STOFFPLAN MATHEMATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "STOFFPLAN MATHEMATIK"

Transkript

1 STOFFPLAN MATHEMATIK 1. Semester (2 Wochenstunden) Mengenlehre Reelle Zahlen Lineare Gleichungen und Ungleichungen mit einer Unbekannten Funktionen und ihre Graphen Lineare Funktionen Aufgaben aus der Wirtschaftslehre zu Kosten- Erlös- und Gewinntheorie 2. Semester (2 Wochenstunden) Lineare Gleichungssysteme, Textgleichungssysteme Potenzen Wurzeln Quadratische Gleichungen, Textaufgaben 3. Semester (2 Wochenstunden) Quadratische Funktionen mit Beispielen aus der Wirtschaftsmathematik Logarithmen und Exponentialgleichungen Exponential- und Logarithmusfunktion 4. Semester (2 Wochenstunden) Finanzmathematik/Wachstumsprozesse Lineare Ungleichungssysteme Lineare Optimierung Gesamtrepetition 1. Semester (2 Wochenstunden) Elemente der Mengenlehre und der Logik Begriffe und Symbole der Mengenlehre und der Logik beim Formulieren oder Lösen von mathematischen Problemen verstehen und anwenden (Aussage und Aussageverknüpfungen, Implikation und Äquivalenz). Konsequente Anwendung der einschlägigen Terminologie beim Formulieren und Lösen von math. Problemen abverlangen.

2 Reelle Zahlen Dezimalbrüche, exakte Zahl und Näherungszahl, Absolutbetrag, gebräuchliche Teilmengen von R, Ordnungsrelationen, Zahlengerade, Intervalle. (C) Rep. und Festigung der Grundkenntnisse im Zusammenhang mit den wichtigsten Rechenregeln. Lineare Gleichungen und Ungleichungen mit einer Unbekannten Korrekte Einf. des Gleichungs- und Ungleichungsbegriffs Beherrschen der korrekten Bedeutungen von Aussage und Aussageform. Gleichungen, Ungleichungen über R mit einer Unbekannten Gleichungen, Textgleichungen, Ungleichungen und Textungl. 1. Grades mit einer Unbekannten lösen. Gleichungen und Ungl. mit Absolutwerten lösen. Diskussion der Lösung(en) in allen oben genannten Fällen durchführen. Verschiedene Standardlösungsverfahren trainieren Funktionen und ihre Graphen Grundlagen und Einblick in die Vielfalt Anhand vieler Bsp. den Funktionsbegriff abstrahieren. Den Begriff der Funktion (Abbildung) beherrschen d.h. wissen, dass Funktionsvorschrift, Definitions- und Wertemenge eine untrennbare Einheit bilden. Graphen reellwertiger Funktionen kennen und skizzieren Begriffe wie Argument, Funktionswert, Nullstelle, Definitions- und Wertebereich vermitteln. Graphen mit Wertetabellen von Hand aufzeichnen.

3 Lineare Funktionen Funktionen 1. Grades einer reellen Variablen Funktion f(x) = ax + b mit D f = R (a, b R; a 0) beherr. (C) Empirische und lineare Funktionen im rechtw. Koordinatensystem zeichnen und interpretieren. Funktionsgleichungen aufstellen. Schnittpunkte bestimmen. Aufgaben aus der Wirtschaftslehre zu Kosten- Erlös- und Gewinntheorie 2. Semester (2 Wochenstunden) Lineare Gleichungssysteme, Textgleichungssysteme Gleichungssysteme, Textgleichungssysteme Verstehen und verschiedene Methoden (Additionsmethode, Einsetzmethode...) zur Bestimmung der Lösungsmenge beherrschen. Diskussion der Lösung durchführen. Verschiedene Standardlösungsverfahren trainieren Potenzen und Wurzeln Potenzgesetze für x n, n Q, Verträglichkeit der üblichen Ordnungsrelationen mit den Operationen kennen. (C) Terme mit Potenzen und Wurzeln sowohl von Hand als auch mit einem TR bearbeiten Quadratische Gleichungen, Textaufgaben Gleichungen und Textgleichungen 2. Grades mit einer Unbekannten lösen. Diskussion der Lösung(en) durchführen.

