15/16I 8 a Mathe Übungen 3 Dez. 15

Größe: px
Ab Seite anzeigen:

Download "15/16I 8 a Mathe Übungen 3 Dez. 15"

Transkript

1 15/16I 8 a Mathe Übungen 3 Dez. 15 Nr. 1: Übertrage die Tabellen in dein Heft und fülle sie aus: x 4 x - (1 - x ) - 3 x a b (3 a a + 6 a b x 4 x - (1 - x ) - 3 x + 4 = x (1-1 ) = 4 - (-1) = = 4-4 (-) - (1 - (-) ) - 3 (-) + 4 = (5 ) - (-6) + 4 = = = (0 ) = = = = = = 11 5 a b (3 a a + 6 a b = b 1 (3*1 - ) -9*1 +6*1* = (1) = 4 3 (3* - 3) -9* +6**3 = (3) -9*4 +6**3 = = (3*3 - (-1)) -9*3 +6*3*(-1) = (9 - (-1)) -9*9 +18*(-1) = (10) -81 +(-18) = = 1-4 (3*(-) - 4) -9*(-) +6*(-)*4 = (-6-4) -9*4 +6*(-)*4 = (-10) -36 +(-48) = = 16 Nr. : a) Berechne folgende Flächen: (Maße in cm)

2 U16.U3.nb (1) A = 8*5 = 40 cm () A = 3* + 6*6 = = = 4 cm (3) A = 1 *5*5 = 1.5 cm (4) A = 9*5 = 45 cm (5) A = 5*6 + 1 (6 + 4)*4 = = 50 cm (6) A = 1 (8 + 4)*6 = 36 cm Gib die Namen der 6 Flächen und eine Formel für ihren Flächeninhalt an und berechne danach ihren Flächeninhalt. Die Kästchengröße soll 1 cm mal 1 cm betragen. (Fläche A ist am schwersten zu berechnen) A Raute : A = g h = e f = 3*4 = 6 cm B Rechteck : A = a b =.5*1.5 = 3.75 cm C Dreieck : A = g h = 3*3 = 4.5 cm D Trapez : 6+3 *3 = 13.5 cm E Dreieck : A = g h = 5*3 = 7.5 cm F Parallelogramm: A = g h = 3 = 6 cm Nr. 3: a) Flächenterme Die nebenstehende Zeichnung zeigt den Grundriss eines Zimmers, bei dem die Längs- und die Querwände alle zueinander senkrecht stehen. Die Buchstaben a, b stehen für die entsprechenden Längenangaben. Welche Grundfläche hat der Raum?

3 Das kleine obere Quadrat passt unten in die Lücke. Also gilt; A = 3 a b = 3 a b Gib zu der farbigen Fläche der beiden Figuren je zwei passende Terme an und zeige, dass alle vier Terme äquivalent sind. Linke Figur: 1. Term: A = 4 b + 4 a b. Term: A = (a + b + a b = (a + b + a b = ab + 4 b + a b = 4 b + 4 a b 3. Term: A = (a + - a = a + 4 a b + 4 b - a = 4 b + 4 a b Rechte Figur: 1. Term A = 4 (a + b = (4 a + 4 b = 4 a b + 4 b. Term A = b(a + + (a + (a + - a = a b + b + a + a b + a b + b - a = 4 b + 4 a b c) Die blaue Fläche in der linken Figur lässt sich auf verschiedene Weisen berechnen. (1) Elisa gibt für die Berechnung der blauen Fläche den folgenden Term an: (x - (y - a) + a (x - + b (y - a). Zeichne die Figur als Skizze in dein Heft und teile die blaue Fläche entsprechend Elisas Term ein. Erkläre in Worten, wie Elisa auf diesen Term kommt. x-b y-a y-a Elisa berechnet die 3 Teilrechtecke und addiert ihre Flächen. x-b b () Finde zwei weitere Terme, mit denen sich die blaue Fläche berechnen lässt. x - b y - a

