-Mikrocontroller in BASCOM programmieren, Teil 2

AVR-Mikrocontroller in BASCOM programmieren, Teil 2 jean-claude.feltes@education.lu 1 AVR-Mikrocontroller in BASCOM programmieren, Teil 2 13. Interrupts 13.1 Externe Interrupts durch Taster Wenn Taster mittels Polling abgefragt werden, wie in Teil 1 beschrieben,

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Praktikum Mikrorechner 1 (Einführung)

Praktikum Mikrorechner 1 (Einführung) G. Kemnitz Institut für Informatik, Technische Universität Clausthal November 5, 2014 1/16 Praktikum Mikrorechner 1 (Einführung) G. Kemnitz Institut für Informatik, Technische Universität Clausthal November

Mehr

Informatik 12 Kapitel 3 - Funktionsweise eines Rechners

Informatik 12 Kapitel 3 - Funktionsweise eines Rechners Fachschaft Informatik Informatik 12 Kapitel 3 - Funktionsweise eines Rechners Michael Steinhuber König-Karlmann-Gymnasium Altötting 9. Februar 2017 Folie 1/36 Inhaltsverzeichnis I 1 Komponenten eines PCs

Mehr

RO.RO, ADD RO, 120,121 MUL 120,120,121 INPUT RO, MUL INPUT 120,0 ADD RO, INPUT 121,1 INPUT R 1,2 INPUT 121,2 RO, IN put 121,1 N RO, ROIRA SET 121,3

RO.RO, ADD RO, 120,121 MUL 120,120,121 INPUT RO, MUL INPUT 120,0 ADD RO, INPUT 121,1 INPUT R 1,2 INPUT 121,2 RO, IN put 121,1 N RO, ROIRA SET 121,3 6 4 Prozessor-Datenpfad a) Schreiben Sie für den Universalrechner ein Programm in Assembler-Sprache, welches die drei Seiten eines Würfels von den Eingängen, und einliest, das Volumen des Würfels berechnet

Mehr

Arbeitsfolien - Teil 4 CISC und RISC

Arbeitsfolien - Teil 4 CISC und RISC Vorlesung Informationstechnische Systeme zur Signal- und Wissensverarbeitung PD Dr.-Ing. Gerhard Staude Arbeitsfolien - Teil 4 CISC und RISC Institut für Informationstechnik Fakultät für Elektrotechnik

Mehr

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9 Inhalt Curriculum 1.4.2 Manfred Wilfling HTBLA Kaindorf 28. November 2011 M. Wilfling (HTBLA Kaindorf) CPUs 28. November 2011 1 / 9 Begriffe CPU Zentraleinheit (Central Processing Unit) bestehend aus Rechenwerk,

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Klaus Knopper 26.10.2004 Repräsentation von Zahlen Zahlen können auf unterschiedliche Arten dargestellt werden Aufgabe: Zahlen aus der realen Welt müssen im Computer abgebildet

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer Übung RA, Kapitel 1.5 1. Beantworten Sie bitte folgende Repetitionsfragen 1. Beschreiben Sie in eigenen Worten und mit einer Skizze die Schichtung einer Multilevel Maschine. Folie 5, rechte Seite 2. Welche

Mehr

Programmieren von MiniRISC-Prozessor in Assemblersprache

Programmieren von MiniRISC-Prozessor in Assemblersprache Programmieren von MiniRISC-Prozessor in Assemblersprache F1. Die integrierte Entwicklungsumgebung des MiniRISC-Prozessors lässt sich auf der Webseite des Faches Digitaltechnik herunterladen. Die Umgebung

Mehr

3. Grundlagen der Rechnerarchitektur. Praktische Informatik 2. Wolfgang Effelsberg

3. Grundlagen der Rechnerarchitektur. Praktische Informatik 2. Wolfgang Effelsberg 3.1 Architektur des von-neumann-rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und Adressierungstechniken 3.4 Beispiele: Die Prozessoren Texas Instruments MSP 430

Mehr

Laborübung 3. Abnahme (bitte vom Betreuer per Unterschrift bestätigen lassen) Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5

Laborübung 3. Abnahme (bitte vom Betreuer per Unterschrift bestätigen lassen) Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Maschinenorientierte Programmierung Prof. Dr. Sven-Hendrik Voß SoSe 18 14. Mai 2018 Laborübung 3 Abnahme (bitte vom Betreuer per Unterschrift bestätigen lassen) Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 4

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister)

Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister) Prof. Kemnitz Institut für Informatik, Technische Universität Clausthal November 5, 2014 1/18 Praktikum Mikrorechner 4 (Bitmanipulation und Spezialregister) Prof. Kemnitz Institut für Informatik, Technische

Mehr

Ein- Ausgabeeinheiten

Ein- Ausgabeeinheiten Kapitel 5 - Ein- Ausgabeeinheiten Seite 121 Kapitel 5 Ein- Ausgabeeinheiten Am gemeinsamen Bus einer CPU hängt neben dem Hauptspeicher die Peripherie des Rechners: d. h. sein Massenspeicher und die Ein-

Mehr

Arduino Kurs Bits und Bytes. Stephan Laage-Witt FES Lörrach

Arduino Kurs Bits und Bytes. Stephan Laage-Witt FES Lörrach Arduino Kurs Bits und Bytes Stephan Laage-Witt FES Lörrach - 2018 Themen Digitale Eingabe Bit, Byte und Wort Reaktionszeittester FES Lörrach Juli 2017 2 Was ist ein Bit? Ein Bit ist die kleinste Informationseinheit

Mehr

Von-Neumann-Architektur

Von-Neumann-Architektur Von-Neumann-Architektur Bisher wichtig: Konstruktionsprinzip des Rechenwerkes und Leitwerkes. Neu: Größerer Arbeitsspeicher Ein- und Ausgabewerk (Peripherie) Rechenwerk (ALU) Steuerwerk (CU) Speicher...ppppp...dddddd..

Mehr

Die HAM. Die Hypothetische Akku-Maschine

Die HAM. Die Hypothetische Akku-Maschine Die HAM Die Hypothetische Akku-Maschine Inhaltsverzeichnis 1 Die Ham 1.1 Überblick 1.2 Hardware Funktion der HAM 1.3 Der Assembler-Befehlssatz Addition zweier Zahlen 1.4 Der HAM-Editor Addition zweier

Mehr

KWP20 Android Scanner Software:

KWP20 Android Scanner Software: KWP20 Android Scanner Software: Mit dieser Android App können die Punkte: 1. Material-Ausgabe 2. Material-Rücknahme erfasst werden. Dies ist das selbe, wie die Verarbeitung und Eingabe beim Unitech HT630

Mehr

ERA-Zentralübung Maschinenprogrammierung

ERA-Zentralübung Maschinenprogrammierung ERA-Zentralübung Maschinenprogrammierung M. Meyer LRR TU München 27.10.2017 Arithmetik mit 80386 Inhalt Rechenmodell Register Befehle Beispiele 80386-Rechenmodell Typisches Zwei-Address-Format Ziel :=

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Rechnerarchitektur Aufgabe

Mehr

1. TÜ-Zusammenfassung zum Modul Computersysteme

1. TÜ-Zusammenfassung zum Modul Computersysteme 1. TÜ-Zusammenfassung zum Modul Computersysteme Kurzzusammenfassung 1. Kapitel Netzteil: Aufbau: Bereitgestellte Spannungen: 12V, -12V, 5V, -5V und 3.3V Leistung: Da bei Transformatoren die übertragbare

Mehr

5.1 Beschreibung des Prozessors M Programmierung in Maschinensprache. 5.1 Beschreibung des Prozessors M 68000

5.1 Beschreibung des Prozessors M Programmierung in Maschinensprache. 5.1 Beschreibung des Prozessors M 68000 5. Programmierung in Maschinensprache (Assembler) 5.1 Beschreibung des Prozessors M 68000 5.1 Beschreibung des Prozessors M 68000 5.2 Adressierungsarten des M 68000 5.3 Maschinenbefehle des M 68000 5.4

Mehr

5. Programmierung in Maschinensprache

5. Programmierung in Maschinensprache 5. Programmierung in Maschinensprache (Assembler) 5.1 Beschreibung des Prozessors M 68000 5.2 Adressierungsarten des M 68000 5.3 Maschinenbefehle des M 68000 5.4 Unterprogrammtechnik 5. Maschinensprache

Mehr

Inhaltsverzeichnis. Teil I Aufgaben 1

Inhaltsverzeichnis. Teil I Aufgaben 1 iii Teil I Aufgaben 1 1 Grundlagen der Elektrotechnik 3 Aufgabe 1: Punktladungen............................ 3 Aufgabe 2: Elektronenstrahlröhre........................ 3 Aufgabe 3: Kapazität eines Koaxialkabels...................

