1. Isotopie und Präzisionsmasse 2. Erkennung/Eigenschaften des Molekülions 3. Fragmentierung (ungeradelektronischer Ionen)

Größe: px
Ab Seite anzeigen:

Download "1. Isotopie und Präzisionsmasse 2. Erkennung/Eigenschaften des Molekülions 3. Fragmentierung (ungeradelektronischer Ionen)"

Transkript

1 Interpretation von Massenspektren 1. Isotopie und Präzisionsmasse 2. Erkennung/Eigenschaften des Molekülions 3. Fragmentierung (ungeradelektronischer Ionen) 1

2 EI-Massenspektrum (Acetophenon, M = 120): 100 O 105 Basision (Basepeak) Relative Intensität [%] Molekülion M m/z Fragmente Isotopenpeaks 2

3 Periodensystem und Isotopie der Elemente 3

4 Isotopenmassen und -verteilungen häufig vorkommender Elemente Element Massenzahl Rel. Häufigkeit in % Exakte Masse Chemisches Atomgewicht [amu] [g/mol] H 1 99,99 1, ,0079 D 2 0,01 2, C 12 98,93 12, , ,07 13, N 14 99,63 14, , ,37 15, O 16 99,76 15, , ,04 16, ,21 17, F ,00 18, ,9984 Si 28 92,23 27, , ,68 28, ,09 29, P ,00 30, ,9738 S 32 94,93 31, , ,76 32, ,29 33, ,02 35, Cl 35 75,78 34, , ,22 36, Br 79 50,69 78, , ,31 80, I ,00 126, ,9045 4

5 EI-Massenspektrum von p-chloranisol O Cl (mainlib) Benzene, 1-chloro-4-methoxy- 5

6 Isotopenmuster des Molekülions von p-chloranisol OCH 3 Cl 6

7 7

8 Isotopenmuster von Selen: Nominalmasse: 74 u intensivstes Isotop: 80 u 8

9 Isotopenmuster eines Seleno-organyls: NO 2 SeCN C 7 H 4 N 2 O 2 80 Se M = 228 Angabe des zur Berechnung verwendeten Isotops notwendig! 9

10 Isotopenmuster von Anthracen C 14 H 10, M =

11 Isotopenmuster verschiedener Anisol-Derivate OCH 3 SCH 3 OSi(CH 3 ) 3 C 7 H 8 O C 7 H 8 S C 9 H 14 OSi OCH 3 OCH 3 Cl C 7 H 7 ClO Br C 7 H 7 BrO 14

12 Isotopenmuster verschiedener Kombinationen von Chlor und Brom Die Signale liegen jeweils zwei Masseneinheiten auseinander. 15

13 Substanzidentifikation anhand des Isotopenmusters des Molekülions Folgende Reaktion sollte durchgeführt werden: EI-Massenspektrum des Reaktionsprodukts: 16

14 Substanzidentifikation anhand des Isotopenmusters des Molekülions experimentelles Molekülionenmuster berechnetes Isotopenmuster für C 7 H 18 P 2 S 2 Si berechnetes Isotopenmuster für S 8 17

15 Substanzidentifikation anhand des Isotopenmusters des Molekülions Gemessenes Spektrum Datenbank-Spektrum S S S S S S S S (ma inlib) Cyclic octa a tomic sulfur 18

16 Isotopenmassen und -verteilungen häufig vorkommender Elemente Element Massenzahl Rel. Häufigkeit in % Exakte Masse Chemisches Atomgewicht [amu] [g/mol] H 1 99,99 1, ,0079 D 2 0,01 2, C 12 98,93 12, , ,07 13, N 14 99,63 14, , ,37 15, O 16 99,76 15, , ,04 16, ,21 17, F ,00 18, ,9984 Si 28 92,23 27, , ,68 28, ,09 29, P ,00 30, ,9738 S 32 94,93 31, , ,76 32, ,29 33, ,02 35, Cl 35 75,78 34, , ,22 36, Br 79 50,69 78, , ,31 80, I ,00 126, ,

17 Genaue Massen einiger Ionen gleicher Massenzahl Summenformel Massenzahl Exakte Masse [amu] CO ,9898 C 2 H 4 O 44 44,0262 C 2 H 6 N 44 44,0500 C 3 H ,0626 C 13 2 CH ,0581 Mehrdeutige Massendifferenzen: Δm = 43: C 3 H 7 - oder CH 3 C=O? (43,04578 oder 43,01839) Δm = 45: CH 3 -CH 2 -O- oder -COOH? (45,03404 oder 44,99765) Δm = 28: -CH 2 -CH 2 - oder C=O? (28,03130 oder 27,99492) 20

18 Aussehen eines massenspektrometrischen Peaks 21

19 Auflösungsvermögen 10%-Tal-Definition: FWHM-Definition: (full width at half maximum) m 1 m 2 m 3 10% H R = m 1 /(m 2 -m 1 ) = m/δm R = m 3 /W 22

20 Auflösungsvermögen Summenformel: C 60 H 122 N 20 O 16 S 2 Nominalmasse: 1442 Exakte Masse: u Chemisches Molekulargewicht: g/mol Intensity [%] R = Mass Intensity [%] R = Mass Intensity [%] R = Mass 23

21 Magnetisches Sektorfeld-MS Massentrennung und Richtungsfokussierung 24

22 Magnetisches Sektorfeld-MS Energiedispersion zu B + ΔE kin Ionenstrahl mit m = const., aber zu B ± E kin r m m z 2U B² B zu B - ΔE kin Ursache von ΔE kin : thermische Energieverteilung der Ionen 25

23 Elektrostatischer Sektor (electrostatic analyzer, ESA) zu B + ΔE kin zu B + ΔE kin r e r e Ionenstrahl mit m = zu const., B - ΔEaber kin zu B ± E kin zu B - ΔE kin Energiefokussierter Ionenstrahl Energiedispersion: r e 2U E e B Keine Massenabhängigkeit! 26