4 3. Semester (2 Wochenstunden) Quadratische Funktionen mit Beispielen aus der Wirtschaftsmathematik Funktionen 2. Grades einer reellen Variablen Funktion f(x) = ax 2 + bx + c mit D f = R, (a, b, c R; a 0) beherr. Die graphischen Übergänge von f(x) zu f(x) + q, f(x + p), rf(x) und f(sx) (p, q, r, s 0) beherrschen. Begriff der Nullstellen beherr. Begriffe des Hoch- und Tiefpunktes eines Graphen einer Funktion 2. Grades kennen. Aufstellen von Funktionsgleichungen. Schnittpunkte bestimmen. Textaufgaben lösen, die auf quadratische Funktionen führen. Anwendungsbeispiele zur Preisbildung Logarithmen und Exponentialgleichungen Logarithmusgleichungen Grund- und Lösungsmenge von einfachen Logarithmusgleichungen bestimmen. Exponentialgleichungen Exponentialgleichungen lösen und in Anwendungen umsetzen. Das Logarithmieren als Umkehrung des Potenzierens einsehen. Logarithmische Rechengesetze aus den Potenzgesetzen herleiten und anwenden. Durch Auflösen von Exponentialgl. mit Hilfe des Logarithmus den Zusammenhang erfahren. Exponential- und Logarithmusfunktion Exponential- und Logarithmusfunktion f(x) = b x mit D f = R und g(x) = log b x mit D g = R +, wobei b R + \ {1} Rechenregeln für Logarithmen kennen und anwenden. Wachstumsprobleme ins Bewusstsein rufen.

5 4. Semester (2 Wochenstunden) Finanzmathematik/Wachstumsprozesse Zinseszins Grundformel K n = K 0 (1 + i) n beherrschen. (C) Grundformel nach den verschiedenen Variablen auflösen und die entsprechenden Aufgaben lösen. (C) Exponentielle Wachstumsprozesse erkennen. Herleiten und anwenden der Zinseszinsformel. Lineare Ungleichungssysteme Ungleichungssysteme mit zwei Variablen Lösungsmenge von Ungleichungssystemen mit 2 Variablen graphisch bestimmen. Die grafische Lösung als übersichtliche Methode kennen lernen und anwenden. Lineare Optimierung Lineare Optimierung mit zwei Variablen Nebenbedingungen als Ungleichungen oder Gleichungen sowie die Zielfunktion formulieren. (C) Planungspolygon grafisch darstellen und durch Parallelverschiebung das Optimum grafisch bestimmen. (C) Die grafische Lösung als übersichtliche Methode kennen lernen und anwenden. Probleme der linearen Optimierung erfassen. Lineare Optimierung mit zwei Variablen und einem Parameter Das Linearprogramm mit einem Parameter in der Zielfunktion oder in einer Nebenbedingung diskutieren. Gesamtrepetition

Lehrplan Mathematik für die Berufsmatur

Lehrplan Mathematik für die Berufsmatur Lehrplan Mathematik für die Berufsmatur Stand: 1. Januar 2001 Gemeinsamer Lehrplan für alle Berufsmaturatypen 1. Elemente der Mengenlehre und der formalen Logik Elemente der mathematischen Logik (Beherrschen

Mehr

Schullehrplan Mathematik für M-Profil

Schullehrplan Mathematik für M-Profil M-Profil / Mathematik Schullehrplan Mathematik für M-Profil Inhaltsverzeichnis Taxonomiestufen (Bloom) Lehrplan Basiskurs 6 Stand: 4. Juli 00, FP Schullehrplan Mathematik.doc M-Profil / Mathematik Taxonomiestufen

Mehr

Lehrplan. Mediamatiker_ab_ Allgemeine Bildungsziele

Lehrplan. Mediamatiker_ab_ Allgemeine Bildungsziele Lehrplan 1. Allgemeine Bildungsziele Die Mathematik ist eine ausgesprochene Grundlagenwissenschaft. Sie ist im Erwerbs- und im Freizeitbereich präsent und bildet eine der Grundlagen der heutigen Zivilisation.

Mehr

HKV Handelsschule KV Schaffhausen Handelsmittelschule

HKV Handelsschule KV Schaffhausen Handelsmittelschule Lehrplan 1. Allgemeine Bildungsziele Die Mathematik ist eine ausgesprochene Grundlagenwissenschaft. Sie ist im Erwerbs- und im Freizeitbereich präsent und bildet eine der Grundlagen der heutigen Zivilisation.