4 4 U16.U3.nb Neue Einlteilung in andere Teilrechtecke A = y(x - + b(y - a) Von dem großen Rechteck, das kleine abziehen: A = x y - a b (3) Zeige durch eine Rechnung, dass Elisas und deine beiden Terme äquivalent sind. Elisa A = (x - (y - a) + a (x - + b (y - a) = x y - a x - b y + a b + a x - a b + b y - a b = -a b + x y 1.Weg A = y(x - + b(y - a) = x y - b y + b y - a b = -a b + x y.weg A = x y - a b = -a b + x y Nr. 4: Flächenberechnungen Berechne die fehlenden Größen mit ausführlichen Rechnungen (erst die Formel angeben und diese Formel dann falls notwendig umstellen) : (Achtet auf die Größeneionheiten!) a) Dreieck Trapez (1) () (3) c 5 cm 15 mm h 4 cm 1 cm A 3600 mm 1750 mm (1) () (3) (4) a.5 m 4 cm c 15 dm 0 cm 10 mm m 3 cm 16 cm 14 cm h 1. m A 18 cm 19 cm dm a) (1) A = 1 c h = 1 * 5 * 4 = 10 cm () c = A h = *36 1 = 6 cm (3) h = A c = * = 8 cm Trapez: A = 1 (a + c) h = m*h ; m = 1 (a + c) (1) m = 1 (a + c) m = 1 (5 + 15) = 0 dm A = m h = 0*1 = 40 dm () h = A m = 18 3 = 4 cm a = m - c a = *3-0 = 44 cm (3) h = A m = = 1 cm c = m - a c = *16-4 = 8 cm (4) h = A m = = 10 cm a = m - c a = *14-1 = 16 cm Nr. 5: a)

5 ) Für ein Regalsystem aus dem Baumarkt gibt es Bretter mit den oben stehenden Grundrissen. Berechne die Flächeninhalte von Brett B und Brett D. Wie groß ist a, wenn die schraffierte Fläche 75 cm groß ist? a) Brett B: A Trapez = g 1+g * h = 40+7 Brett D: A Rechteck + A Trapez = 7 * * 40 = 1340 cm * 7 = = cm A gesamt = 75 = A Rechteck + A Dreieck = a*a + 1 a*a = a + a = 3 a = 75 a = 5 a = 5 Nr. 6: Zusammengesetzte Flächen, Terme a) c) b (Angaben in m) Berechne den Flächeninhalt des Grundstückes. Berechne die Längen X und Y, wenn die Fläche eines der Trapeze 05 cm groß ist. (1) Gib einen möglichst einfachen Term zur Berechnung von Umfang u und Flächeninhalt A an. () Wie groß ist a, für A = 54 cm und b = 6 cm?

6 6 U16.U3.nb u = 11 a + b A Trap = a+c h A ges = A Trap + A Dreieck = 60+x 05 = 45 : 45 A = a b + a(b - a) + a(a * *5. = 19.35* = 60+x A = a b + a b - a + a + a b = = 60 + x = m x = 30 cm y = 10 - x = 60 cm A = 3 a b Wiegeht es einfacher? 54 = 3 a *6 a = 3 Nr. 7: Anwendungen a) Die in der Skizze dargestellte Fläche wird mit Randsteinen eingefasst.berechne den Umfang der Fläche. (Maße in cm) Die schräge Linie ist 175 cm lang. Die Fläche wird mit einer Steinen belegt.wie teuer kommt das Material,wenn ein Quadratmeter Steine 18,50 plus 19 % MWST kostet? a) u = = 185 cm = 1.85 m A1 A A3 A1(Trapez) = 0.5 ( ) 10 = cm A(Rechteck) = = cm A3(Rechte.) = = cm A gesamt = = cm = 8.5 m Preis = 8.5*18.5 = 57.5 plus MWST 19 % ergibt 119 % = 1.19(Faktor)