24 Doppelfokussierung Magnetisches Sektorfeld Elektrostatischer Analysator (ESA) r m Energieaufgelöster Ionenstrahl r e Ionen Hypothetischer Ionenstrahl: ein m/z, zwei Energien Eintrittsspalt Energiefokussierter Ionenstrahl Austrittsspalt Doppelfokussierung: Energiefokussierung Richtungsfokussierung (2. Ordnung) Massendispersion 27

25 Bestimmung von Strukturelementen über die Präzisionsmasse OH m/z m/z 77 = 28? (-CH 2 -CH 2 -, C=O, -N=N-) OH O OH N N OH C 8 H 10 O C 7 H 6 O 2 C 6 H 6 N 2 O 28

26 Präzisionsmasse der Verbindung: 122,03678 u ATOMIC COMPOSITION REPORT (MANUAL) Selected isotopes: Symbol Min Max V'cy Name C 0 auto 4 Carbon-12 H 0 auto 1 Hydrogen-1 N 0 auto 3 Nitrogen-14 O 0 auto 2 Oxygen Allowable error = minimum of ppm, mmu Mass Calculated ppm mmu Formula C7.H6.O C5.H4.N3.O C3.H2.N O C2.H6.N2.O H4.N5.O H10.O OH C.H6.N4.O C3.H8.N.O C4.H4.N C6.H6.N2.O ***** End of Atomic Composition Report ***** 29

27 Massenspektrum der falschen Verbindung: OH (mainlib) Phenylethyl Alcohol 30

28 Ermittlung der Elementarzusammensetzung aus der Präzisionsmasse Intensity (%age) m/z aus NMR bekannt: langkettiger Carbonsäureester Informationen aus dem Massenspektrum: - Kohlenwasserstoff-Fragmente im unteren Massenbereich; - Homologengemisch (Δm = 14), Hauptkomponente M = 648; - keine auffallende Isotopie, also (außer O) keine Heteroatome; - Höhe des M+1-Peaks zeigt mindestens 40 C-Atome an; - Fragment m/z 257 spricht für einen Palmitinsäureester. 31

29 Ermittlung der Elementarzusammensetzung aus der Präzisionsmasse gemessene Präzisionsmasse: 648, Mass Calculated ppm mmu Formula C18.H223.O C44.H88.O C19.H100.O C9.H473.O C.H108.O C17.H346.O C36.H C10.H350.O H231.O C26.H96.O C37.H92.O C11.H227.O C.H600.O C25.H219.O8 32

30 Bestätigung der Elementarzusammensetzung durch MS Experimentelle Angaben zur Genauigkeit der Bestimmung Absoluter Wert Relativer Wert Beispiel: Fehlerangabe: mmu = millimass unit (1 Millimasse = Da) ppm = parts per million berechnet: Da gefunden: Da Δm: Da = -2.3 mmu in mmu oder in ppm Umrechnung mmu ppm: Δm [ppm] = /545 = = = -4.2 ppm korrekte Angabe: Da 2.3 mmu oder Da 4.2 ppm Geforderte Genauigkeit für die Bestätigung einer Präzisionsmasse: ± 5 ppm 33

31 Berücksichtigung der Ruhemasse eines Elektrons bei hoher Auflösung Relative Ruhemasse des Elektrons: M r = Da = mmu Beispiel: [M - 2H] 2- von Coenzym A Ohne Berücksichtigung von 2 Elektronen: Mit Berücksichtigung von 2 Elektronen: Experimenteller Wert: Abweichung ohne Berücksichtigung der Elektronen Abweichung mit Berücksichtigung der Elektronen Da Da Da 1.75 ppm ppm 34

1 Terminologie. 1) Die Bezeichnung Massenspektroskop wird praktisch nicht mehr verwendet; für Massenspektrograph siehe Abschnitt

1 Terminologie. 1) Die Bezeichnung Massenspektroskop wird praktisch nicht mehr verwendet; für Massenspektrograph siehe Abschnitt O:/Wiley/Budzikiewicz/3d/c01.3d from 13.06.2012 13:11:03 Teil I Grundlagen O:/Wiley/Budzikiewicz/3d/c01.3d from 13.06.2012 13:11:03 O:/Wiley/Budzikiewicz/3d/c01.3d from 13.06.2012 13:11:03 3 1 Terminologie

Mehr

Teil 4 Massenspektrometrie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 4 Massenspektrometrie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 4 Massenspektrometrie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Funktionseinheiten eines Massenspektrometers Grundprinzip der MS: Trennung von Ionen nach

Mehr

Spektroskopie in der Organischen Chemie. Massenspektren

Spektroskopie in der Organischen Chemie. Massenspektren Massenspektren In der Frühzeit der MS wurden Spektren auf Fotopapier registriert, wobei das Spektrum mehrfach mit unterschiedlicher Ordinatenauslenkung ausgeschrieben wurde, um sehr schwache neben sehr

Mehr

Terminologie. Die Ausdrücke Massenspektrometer

Terminologie. Die Ausdrücke Massenspektrometer I Grundlagen Massenspektrometrie, Fünfte Auflage. H. Budzikiewicz, M. Schäfer Copyright 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30822-9 7 1 Terminologie Ein Massenspektrometer ist

Mehr

Was bedeutet CH 3 OH?