Mehr

Prüfungsklausur 1608 WS 2013/2014

Prüfungsklausur 1608 WS 2013/2014 Prüfungsklausur 1608 WS 2013/2014 Prof. Dr. J. Keller 22.03.2014 FernUniversität Hagen Prüfungsklausur Computersysteme 22.03.2014 Seite I- 1 Bewertungsschema Aufgabe a b c d e total I-1 3 4 1 2 2 12 I-2

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

Prof. Dr. Sven-Hendrik Voß Sommersemester 2018 Technische Informatik (Bachelor), Semester 2 Termin 5, Maschinenorientierte Programmierung

Prof. Dr. Sven-Hendrik Voß Sommersemester 2018 Technische Informatik (Bachelor), Semester 2 Termin 5, Maschinenorientierte Programmierung Prof. Dr. Sven-Hendrik Voß Sommersemester 2018 Technische Informatik (Bachelor), Semester 2 Termin 5, 07.05.2018 Maschinenorientierte Programmierung Seite 2 Assemblersyntax des 8051 Maschinenorientierte

Mehr

1.7 Atmega-Programmierung in ASM/Verschachtelte Schleifen

1.7 Atmega-Programmierung in ASM/Verschachtelte Schleifen .7 Atmega-Programmierung in ASM/Verschachtelte Schleifen.7. Aufgabe Die beiden LEDs sollen abwechselnd blinken. Mit der bisherigen Lösung flackern sie nur (Beispiel: blink0.asm):. include /usr/share/avra/m8def.

Mehr

b i Ergänzung zu Vollkonjunktionen (ohne Indizierung i = 0... n-1): q = a b a b q = a b q = a b a b a b

b i Ergänzung zu Vollkonjunktionen (ohne Indizierung i = 0... n-1): q = a b a b q = a b q = a b a b a b Ansatz: Die Realisierung von arithmetischen Operationen mit Logikgattern führt zu ähnlichen Verarbeitungsstrukturen für arithmetische und logische Befehle Parallele Zahlwort/oder Logikverarbeitung ist

Mehr

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen Aufgabenstellung: - das beigefügte Assembler-Programm schrittweise ausführen - sich mit der Handhabung der Entwicklungswerkzeuge

Mehr

MikroController der 8051-Familie

MikroController der 8051-Familie i Dipl.-Ing. Roland Dilsch MikroController der 8051-Familie Aufbau, Funktion, Einsatz Vogel Buchverlag Inhaltsverzeichnis Vorwort 5 1 Was ist ein MikrocontroUer? 13 1.1 Aufbau eines Computers 13 1.2 Entstehung

Mehr

Mikrocomputertechnik mit Controllern der AtmelAVR-RISC-Familie

Mikrocomputertechnik mit Controllern der AtmelAVR-RISC-Familie Mikrocomputertechnik mit Controllern der AtmelAVR-RISC-Familie Programmierung in Assembler und C - Schaltungen und Anwendungen von Prof. Dipl.-Ing. Günter Schmitt 4., korrigierte Auflage Oldenbourg Verlag

Mehr

Drucken und Löschen von angehaltenen Druckaufträgen

Drucken und Löschen von angehaltenen Druckaufträgen Beim Senden eines Druckauftrags an den Drucker können Sie im Treiber angeben, daß der Drucker den Auftrag im Speicher zurückhalten soll. Wenn Sie zum Drucken des Auftrags bereit sind, müssen Sie an der

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Bernd-Dieter Schaaf Mikrocomputertechnik Mit MikroControllern der Familie 8051 unter Mitarbeit von Stephan Böcker 5., aktualisierte Auflage mit zahlreichen Bildern, Beispielen und Übungen HANSER 1 Der

Mehr

Mikrocontrollerprogrammierung in Assembler und C

Mikrocontrollerprogrammierung in Assembler und C mitp Professional Mikrocontrollerprogrammierung in Assembler und C für die Mikrocontroller der 8051-Familie - Simulation unter Multisim von Herbert Bernstein 1. Auflage Mikrocontrollerprogrammierung in

Mehr

Drucken und Löschen von angehaltenen Druckaufträgen

Drucken und Löschen von angehaltenen Druckaufträgen Beim Senden eines Druckauftrags an den Drucker können Sie im Treiber angeben, daß der Drucker den Auftrag im Speicher zurückhalten soll. Wenn Sie zum Drucken des Auftrags bereit sind, müssen Sie an der

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

N Bit Binärzahlen. Stelle: Binär-Digit:

N Bit Binärzahlen. Stelle: Binär-Digit: N Bit Binärzahlen N Bit Binärzahlen, Beispiel 16 Bit: Stelle: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binär-Digit: 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 Least Significant Bit (LSB) und Most Significant Bit (MSB)