7 % = Endpreis: 57.5 * 1.19 = Die Steine kosten mit MWST c) 68 m 90 s s m Ein Landwirt kauft eine Wiese (siehe Skizze). Er bezahlt bei einem Kaufpreis von 3,50 pro Quadratmeter insgesamt (1) Wie groß ist die Fläche der Wiese? () Für das Einzäunen der Wiese benöigt der Landwirt 35 m Weidedraht. Berechne die Längen der Seiten s 1 und s! Die Fläche ist ein Trapez. Vom Preis zunächst auf die Fläche zurückrechnen. Und von der Fläche dann die fehlende Höhe (s 1 ) berechnen. (1) A = = m Die Wiese ist 6480 m groß. () A Trapez = 1 (a + c)*h 6840 = 0.5 (1 + 68)*s 1 = 0.5*190*s 1 = 95 s 1 s 1 = h = 6840 = 7 m. 95 Vom bekannten Umfang dann die fehlende Seite s berechnen. u = 35 = 1 + s s 1 = 1 + s = s + 6 s = 35-6 = 90 m s 1 ist 70 m und s ist 90 m lang. Viel Erfolg!!!

DOWNLOAD. Flächeninhalt und Umfang von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner

DOWNLOAD. Flächeninhalt und Umfang von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner DOWNLOAD Michael Körner Flächeninhalt und Umfang von Figuren Kopiervorlagen zum Grundwissen Ebene Michael Körner Grundwissen Ebene Geometrie 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Raumgeometrie - Würfel, Quader (Rechtecksäule)

Raumgeometrie - Würfel, Quader (Rechtecksäule) Hauptschule (Realschule) Raumgeometrie - Würfel, Quader (Rechtecksäule) 1. Gegeben ist ein Würfel mit der Kantenlänge a = 4 cm. a) Zeichne das Netz des Würfels (Abwicklung). b) Zeichne ein Schrägbild des

Mehr

Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS

Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS Projekt Flächeninhalt- und Umfangsberechnung für die 7. Schulstufe einer KMS Beginn mit einer Einführungsstunde im Frontalunterricht: Wiederholung von Flächeninhalt und Umfang beim Rechteck und Quadrat

Mehr

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann.

I II III. Den Inhalt einer Fläche messen, heißt feststellen, mit wie vielen Einheitsquadraten es ausgelegt werden kann. X. Flächenmessung ================================================================= 10.1 Einführung Welches Rechteck ist am größten? I II III Den Inhalt einer Fläche messen, heißt feststellen, mit wie

Mehr

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade

Mehr

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Flächeninhalt und Umfang von Vielecken. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Flächeninhalt und Umfang von Vielecken

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN Lehrplaneinheit Methode Sozialform Einsatzmöglichkeit Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Berufsrelevantes Rechnen Einzelarbeit Wiederholung

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Grundwissen 7 Bereich 1: Terme Termwerte 1.1 S1 Berechne für den Term T (x) = 3 (x 2) 2 + x 2 die Termwerte T (1), T (2) und T ( 3 2 ). 1.2 S1 Gegeben ist der Term A(m) = 2 2m 5 m Ergänze die folgende

Mehr

Flächen- berechnungs- kartei

Flächen- berechnungs- kartei Flächen- berechnungs- kartei Zeichne das Rechteck. Schreibe die Formel an, dann rechne aus! l = 7 cm b = 3 cm A =? 1 erstellt von Eva Truschnigg für den Wiener Bildungsserver www.lehrerweb.at - www.kidsweb.at

Mehr

Zeichnen mit Word. 1. Symbolleiste Zeichnen sichtbar machen...2. 2. Vorbereiten der Seite...2. 3. Zeichnen von Linien und Flächen...

Zeichnen mit Word. 1. Symbolleiste Zeichnen sichtbar machen...2. 2. Vorbereiten der Seite...2. 3. Zeichnen von Linien und Flächen... Zeichnen mit Word Inhaltsverzeichnis 1. Symbolleiste Zeichnen sichtbar machen...2 2. Vorbereiten der Seite...2 3. Zeichnen von Linien und Flächen...3 4. Zeichnen von Flächen mit AutoFormen...3 5. Zeichnen

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

Mit Dezimalzahlen multiplizieren

Mit Dezimalzahlen multiplizieren Vertiefen 1 Mit Dezimalzahlen multiplizieren zu Aufgabe 1 Schulbuch, Seite 134 1 Multiplizieren im Bild darstellen Zeichne zur Aufgaben 1,63 2,4 ein Bild und bestimme mit Hilfe des Bildes das Ergebnis

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

Algebra II. 1 Löse die Gleichung und mache die Probe.