Was bedeutet CH 3 OH? Was bedeutet CH 3 OH? 1 C 1 H H 17 O MS Einleitung 1 Worin unterscheiden sich diese Moleküle? MS Einleitung Richtig, sie unterscheiden sich in der Masse! MS Einleitung 3 Aber woher kommt unser Wissen über

Mehr

Bioanalytik Zusatzinformation: Massenspektrometrie 012_001. BioAnalytik

Bioanalytik Zusatzinformation: Massenspektrometrie 012_001. BioAnalytik Bioanalytik 11.01.16 Zusatzinformation: Massenspektrometrie 012_001 Rev. 1.5 091206 - Standort Recklinghausen- Wintersemester 2015-16 2015-2016 : 1 Folienbasis: Prof. Beyer Massenspektrometrie Einführung

Mehr

Literatur zur Massenspektrometrie

Literatur zur Massenspektrometrie Literatur zur Massenspektrometrie 1. M. Hesse, H. Meier, B. Zeeh: Spektroskopische Methoden in der organischen Chemie. Georg Thieme Verlag, Stuttgart, 8. Auflage 2012, 79.95; ISBN 9783135761084 Behandelt

Mehr

Schema eines Massenspektrometer-Systems

Schema eines Massenspektrometer-Systems Vakuumsystem Probe - 8-5 Druck 10... 10 hpa Einlaßsystem Ionenquelle Massenanalysator Detektor Signalverarbeitung Ausgabe Schema eines Massenspektrometer-Systems Einlasssystem für direkte Probenaufgabe

Mehr

ZHAW / N / CH / Analytische Chemie

ZHAW / N / CH / Analytische Chemie Analytische Chemie Kurztest 3 Dauer: Minuten Erlaubte Hilfsmittel: Vorlesungsunterlagen, Lehrbücher, Taschenrechner und eigene Formelsammlungen Alle Berechnungen sind am Schluss zusammen mit diesen Aufgabenblättern

Mehr

Die Einheit Mol Stoffmengen können in verschiedenen Einheiten gemessen werden:

Die Einheit Mol Stoffmengen können in verschiedenen Einheiten gemessen werden: Cusanus-Gymnasium Wittlich W. Zimmer 1/5 Die Einheit Mol Stoffmengen können in verschiedenen Einheiten gemessen werden: a) durch die Angabe ihrer Masse b) durch die Angabe ihres Volumens c) durch die Anzahl

Mehr

2 Massenspektrometrie

2 Massenspektrometrie 2 Massenspektrometrie 2.1 Grundlagen relative Atommasse Massenzahl Summe relative Molekülmasse M Isotope ein Element gleiche Protonenzahl, aber verschiedene Neutronenzahl Isobare Teilchen gleicher Masse,

Mehr

Fragmentierung geradelektronischer Ionen

Fragmentierung geradelektronischer Ionen Fragmentierung geradelektronischer Ionen Problem: unterschiedliche Fragmentierungswege für geradelektronische Ionen [M+H] +, [M-H] - und Radikalionen [M] + umfangreiche Kenntnisse über die Fragmentierung

Mehr

Autor: Cornelia Spee Tag der Versuchdurchführung: 31.3.2008. Versuch I2. Massenspektrometrie

Autor: Cornelia Spee Tag der Versuchdurchführung: 31.3.2008. Versuch I2. Massenspektrometrie Autor: Tag der Versuchdurchführung: 31.3.2008 Versuch I2 Massenspektrometrie 1. Zusammenfassung Die Massenspektrometrie stellt eine wichtige Methode zur Strukturanalyse, sowie zur Bestimmung von Massen

Mehr

Spektroskopie-Seminar SS 18 8 Massenspektrometrie Massenspektrometrie

Spektroskopie-Seminar SS 18 8 Massenspektrometrie Massenspektrometrie SS 18 Massenspektrometrie 1 8.1 Prinzip Methode zur Bestimmung der Masse von Molekülen Analyt wird in die Gasphase überführt Moleküle werden ionisiert und durch elektrisches Feld beschleunigt Auftrennung

Mehr

Massenspektrometrie (MS)

Massenspektrometrie (MS) Massenspektrometrie (MS) Die Massenspektrometrie ist unter den heute routinemäßig verwendeten Methoden die jüngste, denn ihre Anwendung begann erst um 1960. Seit den Arbeiten von BIEMANN über Fragmentierungsmuster

Mehr

Massenspektrometrie (MS)

Massenspektrometrie (MS) Massenspektrometrie (MS) Die Massenspektrometrie ist unter den heute routinemäßig verwendeten Methoden die jüngste, denn ihre Anwendung begann erst um 1960. Seit den Arbeiten von BIEMANN über Fragmentierungsmuster

Mehr

Erratum im 3. Teil: Aminosäure, Folie Nr. 59

Erratum im 3. Teil: Aminosäure, Folie Nr. 59 Erratum im 3. Teil: Aminosäure, Folie Nr. 59 Gabriel Synthese O H N-Br O + R X Cl COOH O O N R COOH N 2 H 4 H 2 N R COOH N-Brom-Phthalimid O NH NH O Synthese von DL-Asp Synthese von DL-Glu COOH COOH Maleinsäure

Mehr

Schriftliche Prüfungen Jahreskurs Analytische Chemie I&II Winter 2011/2012 BSc D-CHAB/BIOL

Schriftliche Prüfungen Jahreskurs Analytische Chemie I&II Winter 2011/2012 BSc D-CHAB/BIOL Schriftliche Prüfungen Jahreskurs Analytische Chemie I&II Winter 2011/2012 BSc D-CHAB/BIOL Vorname: Name: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 120 Min. Teilen Sie sich

Mehr

Schriftliche Prüfung S Analytische Chemie I Sommer 2017

Schriftliche Prüfung S Analytische Chemie I Sommer 2017 Schriftliche Prüfung 529-0051- 00S Analytische Chemie I Sommer 2017 Vorname: Legi-Nr.: Name: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 60 Min. Teilen Sie sich Ihre Zeit gut

Mehr

Klausur OC1 (BA-Studiengang) 2. Wiederholung :00 16:00 Uhr N2. Name: Punkte: Matrikel Nr. Note:

Klausur OC1 (BA-Studiengang) 2. Wiederholung :00 16:00 Uhr N2. Name: Punkte: Matrikel Nr. Note: Klausur OC1 (BA-Studiengang) 2. Wiederholung 12.04.2012 13:00 16:00 Uhr N2 PIN: Name: Punkte: Matrikel Nr. Note: Notenskala: 80-78=1.0 77-75=1.3 74-71=1.5 70-67=1.7 66-63=2.0 62-59=2.3 58-56=2.5 55-53=2.7