Mehr

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25 Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge

Mehr

1. Sem. 2. Sem. 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total

1. Sem. 2. Sem. 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total Fachspezifischer Schullehrplan WSKV Chur Fach Mathematik BM 1 BM 1 1. Sem. 2. Sem. 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total 40 40 40 40 40 40 240 Lehrmittel: Mathematik für die kaufmännische Berufsmaturität;

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Rtattiematische Zenchem) und Abkürzungen 11

Rtattiematische Zenchem) und Abkürzungen 11 Inhaltsverzeichnis Rtattiematische Zenchem) und Abkürzungen 11 1 Grundbegriffe der Mengenlehre 13 1.1 Mengen und Elemente von Mengen 13 1.2 Beziehungen zwischen Mengen 16 1.2.1 Gleiche und gleichmächtige

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Fachbereich Mathematik Allgemeines

Fachbereich Mathematik Allgemeines Mathematik - Allgemein Mai 2011 Fachbereich Mathematik Allgemeines 1. Allgmeine Bildungsziele Die Mathematik stellt bewährte Methoden und Strukturen zur Verfügung, welche auch zum Verständnis einer komplexen

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über

Mehr

1. Sem. 2. Sem. Total

1. Sem. 2. Sem. Total Fachspezifischer Schullehrplan WSKV Chur Fach Mathematik BM 2 BM 2 1. Sem. 2. Sem. Total 120 120 240 Lehrmittel: Mathematik für die kaufmännische Berufsmaturität; Aeberhart und Martin; 6. Auflage; liberabbaci

Mehr

INHALTSVERZEICHNIS. Mathematische Zeichen Formelzeichen Verwendung der Begriffe Masse und Gewicht. A. Grundbegriffe der Mengenlehre. 1.

INHALTSVERZEICHNIS. Mathematische Zeichen Formelzeichen Verwendung der Begriffe Masse und Gewicht. A. Grundbegriffe der Mengenlehre. 1. INHALTSVERZEICHNIS 10 13 14 Mathematische Zeichen Formelzeichen Verwendung der Begriffe Masse und Gewicht A. Grundbegriffe der Mengenlehre 15 16 17 17 20 21 22 25 28 33 35 36 36 44 46 49 50 52 53 56 56

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

Fachlehrplan Mathematik M-Profil, Typ Wirtschaft ab August 2015

Fachlehrplan Mathematik M-Profil, Typ Wirtschaft ab August 2015 1 20 Zahlen und zugehörige Grundoperationen mit algebraischen Termen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen den Aufbau der Zahlen

Mehr

Schullehrplan Mathematik Profil M/BM1 Typ Wirtschaft Ab 2015

Schullehrplan Mathematik Profil M/BM1 Typ Wirtschaft Ab 2015 1 20 Zahlen und zugehörige Grundoperationen mit algebraischen Termen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen den Aufbau der Zahlen

Mehr

Arithmetik, Algebra, Mengen- und Funktionenlehre

Arithmetik, Algebra, Mengen- und Funktionenlehre Carsten Gellrich Regina Gellrich Arithmetik, Algebra, Mengen- und Funktionenlehre Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen VERLAG HARRI DEUTSCH Inhaltsverzeichnis

Mehr

Systeme von linearen Ungleichungen

Systeme von linearen Ungleichungen Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA

Mehr

Die Komplexität der Aufgaben ist in einem Kompendium festgelegt. Lerngebiete und Teilgebiete 1. Arithmetik/Algebra. (50 Lektionen)

Die Komplexität der Aufgaben ist in einem Kompendium festgelegt. Lerngebiete und Teilgebiete 1. Arithmetik/Algebra. (50 Lektionen) Gruppe 3 Mit dem Beruf (EFZ) verwandter FH-Fachbereich: Wirtschaft und Dienstleistungen Verwendung von Hilfsmitteln im Typ Wirtschaft: Taschenrechner mit elementaren Finanzfunktionen, ohne ComputerAlgebraSystem

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Die Umkehrung des Potenzierens ist das Logarithmieren.