Algebra II. 1 Löse die Gleichung und mache die Probe. D Algebra II 5. Gleichungen Lösungen Löse die Gleichung und mache die Probe. a) (3 5) = (5 + 5) jede reelle Zahl ist Lösung b) 8(a 3) + 3 a = (3a + 8)a keine Lösung c) ( )(3 4) = 3( ) = ; Probe: 0 d) (

Mehr

Lösungen zu delta 5 neu

Lösungen zu delta 5 neu Lösungen zu delta neu Kann ich das? Lösungen zu Seite 32. Zahl Vorgänger Nachfolger a) 99999 9999 einhundertneunundneunzigtausendneunhundertachtundneunzig 200000 zweihunderttausend b) 2949 294 neunundzwanzigtausendvierhundertachtundachtzig

Mehr

Formeln für Flächen und Körper

Formeln für Flächen und Körper Formeln für Flächen und Körper FLÄCHENBERECHNUNG... QUADRAT... RECHTECK... 3 PARALLELOGRAMM... 3 DREIECK... 4 GLEICHSCHENKLIGES DREIECK... 5 GLEICHSEITIGES DREIECK... 6 TRAPEZ... 7 GLEICHSCHENKLIGES TRAPEZ...

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Musterlösung zur 3. Übung

Musterlösung zur 3. Übung Musterlösung zur 3. Übung a) Didaktische Aufbereitung des Themas: Flächenberechnung eines Dreiecks Einführung Flächeninhalt eines Dreiecks: 2 Grundideen: (vgl. S. 5-7) (1) Rechteck rechtwinkliges Dreieck

Mehr

Skript Teil 10: Massenberechnung

Skript Teil 10: Massenberechnung Prof. Dr. techn. Alfred Mischke Vorlesung zur Veranstaltung Vermessungskunde Skript Teil 0: Massenberechnung Ein wesentlicher Kostenfaktor bei nahezu allen Baumaßnahmen ist der Transport der Erdmassen.

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

BMT8 2013. Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Bewertungseinheiten: / 21

BMT8 2013. Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Bewertungseinheiten: / 21 BMT8 2013 A Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien Name: Note: Klasse: Bewertungseinheiten: 1 Aufgabe 1 Gib diejenige Zahl an, mit der man 1000 multiplizieren muss, um 250 zu

Mehr

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht Am Ende der Aufgabensammlung finden Sie eine Formelübersicht 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche. b) Wieviel mal größer wird der Umfang eines Kreises, wenn man

Mehr

Längenmaße: 1 cm = 10 mm 1 dm = 10 cm = 100 mm 1 m = 10 dm = 100 cm = 1.000 mm 1 km = 1.000 m = 10.000 dm = 100.000 cm = 1.000.

Längenmaße: 1 cm = 10 mm 1 dm = 10 cm = 100 mm 1 m = 10 dm = 100 cm = 1.000 mm 1 km = 1.000 m = 10.000 dm = 100.000 cm = 1.000. Flächen und Räume 4 Flächen und Räume Bei der Berechnung von Flächen und Räumen gibt es verschiedene Maßeinheiten. Längenmaße, Flächenmaße und Raummaße können nur verarbeitet werden, wenn diese eingeordnet

Mehr

EXPEDITION Mathematik 3 / Übungsaufgaben

EXPEDITION Mathematik 3 / Übungsaufgaben 1 Berechne das Volumen und die Oberfläche eines Prismas mit der Höhe h = 20 cm. Die Grundfläche ist ein a) Parallelogramm mit a 12 cm; b 8 cm; ha 6 cm b) gleichschenkliges Dreieck mit a b 5 cm; c 60 mm;

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

Kreis und Kreisteile. - Aufgaben Teil 1 -

Kreis und Kreisteile. - Aufgaben Teil 1 - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht. a) Gib das Bogenmaß,3 im Gradmaß an. b) Gib das Bogenmaß im Gradmaß an. 9 c) Gib das Gradmaß 44 im Bogenmaß als Bruchteil von an. d) Gib das