Mehr

Übungen zur Spektroskopie 2

Übungen zur Spektroskopie 2 Übungen zur Spektroskopie 2 C. Dubler und Dr. D. S. Stephenson Department Chemie, Universität München Sie finden diese Übungen und alte Klausuren (mit Lösung) auf unserer Homepage: http://cicum200.cup.unimuenchen.de/intranet/depch/analytik/nmr_f/index.php

Mehr

Thema heute: Aufbau der Materie, Atommodelle Teil 2

Thema heute: Aufbau der Materie, Atommodelle Teil 2 Wiederholung der letzten Vorlesungsstunde: Atomistischer Aufbau der Materie, historische Entwicklung des Atombegriffes Atome Thema heute: Aufbau der Materie, Atommodelle Teil 2 Vorlesung Allgemeine Chemie,

Mehr

Massenspektrometrie. (Bilder aus Hesse, Meier, Zeeh: Spektroskopische Methoden in der Organischen Chemie)

Massenspektrometrie. (Bilder aus Hesse, Meier, Zeeh: Spektroskopische Methoden in der Organischen Chemie) Massenspektrometrie (Bilder aus Hesse, Meier, Zeeh: Spektroskopische Methoden in der Organischen Chemie) Die Massenspektrometrie erlaubt die genaue Bestimmung der relativen Molekülmasse einer Verbindung

Mehr

Z 12 1) BESTIMMUNG DER SUMMENFORMEL: a. AUS DEN MASSENPROZENTEN

Z 12 1) BESTIMMUNG DER SUMMENFORMEL: a. AUS DEN MASSENPROZENTEN ANALYTIK 1) BESTIMMUNG DER SUMMENFORMEL: a. AUS DEN MASSENPROZENTEN Ziel: Ermittlung einer Summenformel einer Substanz aus C, und O wenn die Massenprozent der Elemente und die Molmasse M r der Substanz

Mehr

EINFÜHRUNG IN DIE MASSENSPEKTROSKOPIE

EINFÜHRUNG IN DIE MASSENSPEKTROSKOPIE MONOGRAPHIEN DER EXPERIMENTELLEN UND THEORETISCHEN PHYSIK HERAUSGEGEBEN VON FRANZ X. EDER EINFÜHRUNG IN DIE MASSENSPEKTROSKOPIE f R.RlECK 1956 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN INHALTSVERZEICHNIS

Mehr

III. Strukturbestimmung organischer Moleküle

III. Strukturbestimmung organischer Moleküle III. Strukturbestimmung organischer Moleküle Röntgenstrukturbestimmung g Spektroskopie UV-VIS IR NMR Massenspektrometrie (MS) Röntgenstruktur eines bakteriellen Kohlenhydrats O O O O O O O C3 Röntgenstruktur

Mehr

2D-NMR- Spektroskopie

2D-NMR- Spektroskopie 2. 2D-NMR-Spektroskopie 2D-NMR- Spektroskopie Organische Chemie Dr. I. Kempter - 28 - 2. 2D-NMR-Spektroskopie Überblick Der Einsatz von zweidimensionalen ermöglicht es die Nachteile eines eindimensionalen

Mehr

P105. Konstitution. Massenspektrum 100 % m/z

P105. Konstitution. Massenspektrum 100 % m/z 1 P105 Konstitution 7 1 2 6 8 4 5 Massenspektrum 100 % 4 116 50 7 101 29 55 88 15 61 10 14 158 0 0 50 100 150 m/z 2 Direkte Fragmentierungen: 4 115 11 45 129 29 85 7 Damit lassen sich die prominenten Signale

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Seminar WiSe 2015/2016

Seminar WiSe 2015/2016 Massenspektrometrie Seminar WiSe 2015/2016 PD Dr. Markus Nett Nachwuchsgruppenleiter Libi Leibniz Institut i für Naturstoff Forschung und Infektionsbiologie i E mail: markus.nett@hki jena.de Grundvorgänge

Mehr

2. Übung Allgemeine Chemie AC01

2. Übung Allgemeine Chemie AC01 Allgemeine und Anorganische Chemie Aufgabe 1: 2. Übung Allgemeine Chemie AC01 Chlor lässt sich gemäß der folgenden Reaktionsgleichung herstellen: MnO 2 + 4 HCl MnCl 2 + Cl 2 + 2 H 2 O 86,9368 g 145,8436

Mehr

Schriftliche Prüfung BSc Herbst 2013

Schriftliche Prüfung BSc Herbst 2013 Prüfungen Analytische Chemie Dienstag, 13. August 2013 Schriftliche Prüfung BSc Herbst 2013 D CHAB/BIL Vorname:... Name:... Jede Aufgabe wird separat bewertet. Die maximal erreichbare Punktzahl beträgt

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2016 Organisation Informationen: www.wuttkegroup.de

Mehr

a) Gegeben ist das folgende EI-Massenspektrum (M = 148 u). Wie entstehen die Signale bei m/z = 133, 105, 91, 77 und 43?

a) Gegeben ist das folgende EI-Massenspektrum (M = 148 u). Wie entstehen die Signale bei m/z = 133, 105, 91, 77 und 43? Massenspektrometrie Übung 1: a) Gegeben ist das folgende EI-Massenspektrum (M = 148 u). Wie entstehen die Signale bei = 133, 15, 91, 77 und 43? 1 4 3 1 5 14 8 91 5 15 27 39 5 1 65 5 5 6 3 74 77 1 2 3 4

Mehr

Instrumentierung 2/1

Instrumentierung 2/1 Instrumentierung 2/1 Detektoren Elektronenvervielfacher (Electron Multiplier) Sekundärelektronenvervielfacher (SEM) + + + 2/2 Detektoren Elektronenvervielfacher (Electron Multiplier) Kanalelektronenvervielfacher

Mehr

Schriftliche Prüfungen Smesterkurs Analytische Chemie I Instrumentalanalyse organischer Vebindungen Sommer 2011