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise Teil 1 Kapitel 2 Rechner im Überblick 2.1 Rechnersichten 2.2 Rechnerorganisation: Aufbau und Funktionsweise Frank Schmiedle Technische Informatik I 2.1 Rechnersichten Modellierung eines Rechners Zusammenspiel

Mehr

E Mikrocontroller-Programmierung

E Mikrocontroller-Programmierung E Mikrocontroller-Programmierung E Mikrocontroller-Programmierung E.1 Überblick Mikrocontroller-Umgebung Prozessor am Beispiel AVR-Mikrocontroller Speicher Peripherie Programmausführung Programm laden

Mehr

myavr Programmierung in C

myavr Programmierung in C myavr Programmierung in C Stefan Goebel Februar 2017 Stefan Goebel myavr Programmierung in C Februar 2017 1 / 12 Grundgerüst... braucht man immer! #include // Register- und Konstantendefinitionen

Mehr

Informatikgrundlagen I Grundlagen der Informatik I

Informatikgrundlagen I Grundlagen der Informatik I Informatikgrundlagen I Grundlagen der Informatik I Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 1 Inhalt 1. Einführung,

Mehr

Einführung Microcontroller

Einführung Microcontroller 18. Januar 2011 Inhaltsverzeichnis 1 Einleitung 2 3 4 5 Was ist eigentlich ein Microcontroller? Microcontroller - Was ist das? Microcontroller enthalten: integrierte und gleichzeitig programmierbare Schaltungen,

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

Aastra 620d, 630d, 650c PC Tool / Telefonbuch Bedienungsanleitung

Aastra 620d, 630d, 650c PC Tool / Telefonbuch Bedienungsanleitung Aastra 620d, 630d, 650c PC Tool / Telefonbuch Bedienungsanleitung A600 PC Tool / Telefonbuch Das Aastra 600 PC Tool ist eine Softwareplattform zum Verwalten von lokalen Daten für Mobilteile der Aastra

Mehr

Aufbau eines Taschenrechners

Aufbau eines Taschenrechners siehe Skizze Aufbau einer Waage siehe Skizze Speichermöglichkeit Aufbau eines Taschenrechners Speichermöglichkeit Adressbus 65536 (2 16 ) (2 wegen der Zustände =aus und 1=an) => 65536 Möglichkeiten =>

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht Kapitel 3 Mikroarchitektur 3.1 elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung (zur Realisierung der Befehlsabarbeitung

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

LCD-Verwaltungssoftware LCD-VSW

LCD-Verwaltungssoftware LCD-VSW Mit der LCD Verwaltungssoftware können die Textinformationen für die verschiedenen Anzeigen z. B. LCD UP, Tableaubaustein EB, Busch-triton erstellt Innerhalb eines Projektes können mehrere LCDs verwendet

Mehr

digital Funktionsdecoder mit 6-pol. Schnittstelle

digital Funktionsdecoder mit 6-pol. Schnittstelle digital Funktionsdecoder mit 6-pol. Schnittstelle Art. Nr. 66 2 Schaltet Zusatzfunktionen wie Licht und Innenbeleuchtung Eigenschaften Multiprotokoll Funktionsdecoder für DCC und Motorola 6-polige Schnittstelle

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Lösung 5. Übungsblatt

Lösung 5. Übungsblatt Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 5. Übungsblatt Entwicklung eines Mikroprogrammsteuerwerks und Maschinen-programmierung für einen einfachen Rechner.

Mehr

Rechnerstrukturen. 7. Assembler. Inhalt. Vorlesung Rechnerstrukturen. Assemblerprogrammierung SML-CPU. SML-Assembler. Binden

Rechnerstrukturen. 7. Assembler. Inhalt. Vorlesung Rechnerstrukturen. Assemblerprogrammierung SML-CPU. SML-Assembler. Binden Rechnerstrukturen 7. Assembler Assemblerprogrammierung SML-CPU Inhalt SML-Assembler Adressierungsarten Instruktionssatz Assembler-Direktiven Binden 7.2 1 Maschinensprache Instruktion = Bitkombination Für

Mehr

Kode-Erzeugung für Registersatz-Maschinen

Kode-Erzeugung für Registersatz-Maschinen Kode-Erzeugung für Registersatz-Maschinen Die meisten Maschinen sind heutzutage Registersatzmaschinen, die einen Satz von 16-32 Universalregistern besitzen. Üblich sind Dreiadress-Befehle OP DEST, SRC1,