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

a) Wie lang ist die Kathete a in cm, wenn die Kathete b = 7,8 cm und die Hypotenuse c = 9,8 cm lang sind?

a) Wie lang ist die Kathete a in cm, wenn die Kathete b = 7,8 cm und die Hypotenuse c = 9,8 cm lang sind? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Pythagoras, Kathetensatz, Höhensatz

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

Mathematik 1. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung 2012. (ohne Taschenrechner) Kandidatennummer: Geburtsdatum:

Mathematik 1. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung 2012. (ohne Taschenrechner) Kandidatennummer: Geburtsdatum: Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung 2012 Mathematik 1 (ohne Taschenrechner) Dauer: 60 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note: Aufgabe 1

Mehr

Lektion 4: Prozeduren mit Parametern

Lektion 4: Prozeduren mit Parametern Lektion 4: Prozeduren mit Parametern Bearbeitet von Daniel Labas und Kristel Jenkel In der Prozedur QUADRAT (vgl. Kap. 3) ist eine feste Seitenlänge vorgesehen. Wünschenswert wäre eine Prozedur, bei der

Mehr

Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse

Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse Gesamte Bearbeitungszeit: 60 Minuten Diese Aufgaben sind ohne Taschenrechner zu bearbeiten! Aufgabe 1: Berechne 5

Mehr

5 Anwendungen des Lehrsatzes des Herrn Pythagoras

5 Anwendungen des Lehrsatzes des Herrn Pythagoras Ma th ef it 5 Anwendungen des Lehrsatzes des Herrn Pythagoras Tom und seine Freunde wollen eine zweitägige Radtour machen. Da Tom die Detailplanung übernommen hat, zeichnet er die Route in eine Karte ein.

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Hauptschule G-Kurs. Testform B

Hauptschule G-Kurs. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Hauptschule G-Kurs Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau

Mehr

Probeunterricht 2008 an Wirtschaftsschulen in Bayern

Probeunterricht 2008 an Wirtschaftsschulen in Bayern Probeunterricht 2008 an Wirtschaftsschulen in Bayern Nachtermin Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen): 45 Minuten Arbeitszeit Teil II (Textrechnen): 45 Minuten Name.. Vorname..

Mehr

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ Vertiefen Spiegelsymmetrische Bilder erkennen und zeichnen zu Aufgabe Schulbuch, Seite 0 Spiegelsymmetrie Übertrage die Figuren in dein Heft und trage alle Spiegelachsen ein. 2 4 5 7 8 zu Aufgabe 2 Schulbuch,

Mehr

Gymnasium. Testform B

Gymnasium. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Gymnasium Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau im

Mehr

Lerneinheit 3: Mit Euro und Cent rechnen

Lerneinheit 3: Mit Euro und Cent rechnen LM Maßeinheiten S. 11 Übergang Schule - Betrieb Lerneinheit 3: Mit Euro und Cent rechnen A: Werden mehrere Größen addiert (+) oder voneinander subtrahiert (-), muss man alle Größen zuvor in die gleiche

Mehr

Geometrie. Umfang/Fläche (eckige Körper)

Geometrie. Umfang/Fläche (eckige Körper) Seite 1 Hier lernst du, Umfänge und Flächen bei folgenden geometrischen Flächen zu ermitteln: Quadrat, Rechteck, Parallelogramm, Dreieck, Trapez Und einfache zusammengesetzte Formen Prinzipielle Grundlagen

Mehr

Übungsaufgaben. Lichtbrechung. Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε'

Übungsaufgaben. Lichtbrechung. Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε' Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε' -Diagramm von Blatt 3 1. (a) Auf eine 2 cm dicke ebene Glasplatte fällt unter dem Einfallswinkel 50 ein Lichtstrahl. Zeichne seinen weiteren

Mehr

Inhaltsverzeichnis. 1 Das Rätsel 2. 2 Die erste Lösung 2. 3 Die zweite (kürzere) Lösung 6

Inhaltsverzeichnis. 1 Das Rätsel 2. 2 Die erste Lösung 2. 3 Die zweite (kürzere) Lösung 6 Inhaltsverzeichnis 1 Das Rätsel 2 2 Die erste Lösung 2 3 Die zweite (kürzere) Lösung 6 1 1 Das Rätsel Werner Brefeld hat auf der Seite http://www.brefeld.homepage.t-online.de/dreieck.html das folgende

Mehr

Mathematik. Hauptschulabschlussprüfung 2011. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten

Mathematik. Hauptschulabschlussprüfung 2011. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Hauptschulabschlussprüfung 2011 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Fach: Mathematik Wahlaufgaben Seite 2 von

Mehr

Die Winkelsumme in Vierecken beträgt immer 360.