Schriftliche Prüfungen Smesterkurs Analytische Chemie I Instrumentalanalyse organischer Vebindungen Sommer 2011 Schriftliche Prüfungen Smesterkurs Analytische Chemie I Instrumentalanalyse organischer Vebindungen Sommer 2011 Vorname: Name: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 120

Mehr

Finnigan ELEMENT GD Ein neues GDMS zur Analyse hochreiner Materialien. L. Rottmann, J. Hinrichs, M. Hamester Thermo Electron (Bremen)

Finnigan ELEMENT GD Ein neues GDMS zur Analyse hochreiner Materialien. L. Rottmann, J. Hinrichs, M. Hamester Thermo Electron (Bremen) Finnigan ELEMENT GD Ein neues GDMS zur Analyse hochreiner Materialien L. Rottmann, J. Hinrichs, M. Hamester Thermo Electron (Bremen) Atom-Spektroskopie Atom- Fluoreszenz- Spektroskopie + + + + Massen-

Mehr

Kombinierte Übungen zur Spektroskopie Beispiele für die Bearbeitung

Kombinierte Übungen zur Spektroskopie Beispiele für die Bearbeitung Im folgenden soll gezeigt werden, daß es großen Spaß macht, spektroskopische Probleme zu lösen. Es gibt kein automatisches Lösungsschema, sondern höchstens Strategien, wie beim "Puzzle Lösen"; häufig hilft

Mehr

Schriftliche Prüfung BSc Frühling 2006

Schriftliche Prüfung BSc Frühling 2006 Prüfungen Analytische Chemie Mittwoch, 8. März 2006 Schriftliche Prüfung BSc Frühling 2006 D CAB/BIL Vorname:... ame:... Jede Aufgabe wird separat bewertet. Die maximal erreichbare Punktzahl beträgt 36.

Mehr

NMR-Spektroskopie Teil 2

NMR-Spektroskopie Teil 2 BC 3.4 : Analytische Chemie I NMR Teil 2 NMR-Spektroskopie Teil 2 Stefanie Wolfram Stefanie.Wolfram.1@uni-jena.de Raum 228, TO Vom Spektrum zur Struktur 50000 40000 Peaks u. Integrale 30000 Chemische Verschiebung

Mehr

Seite 1 von Standortbestimmung / Äquivalenzprüfung. Chemie. Freitag, 23. Mai 2014, Uhr

Seite 1 von Standortbestimmung / Äquivalenzprüfung. Chemie. Freitag, 23. Mai 2014, Uhr Seite 1 von 8 2. Standortbestimmung / Äquivalenzprüfung Chemie Freitag, 23. Mai 2014, 16.45-18.45 Uhr Dauer der Prüfung: 120 Minuten Erlaubte Hilfsmittel: Eine vom Dozenten visierte Formelsammlung, Ein

Mehr

Schriftliche Prüfung BSc Frühling 2006 D CHAB/BIOL. Musterlösung. für den Teil Spektroskopie

Schriftliche Prüfung BSc Frühling 2006 D CHAB/BIOL. Musterlösung. für den Teil Spektroskopie Prüfungen Analytische Chemie Mittwoch, 8. März 2006 Schriftliche Prüfung BSc Frühling 2006 D CAB/BIL Musterlösung für den Teil Spektroskopie Vorname:... ame:... Jede Aufgabe wird separat bewertet. Die

Mehr

2) In welcher Einheit wird die Energie (x-achse) im NMR-Spektrum angegeben und wie ist sie definiert?

2) In welcher Einheit wird die Energie (x-achse) im NMR-Spektrum angegeben und wie ist sie definiert? Aufgabe 1: Verständnisfragen 1) Welche Eigenschaften eines Atomkerns führen zu einem starken NMR-Signal? (man sagt der Kern hat eine große Empfindlichkeit) Ein Isotop eines Elements wird empfindlich genannt,

Mehr

Übersicht Massenanalysatoren

Übersicht Massenanalysatoren Übersicht Massenanalysatoren Gerätetyp Trennprinzip Massenbereich Auflösung Sektorfeld-MS magnetisches u. elektrostatisches Feld max. 10000 Präzisionsmasse (max. 200000) ToF-MS Flugzeitmessung (theor.)

Mehr

Chemie-Grundwissen der 9.Klasse

Chemie-Grundwissen der 9.Klasse Chemie-Grundwissen der 9.Klasse Stoffebene = Makroskopische (sichtbare) Ebene Betrachtung einer Stoffportion mit den erkennbaren und messbaren Eigenschaften Teilchenebene = Submikroskopische Ebene Betrachtung

Mehr

Physik-Übung * Jahrgangsstufe 8 * Modellvorstellung vom Aufbau der Materie Blatt 1

Physik-Übung * Jahrgangsstufe 8 * Modellvorstellung vom Aufbau der Materie Blatt 1 Physik-Übung * Jahrgangsstufe 8 * Modellvorstellung vom Aufbau der Materie Blatt 1 Brownsche Bewegung Beobachte die Bewegung von Rauchteilchen unter dem Miskroskop. Wie kann man die vom schottischen Botaniker

Mehr

Schriftliche Prüfung BSc Herbst 2010

Schriftliche Prüfung BSc Herbst 2010 Prüfungen Analytische Chemie Dienstag, 24. August 2010 Schriftliche Prüfung BSc Herbst 2010 D CHAB/BIL Vorname:... Name:... Jede Aufgabe wird separat bewertet. Die maximal erreichbare Punktzahl beträgt

Mehr

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden Protokoll Kombinierte Anwendung verschiedener Spektroskopischer Methoden Zielstellung: Durch die Auswertung von IR-, Raman-, MR-, UV-VIS- und Massenspektren soll die Struktur einer unbekannten Substanz