Mehr

Mikrocontroller in eigenen Hobbyprojekten nutzen

Mikrocontroller in eigenen Hobbyprojekten nutzen PIC-Mikrocontroller Mikrocontroller in eigenen Hobbyprojekten nutzen - Mikrocontroller Definition und Historie - die PIC-Familie - Entwicklungssysteme - Programmierung - Softwareerstellung - Debugging

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.1

Algorithmen und Datenstrukturen 1 Kapitel 4.1 Algorithmen und Datenstrukturen 1 Kapitel 4.1 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 4: Maschinenmodelle [Dieses Kapitel hält sich eng an

Mehr

Atmel AVR für Dummies

Atmel AVR für Dummies Atmel AVR für Dummies fd0@koeln.ccc.de 29.12.2005 Übersicht 1 Hardware Kurzvorstellung Atmega8 Programmierkabel (Eigenbau vs. Kommerzlösung) Alternative: Bootloader (Programmieren via rs232) Software Speicher

Mehr

Lösungsvorschläge zur Übungsklausur. zum Kurs 1708 Technische Informatik II. im WS 01/02

Lösungsvorschläge zur Übungsklausur. zum Kurs 1708 Technische Informatik II. im WS 01/02 Lösungsvorschläge zur Übungsklausur zum Kurs 1708 Technische Informatik II im WS 01/02 Aufgabe 1: (10 Punkte) Welche der folgenden Aussagen sind richtig? a) Unter dem Begriff Mikroprogramm versteht man

Mehr

z/architektur von IBM

z/architektur von IBM von IBM Grundzüge einer modernen Architektur Von Matthias Fäth Gliederung Geschichtlicher Überblick Neuestes Flaggschiff Namensgebung Überblick Warum 64-Bit große Register Kompatibilität zu älteren Systemen

Mehr

Selbstgebauter, kompakter, Strom sparender, Mehrkanal- Datenlogger mit PICs

Selbstgebauter, kompakter, Strom sparender, Mehrkanal- Datenlogger mit PICs Selbstgebauter, kompakter, Strom sparender, Mehrkanal- Datenlogger mit PICs Wettbewerb "Jugend Forscht" 2008 Lucas Jürgens (12 Jahre) Arbeitsgemeinschaft "Jugend Forscht" des Christian-Gymnasiums Hermannsburg

Mehr

Wichtige Rechnerarchitekturen

Wichtige Rechnerarchitekturen Wichtige Rechnerarchitekturen Teil 2 IBM 360 1 IBM 360 Angekündigt im April 1964, weil alle Aspekte der maschinellen Datenverarbeitung (general purpose computer) zusammengefasst werden sollten: 360 Grad

Mehr

Fachbereich Medienproduktion

Fachbereich Medienproduktion Fachbereich Medienproduktion Herzlich willkommen zur Vorlesung im Studienfach: Grundlagen der Informatik Themenübersicht Rechnertechnik und IT Sicherheit Grundlagen der Rechnertechnik Prozessorarchitekturen

Mehr

4. Mikroprogrammierung (Firmware)

4. Mikroprogrammierung (Firmware) 4. Mikroprogrammierung (Firmware) 4. Ein Mikroprogramm-gesteuerter Computer 4.2 Mikroprogramm-Beispiel: Multiplikation 4.3 Interpretation von Maschinenbefehlen durch ein Mikroprogramm 4. Mikroprogrammierung

Mehr

Befehlssatz AVR RISC Controller

Befehlssatz AVR RISC Controller Befehlssatz AVR RISC Controller Design-Philosophie des AVR Befehlssatzes Assembler-Sprache AVR-Befehlssatz Philosophie RISC = Reduced Instruction Set Computing keine komplexen Befehle möglichst symmetrischer

Mehr

PLL-UNI-Display-1. Bedienungsanleitung

PLL-UNI-Display-1. Bedienungsanleitung PLL-UNI-Display-1 Bedienungsanleitung Das Display dient zur Konfiguration von PLL-ICs. Alle Baugruppen von DG0VE mit PLL können mit diesem Display betrieben werden. Weiterhin besteht auch die Möglichkeit

Mehr

A ProgrAmmer s Guide to KIM Programming

A ProgrAmmer s Guide to KIM Programming A ProgrAmmer s Guide to KIM Programming by Erik Bartmann - Vers. 0.1 2 - Erste Befehle Erste Befehle Nun wird es aber Zeit, dass wir unser erstes Programm schreiben und wir werden hier einiges über die

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB

Mehr