Die Winkelsumme in Vierecken beträgt immer 360. 98 5 Flächenberechnung Wussten Sie schon, dass (bezogen auf die Fläche) Ihr größtes Organ Ihre Haut ist? Sie hat durchschnittlich (bei Erwachsenen) eine Größe von ca. 1,6 bis 1,9 m2. Wozu brauche ich das

Mehr

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr

Umfang und Fläche von Rechtecken

Umfang und Fläche von Rechtecken Umfang und Fläche von Rechtecken Herbert Paukert 1 Umfang und Fläche von Rechtecken Version 2.0 Herbert Paukert (1) Der Umfang von Rechtecken [02] Elemente der Geometrie [02] Fünf Übungsaufgaben [08] Das

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Prisma, Zylinder, Kegel, Kugel. Auf Seite 5 7 finden Sie eine Formelsammlung. Für eine Maschine werden Kugeln beidseitig 5mm abgefräst und mit zwei Bohrungen versehen (vgl. Skizze). Die

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe 1 a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast.! 80 000 000! 8 000 000! 800 000! 80 000! 8 000 b) Bei einer Durchschnittsgeschwindigkeit von 80

Mehr

Übungsmaterialien zur Bruchrechnung

Übungsmaterialien zur Bruchrechnung Übungsmaterialien zur Bruchrechnung Die Materialien sind einsetzbar in Klasse. Unterschiedliche Aspekte des Bruchbegriffs werden angesprochen. Einige Seiten müssen im Maßstab : ausgedruckt werden. Daher

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 010 BESONDERE LEISTUNGSFESTSTELLUNG AM 0.06.01 O Teil A: 8.0 Uhr bis 9.00 Uhr (Teil B: 9.10 Uhr bis 10.0 Uhr) MATHEMATIK Teil A Bei Teil A der besonderen Leistungsfeststellung

Mehr

Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule

Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule - 1 - ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. Stelle die folgenden Schreibweisen in jeweils einer Skizze dar. a) g= AB d) AB = 4cm b) h= [ AB e) A g c) s = [ AB] f) [ AB] g 2. Gegeben sind M ( 5 / 4 ) und r = 3 cm. Zeichne den Kreis kmr ( ) sauber

Mehr

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen.

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen. Liebe Schülerin, lieber Schüler! Die Abschlussarbeit besteht aus zwei Heften. Heft 1 Kurzformaufgaben Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2011 Kurzgymnasium (Neues Lehrmittel) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil gilt folgende

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Orientierungsarbeit Mathematik

Orientierungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: Klassenstufe 8 für Kultus Mittelschule / Förderschule Schuljahr 2007/2008 Orientierungsarbeit Mathematik Hauptschulbildungsgang Klassenstufe 8 Material für

Mehr

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor:

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor: Erkläre bitte Extremwertaufgaben... Extremwertaufgaben Sobald man verstanden hat, was ein Extremwert einer Funktion ist (ein lokales Maximum oder Minimum) stellt sich die Frage Und was mach ich damit??.

Mehr

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen Zahlen und Operationen 30 Kapitel 1: Kapitel 1 Zahlen und Größen 6 Zahlen und Größen 1 Vielfache von großen Zahlen darstellen, lesen und inhaltlich interpretieren Zahlen über 1 Million Stellentafel Große

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Musteraufgaben Jahrgang 10 Hauptschule

Musteraufgaben Jahrgang 10 Hauptschule Mathematik Musteraufgaben für Jahrgang 0 (Hauptschule) 23 Musteraufgaben Jahrgang 0 Hauptschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des