Mehr

Grundwissen Chemie 9. Jahrgangsstufe

Grundwissen Chemie 9. Jahrgangsstufe Grundwissen Chemie 9. Jahrgangsstufe 1. Stoffe und Reaktionen Gemisch: Stoff, der aus mindestens zwei Reinstoffen besteht. Homogen: einzelne Bestandteile nicht erkennbar Gasgemisch z.b. Legierung Reinstoff

Mehr

Teil 4 Massenspektrometrie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18

Teil 4 Massenspektrometrie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 Teil 4 Massenspektrometrie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality 1 Rückblick auf die letzte Vorlesung Grundprinzip der MS: Trennung nach Ladung und Masse

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) Aufgabe 1: (18 Punkte) In der Arbeitsgruppe Hilt wurde folgende Reaktionssequenz durchgeführt: A H 10 H B O O O 1 1 2 2 + 10 3 3 4 4 Δ DA- Produkt 6-9 5 5 6-9 2 Ph Ph Co(dppe) 2 3 3 4 4 Im ersten Reaktionsschritt

Mehr

Massenspektrometrie organischer Moleküle. 1. Apparativer Aufbau

Massenspektrometrie organischer Moleküle. 1. Apparativer Aufbau Ein Massenspektrometer ist ein Instrument, das aus einer Substanzprobe einen Strahl gasförmiger Ionen erzeugt, diese nach Masse und Ladung trennt und schließlich ein Massenspektrum liefert, aus dem abgelesen

Mehr

Schriftliche Prüfung J Analytische Chemie I&II Winter 2018

Schriftliche Prüfung J Analytische Chemie I&II Winter 2018 Schriftliche Prüfung 529-0058-00J Analytische Chemie I&II Winter 2018 Vorname: Legi-Nr.: Name: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 120 Min. Teilen Sie sich Ihre Zeit

Mehr

Strukturanalytik organischer und anorganischer Verbindungen

Strukturanalytik organischer und anorganischer Verbindungen Manfred Reichenbächer, Jürgen Popp Strukturanalytik organischer und anorganischer Verbindungen Ein Übungsbuch Teubner Vorwort V VII 1 Massenspektrometrie 1 1.1 Einführung 1 Übung 1.1 7 1.2 Das Molekülion

Mehr

Chemisches Rechnen für Bauingenieure

Chemisches Rechnen für Bauingenieure Chemisches Rechnen für Bauingenieure PD Dr. Martin Denecke Sprechstunde: Freitag, 13.30 14.30 martin.denecke@uni-due.de ++49 201 183 2742 Raum: V15 R05 H18 Periodensystem der Elemente Chemie im Netz http://www.arnold-chemie.de/downloads/molrechnen.pdf

Mehr

Schriftliche Prüfung Analytische Chemie I&II Winter 2012/2013

Schriftliche Prüfung Analytische Chemie I&II Winter 2012/2013 Schriftliche Prüfung Analytische Chemie I&II Winter 2012/2013 Vorname: Legi-Nr.: Name: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 120 Min. Teilen Sie sich Ihre Zeit gut ein.

Mehr

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: IR Schwingung von Atomen kann im klassischen Bild als harmonische Schwingung (harmonischer

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality Rückblick: IR Schwingung von Atomen kann im klassischen Bild als harmonische Schwingung (harmonischer

Mehr

Analytische Chemie. B. Sc. Chemieingenieurwesen. 14. März Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

Analytische Chemie. B. Sc. Chemieingenieurwesen. 14. März Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum: Analytische Chemie B. Sc. Chemieingenieurwesen 14. März 2007 Prof. Dr. T. Jüstel Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse. Versehen

Mehr

Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007

Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007 Relative Atommassen Stefan Pudritzki Göttingen 8. September 2007 Berechnung der relativen Atommassen Nach dem derzeitigen Kenntnisstand können die relativen Atommassen der chemischen Elemente mit einem

Mehr

Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden

Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden Grundlagen Die meisten Atomkerne führen eine Drehbewegung um die eigene Achse aus ("Spin"). Da sie geladene Teilchen (Protonen) enthalten,

Mehr

Übungsaufgaben - Analytik

Übungsaufgaben - Analytik Übungsaufgaben - Analytik Übung 1 Von einer Substanz soll der molare Extinktionskoeffizient bestimmt werden. Der Laborant hat mässig exakt verdünnt. Er hat jeweils die auf der x-achse angegbene Zahl an

Mehr

Schriftliche Prüfung S Analytische Chemie I Winter 2018

Schriftliche Prüfung S Analytische Chemie I Winter 2018 Schriftliche Prüfung 529-0051-00S Analytische Chemie I Winter 2018 Vorname: Legi-Nr.: Name: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 60 Min. Teilen Sie sich Ihre Zeit gut

Mehr

Teil 1 Aufgaben zum Stoff der Vorlesung OC1a (Grundvorlesung Organische Chemie) Maximale Punktezahl: 20 Notwendige Mindestpunkte: 8

Teil 1 Aufgaben zum Stoff der Vorlesung OC1a (Grundvorlesung Organische Chemie) Maximale Punktezahl: 20 Notwendige Mindestpunkte: 8 3. Klausur OC1 (BSc-Studiengang) PIN: 21.03.2017 11:00 14:00 Uhr N6 Name: Punkte: Matrikel Nr. Note: Notenskala: 80-75=1.0 74-71=1.3 70-67=1.7 66-63=2.0 62-59=2.3 58-53=2.7 52-50=3.0 49-48=3.3 47-42=3.7

Mehr

Klausur OC1 (BA-Studiengang) 1. Wiederholung :00 16:00 Uhr N2. Name: Punkte: Matrikel Nr. Note:

Klausur OC1 (BA-Studiengang) 1. Wiederholung :00 16:00 Uhr N2. Name: Punkte: Matrikel Nr. Note: Klausur C1 (BA-Studiengang) 1. Wiederholung 01.03.2012 13:00 16:00 Uhr N2 PIN: Name: Punkte: Matrikel Nr. Note: Notenskala: 80-78=1.0 77-75=1.3 74-71=1.5 70-67=1.7 66-63=2.0 62-59=2.3 58-56=2.5 55-53=2.7

Mehr

Massenspektrometrie. Georg Pohnert

Massenspektrometrie.  Georg Pohnert Massenspektrometrie http://masspec.scripps.edu/ Georg Pohnert 1 Massenspektren OH Elektrospray-Ionisation + O HOOC O100 209 [M+H] + 100 rel. Int. (%) 0 41 55 70 83 Elektronenstoss-Ionisation 106 148 112

Mehr

Anorganische Chemie I

Anorganische Chemie I Anorganische Chemie I PRÜFUNG B. Sc. Chemieingenieurwesen 14. September 2016 Prof. Dr. T. Jüstel Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse.