Mehr

Flächenberechnung im Trapez

Flächenberechnung im Trapez Flächenberechnung im Trapez Das Trapez im Lehrplan Jahrgangsstufe 6 M 6.8 Achsenspiegelung (ca. 15 Std) Fundamentalsätze (umkehrbar eindeutige Zuordnungen, Geradentreue, Winkeltreue, Kreistreue), Abbildungsvorschrift

Mehr

Satz des Pythagoras Realschule / Gymnasium Klasse 9

Satz des Pythagoras Realschule / Gymnasium Klasse 9 Satz de Pythagora Realchule / Gymnaium Klae 9 Alexander Schwarz www.mathe-aufgaben.com Dezember 014 1 Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat ich eine Leiter gekauft, die

Mehr

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken 1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des

Mehr

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z) Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)

Mehr

Mathematik Heft 1 2015 Mittlerer Schulabschluss

Mathematik Heft 1 2015 Mittlerer Schulabschluss Mathematik Heft 1 2015 Mittlerer Schulabschluss 1 Name Klasse Datum Erstkorrektur Unterschrift Zweitkorrektur Unterschrift Note/Datum Herausgeber Ministerium für Schule und Berufsbildung des Landes Schleswig-Holstein

Mehr

Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln

Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln 1. a) Welche algebraischen "Vorfahrtsregeln" müssen Sie bei der Berechnung des folgenden Terms T beachten? T = 12x + 3 7x - 2 (x + 3) +

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Kompetenzmodell. Geometrisches Zeichnen. Arbeitsblätter

Kompetenzmodell. Geometrisches Zeichnen. Arbeitsblätter Kompetenzmodell Geometrisches Zeichnen Arbeitsblätter 4.10.2012 Inhaltsdimension Arbeitsblätter Risse Lesen und Skizzieren Bausteine Länge von Strecken Flächenmodelle Bedienung eines CAD-Programms 3D-CAD-Software:

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

------------------------------------------------------------------------------------

------------------------------------------------------------------------------------ er Umfang Jede Fläche hat einen Umfang. er Umfang u ist eine Länge und wird z.b. in Metern ( m ) gemessen. enn u einen Umfang berechnet hast, dann kann ein Antwortsatz lauten: er Umfang dieser Fläche oder

Mehr

Teil 1: Grundkompetenzen

Teil 1: Grundkompetenzen Übungsbeispiele für die 1. Schularbeit! Seite 1 von 5 Teil 1: Grundkompetenzen Aufgabe 1 Eine Karte für eine Sommerrodelbahn kostet s Euro. Für Pensionisten kostet die Karte nur ⅔ des Normalpreises, für

Mehr

Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten

Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten Inhalt/Lernziele Teil A Bruchteile erkennen Bruchteile von Grössen bestimmen Brüche und Bruchteile ergänzen A1, A2, A3 A4, A5 A6, A7, A8, A9 Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten Anzahl Kanten

Mehr

Vom Rechteck, das ein Quadrat werden wollte

Vom Rechteck, das ein Quadrat werden wollte Vom Rechteck, das ein Quadrat werden wollte Schule: Hohenstaufen-Gymnasium Kaiserslautern Idee und Erprobung der Unterrichtseinheit: Klaus Merkert Die folgende Unterrichtseinheit ist ein Beispiel für Problemstellungen

Mehr

Zentrale Abschlussprüfung 10 2007. Mathematik (A) Hauptschule

Zentrale Abschlussprüfung 10 2007. Mathematik (A) Hauptschule Der Senator für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 2007 Mathematik (A) Teil 2 Taschenrechner und Formelsammlung dürfen benutzt werden Name Klasse Schule 25.5.2007

Mehr

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12 Sachsen-Anhalt neue Aufgabenstruktur - erstmalig 2011/12 SCHRIFTLICHE ABSCHLUSSPRÜFUNG Pflichtteil 2 und Wahlpflichtteil In diesem Teil der Abschlussprüfung sind die Hilfsmittel Taschenrechner und Tafelwerk

Mehr

AUFGABENSAMMLUNG 9. KLASSE

AUFGABENSAMMLUNG 9. KLASSE AUFGABENSAMMLUNG 9. KLASSE 1. Reelle Zahlen (1) Vereinfache soweit wie möglich. Alle Variablen sind aus R +. (a) 4a 4 a + ab a b (b) b : 7a (c) b + b + b ( 5 c 6 (d) c + ) () Schreibe ohne Wurzelzeichen

Mehr

11 Gleiches Aussehen Ähnlichkeit

11 Gleiches Aussehen Ähnlichkeit Ma th ef it 11 Gleiches Aussehen Ähnlichkeit 11.1 Ähnliche Figuren Männertag : Tom und sein Vater unternehmen heute etwas gemeinsam. Sie gehen auf eine Modellbaumesse und schauen sich ganz genau die kleinen

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 5 2 (oder 2,5) (= 6 5 3) b) 6 5 ( = 1 3 3 1 6 5 ) ( c) 3 2 (oder 1,5) (= 56 3) 1 3 = 5 2 1) P2.

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012. Teil 1: Terme, Termumformungen, Gleichungen, Brüche

Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012. Teil 1: Terme, Termumformungen, Gleichungen, Brüche Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012 Teil 1: Terme, Termumformungen, Gleichungen, Brüche Version Oktober 2013 verf. v. Adrian Christen SchulArena.com

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2009 im Fach Mathematik. 27. Mai 2009

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2009 im Fach Mathematik. 27. Mai 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 009 im Fach Mathematik 7. Mai 009 LÖSUNGEN UND BEWERTUNGEN Mittlerer Schulabschluss 009,

Mehr

Aufgaben variieren produktiv Mathematik erfinden und erleben

Aufgaben variieren produktiv Mathematik erfinden und erleben Dr. Brigitte Leneke Otto-von-Guericke-Universität Magdeburg Postfach 4120 39016 Magdeburg email: leneke@ovgu.de Aufgaben variieren produktiv Mathematik erfinden und erleben B. Leneke Wien Istron 2009 1

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Mathe an Stationen. Mathe an Stationen 9 Inklusion. Flächeninhalt und Umfang des Kreises. Bernard Ksiazek. Klasse

Mathe an Stationen. Mathe an Stationen 9 Inklusion. Flächeninhalt und Umfang des Kreises. Bernard Ksiazek. Klasse Bernard Ksiazek Mathe an Stationen 9 Inklusion Sekundarstufe ufe I Bernard Ksiazek Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse Materialien zur Einbindung und Förderung lernschwacher

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM THÜRINGER KULTUSMINISTERIUM Realschulabschluß 1998 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten. Zusätzlich zur Arbeitszeit werden 30 Minuten

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Rechne möglichst vorteilhaft: 7 9 6 67 48 + = 48 9 7. Entscheide durch Rechnung: (w) oder (f): :4 < 7 6 4. Berechne und gib das Ergebnis in der einfachsten Form an: 9 : 4 : = 7 = 4: = 9 7 4 4 4 4 4.

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 1. RUNDE AUFGABENGRUPPE A - PFLICHTAUFGABEN 06.12.2012 P1. Berechne. a) 8 ( 12 + 4) b) 8 12 : ( 4) c) (8 12) : 1 4 P2. a) Im Jahr 2011 wurden in Deutschland

Mehr

Proportionale und antiproportionale Zuordnungen

Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen Proportionale und antiproportionale Zuordnungen findet man in vielen Bereichen des täglichen Lebens. Zum Beispiel beim Tanken oder beim Einkaufen. Bei proportionalen

Mehr

Lehrplan Mittelschule Sachsen Klasse 5 Mathematik heute 5 (ISBN 978-3-507-81000-6) Arbeitsheft 5 (ISBN 978-3-507-81001-3) Projekt: Meine neue Klasse

Lehrplan Mittelschule Sachsen Klasse 5 Mathematik heute 5 (ISBN 978-3-507-81000-6) Arbeitsheft 5 (ISBN 978-3-507-81001-3) Projekt: Meine neue Klasse Statistiken und Präsentationen Projekt: Meine neue Klasse 6 Lernbereich 1: Natürliche Zahlen Beherrschen des Veranschaulichens am Zahlenstrahl Beherrschen des Überschlagens, Abschätzens und Rundens sowie

Mehr