Mehr

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 4 NMR-Spektroskopie 5.1 1 H-NMR-Spektroskopie Wasserstoffatome ( 1 H, natürliche Häufigkeit 99,985 %) mit

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2014/2015 Inhaltliche Schwerpunkte Stöchiometrie

Mehr

Schriftliche Prüfung Analytische Chemie I Sommer 2014

Schriftliche Prüfung Analytische Chemie I Sommer 2014 Schriftliche Prüfung Analytische Chemie I Sommer 2014 Vorname: Name: Legi-Nr.: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 60 Min. Teilen Sie sich Ihre Zeit gut ein. Es sind

Mehr

Chloro(triphenylphosphin)gold(I)

Chloro(triphenylphosphin)gold(I) raktikum Org. und Anorg. Chemie II D-CHAB Wintersemester 04/05 Zürich, den 1. März 2005 [(h 3 )] 1 1. SYNTHESE 1.1 Methode [1] Elementares Gold wird mit Königswasser aufgeschlossen und durch Zugabe von

Mehr

Elektronenpaarbindung (oder Atombindung) Nichtmetallatom + Nichtmetallatom Metallatom + Nichtmetallatom 7. Welche Bindungsart besteht jeweils?

Elektronenpaarbindung (oder Atombindung) Nichtmetallatom + Nichtmetallatom Metallatom + Nichtmetallatom 7. Welche Bindungsart besteht jeweils? LÖSUNGEN Probetest 1 Kap. 03 Theorie Name: 1. C = Kohlenstoff Ag = Silber Br = Brom Schwefel = S Lithium = Li Uran = U 2. Aluminium - Finde die richtigen Zahlen mit Hilfe deines PSE: Massenzahl: 27 Ordnungszahl:

Mehr

Übungsblatt 1. Anmerkung zu allen Aufgaben: Entnehmen Sie weitere eventuell notwendige Angaben dem Periodensystem!

Übungsblatt 1. Anmerkung zu allen Aufgaben: Entnehmen Sie weitere eventuell notwendige Angaben dem Periodensystem! Übungsblatt 1 1. Wieviel Atome enthält 1.0 g Eisen? Wieviel Moleküle enthält 1.0 L Wasser (Dichte ρ = 1.0 g/cm 3 )? 2. Die Untersuchung von Pyrit zeigt, dass er zu 46.6 % aus Eisen und zu 53.4 % aus Schwefel

Mehr

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie

Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 5.1 1 H-NMR-Spektroskopie NMR-Spektrum liefert folgende Informationen: Chemische Verschiebung d (in ppm):

Mehr

Chemie für Ingenieure Lernziele und Musteraufgaben

Chemie für Ingenieure Lernziele und Musteraufgaben 1 Aufgabe 1: Chemie für Ingenieure Lernziele und Musteraufgaben Kenntnisse der Elementarteilchen als Bausteine von Atomen und Molekülen Aufbau der Atome Schalenstruktur der Elektronenhülle 32 Wie viele

Mehr

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Achtung: Taschenrechner ist nicht zugelassen. Aufgaben sind so, dass sie ohne Rechner lösbar sind. Weitere Hilfsmittel: Periodensystem der Elemente

Mehr

Status der LC-MS in der täglichen Praxis

Status der LC-MS in der täglichen Praxis Status der LC-MS in der täglichen Praxis Möglichkeiten und Limitierungen bei Strukturaufklärung und Quantifizierung Michael ehme rganische Analytische Chemie Departement Chemie Universität Basel Strukturaufklärung

Mehr

Spektroskopische Methoden in der Organischen Chemie (OC IV)

Spektroskopische Methoden in der Organischen Chemie (OC IV) H 3 C 10 O G F D E 8 5 I H GF E D CB A 10 8 5 3 2 1 125 MHz 13 C NMR Spektrum 500 MHz 1 H NMR Spektrum NMR -_1 32 1 H 3 C 10 8 5 10 O G F D E 8 5 Dieder-Winkel: H 10 -H : 5, H -H : 80 H H 8 : 2, H -H :

Mehr

Grundwissenkarten Hans-Carossa-Gymnasium. 9. Klasse. Chemie SG

Grundwissenkarten Hans-Carossa-Gymnasium. 9. Klasse. Chemie SG Grundwissenkarten Hans-Carossa-Gymnasium 9. Klasse Chemie SG Es sind insgesamt 18 Karten für die 9. Klasse erarbeitet. Karten ausschneiden : Es ist auf der linken Blattseite die Vorderseite mit Frage/Aufgabe,

Mehr

Schriftliche Prüfung S Analytische Chemie I Sommer 2015

Schriftliche Prüfung S Analytische Chemie I Sommer 2015 Schriftliche Prüfung 529-0051- 00S Analytische Chemie I Sommer 2015 Vorname: Name: Legi-Nr.: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 60 Min. Teilen Sie sich Ihre Zeit gut

Mehr

NMR-Spektroskopie Teil 2

NMR-Spektroskopie Teil 2 BC 3.4 : Analytische Chemie I NMR Teil 2 NMR-Spektroskopie Teil 2 Stefanie Wolfram Stefanie.Wolfram.1@uni-jena.de Raum 228, TO Vom Spektrum zur Struktur 50000 40000 Peaks u. Integrale 30000 Chemische Verschiebung

Mehr

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen R. Brinkmann http://brinkmann-du.de Seite 5..03 Chemische Elemente FOS: Radioaktivität und Strahlenschutz Chemische Elemente und ihre kleinsten Teilchen Der Planet Erde besteht aus 9 natürlich vorkommenden

Mehr

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen:

Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen: Fehlerrechnung Einführung Jede Messung ist fehlerbehaftet! Ursachen: Ablesefehler (Parallaxe, Reaktionszeit) begrenzte Genauigkeit der Messgeräte falsche Kalibrierung/Eichung der Messgeräte Digitalisierungs-Fehler

Mehr

Schriftliche Prüfungen Jahreskurs Analytische Chemie I&II Sommer 2011 BSc D-CHAB/BIOL

Schriftliche Prüfungen Jahreskurs Analytische Chemie I&II Sommer 2011 BSc D-CHAB/BIOL Schriftliche Prüfungen Jahreskurs Analytische Chemie I&II Sommer 2011 BSc D-CHAB/BIOL Vorname: Name: Es sind alle Aufgaben zu lösen. Jede Aufgabe wird separat benotet. Zeit: 120 Min. Teilen Sie sich Ihre

Mehr

URL: uni-leipzig.de/ bioanaly/sem6/vorlesungen%20ss%202014/vorlesung MS 1.pdf

URL:  uni-leipzig.de/ bioanaly/sem6/vorlesungen%20ss%202014/vorlesung MS 1.pdf 2014-04-08 Massenspektrometrie Vorlesung Prof. Dr. Ralf Hoffmann URL: http:// uni-leipzig.de/ bioanaly/sem6/vorlesungen%20ss%202014/vorlesung MS 1.pdf pw: 1 Einführung Massenspektrometrie ist kein spektroskopisches

Mehr

41. Welches der folgenden Elemente zeigt die geringste Tendenz, Ionen zu bilden?

41. Welches der folgenden Elemente zeigt die geringste Tendenz, Ionen zu bilden? 41. Welches der folgenden Elemente zeigt die geringste Tendenz, Ionen zu bilden? A) Ca B) C C) F D) Na 42. Steinsalz löst sich in Wasser, A) weil beide Ionen Hydrathüllen bilden können B) es eine Säure

Mehr

Massenspektrometrie Eine Einführung

Massenspektrometrie Eine Einführung Herbert Budzikiewicz, Mathias Schäfer Massenspektrometrie Eine Einführung Fünfte, vollständig überarbeitete und aktualisierte Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort

Mehr

Anwendung von UNIFI Screening Methode im Bereich Lebensmittel. von Anna Bauer

Anwendung von UNIFI Screening Methode im Bereich Lebensmittel. von Anna Bauer Anwendung von UIFI Screening Methode im Bereich Lebensmittel von Anna Bauer 12.11.2014 Übersicht 1. Analytischer Arbeitsablauf Screening Plattform 2. Apparative Möglichkeiten 3. Anwendungsbeispiele o Rückstandsanalytik

Mehr

Physik-Übung * Jahrgangsstufe 8 * Modellvorstellung vom Aufbau der Materie

Physik-Übung * Jahrgangsstufe 8 * Modellvorstellung vom Aufbau der Materie Physik-Übung * Jahrgangsstufe 8 * Modellvorstellung vom Aufbau der Materie Aufgabe 1 * Mischung von Flüssigkeiten Eine Gruppe mischt Spiritus mit Wasser. Füllt dazu zunächst zwei Messzylinder mit je exakt

Mehr

AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7

AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7 AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7 1. a) CH3COOH, C0=0.125 mol/l Schwache Säure pks = 4.75 (aus Tabelle) => ph = 0.5*(4.75-Log(0.125))= 2.83 b) H24, C0=0.1 mol/l Erste Protolysestufe starke

Mehr

Klausur zur Vorlesung Allgemeine Chemie für Maschinenbauer und Bauingenieure

Klausur zur Vorlesung Allgemeine Chemie für Maschinenbauer und Bauingenieure Vordiplom-Klausur zur Vorlesung Anorganische Chemie II Page 1 of 3 Klausur zur Vorlesung Allgemeine Chemie für Maschinenbauer und Bauingenieure Kaiserslautern, 6. Februar 2007 Die Klausur besteht aus Fragen,

Mehr

Chemische Thermodynamik ENTROPIE LÖSUNGEN

Chemische Thermodynamik ENTROPIE LÖSUNGEN L-Üb29: Die Standardentropie der Edelgase steigt in regelmässiger Weise mit der molaren Masse. Diese schöne Regelmässigkeit kommt daher, dass die Edelgase nur Translationsenergie besitzen und keine Schwingungsenergie

Mehr

Übung 6 Plausibilitätstest Gruppe 1, 4

Übung 6 Plausibilitätstest Gruppe 1, 4 Übung 6 Plausibilitätstest Gruppe 1, 4 Gegeben ist folgende Wasseranalyse [Konzentrationen in mg/l]: LF 390 µs/cm temp 71.6 ph.1 pe 9.4 F.1 Cl 30 Br 0.17 N(+5) 0.018 as NO3- S(+6) 1350 as SO4- C(+4) 3.5

Mehr

2. Wiederholungsklausur OC1 (BA-Studiengang) :00 16:00 Uhr M1 C-Bau. Name: Punkte: Matrikel Nr. Note:

2. Wiederholungsklausur OC1 (BA-Studiengang) :00 16:00 Uhr M1 C-Bau. Name: Punkte: Matrikel Nr. Note: 2. Wiederholungsklausur C1 (BA-Studiengang) PI: 07.04.2011 13:00 16:00 Uhr M1 C-Bau ame: Punkte: Matrikel r. ote: otenskala: 80-78=1.0 77-75=1.3 74-71=1.5 70-67=1.7 66-63=2.0 62-59=2.3 58-56=2.5 55-53=2.7

Mehr