Die Umkehrung des Potenzierens ist das Logarithmieren. Die Umkehrung des Potenzierens ist das Logarithmieren. Gilt a x = b, a,b > 0, a 1, so heißt x der Logarithmus von b zur Basis a. Bezeichnung: x = log a (b). Manchmal lassen wir die Angabe der Basis auch

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 11 Grundlagen der Aussagenlogik und der Mengenlehre 13 1 Grundbegriffe der Aussagenlogik und ihre Verwendung in der Datenverarbeitung 13 1.1 Aussagen

Mehr

Lehrplan Mathematik Wirtschaftsmittelschule 2015

Lehrplan Mathematik Wirtschaftsmittelschule 2015 1. Allgemeines Grundlagen Lektionenverteilung - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Verordnung SBFI,

Mehr

Wirtschaftsmathematik und Statistik

Wirtschaftsmathematik und Statistik Beruf und Weiterbildung Walter Lagemann Wolf Rambatz Wirtschaftsmathematik und Statistik Ein Praktikum für die Weiterbildung zum Betriebswirt und zur Betriebswirtin HERAUSGEBER DR. RUDOLF RÖHR Inhaltsverzeichnis

Mehr

Lehrplan Mathematik. genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015

Lehrplan Mathematik. genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015 Lehrplan Mathematik genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015 Wirtschaftsmittelschule Zug Lüssiweg 24, 6302 Zug T 041 728 12 12 www.wms-zug.ch info@wms-zug.ch

Mehr

Bildungsziele und Stoffinhalte Mathematik. kaufm. Berufsmatura (M-Profil und BMS 2)

Bildungsziele und Stoffinhalte Mathematik. kaufm. Berufsmatura (M-Profil und BMS 2) Bildungsziele und Stoffinhalte kaufm. (M-Profil und BMS 2) M-Profil 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total 40 L. 40 L. 40 L. 40 L. 160 L. BMS 2 1. Sem. 2. Sem. Total 100 L. 100 L. 200 L. Stoffplankatalog

Mehr

Inhaltsverzeichnis. Mathematische Zeichen und Abkürzungen 9

Inhaltsverzeichnis. Mathematische Zeichen und Abkürzungen 9 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 9 1 Zahlenmengen und Anordnung der Zahlen auf der Zahlengeraden 11 1.1 Die Menge IN 0 der natürlichen Zahlen einschließlich der Null 11 1.2 Die

Mehr

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer

Mehr

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann. Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

Schullehrplan Mathematik BM II Wirtschaft. 1. Allgemeines. 2. Allgemeine Bildungsziele. 3. Überfachliche Kompetenzen

Schullehrplan Mathematik BM II Wirtschaft. 1. Allgemeines. 2. Allgemeine Bildungsziele. 3. Überfachliche Kompetenzen Allgemeines Grundlagen - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Kant. Verordnung zum Einführungsgesetz

Mehr

Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe

Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe Halbjahr 10. 1 Schwerpunkt Inhaltsbezogene Prozessbezogene Arithmetik/Algebra Zahlenmengen (LS10 Kap. I) Angabe von Zahlenmengen mit der Intervall-

Mehr

Mathematik. Berufsmaturität 2, Typ Wirtschaft. Stoffplan Wirtschaftsschule Thun. berufsbegleitend

Mathematik. Berufsmaturität 2, Typ Wirtschaft. Stoffplan Wirtschaftsschule Thun. berufsbegleitend Mathematik Stoffplan Wirtschaftsschule Thun Berufsmaturität 2, Typ Wirtschaft berufsbegleitend Der römische Schriftsteller Stobäus berichtet, dass Euklid (er lebte im 4./3. Jahrhundert v.chr.) von einem

Mehr

Lehrplan Mathematik Informatikmittelschule 2015

Lehrplan Mathematik Informatikmittelschule 2015 1. Allgemeines Grundlagen Lektionenverteilung - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Verordnung SBFI

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Mathematik schriftlich

Mathematik schriftlich WSKV Chur Lehrabschlussprüfungen 2006 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen 3. Algebraische Grundlagen 3.1. Termumformungen Begriff Term: mathematischer Ausdruck, der aus Zahlen, Variablen, Rechenzeichen oder Klammern besteht Termumformungen dienen der Vereinfachung von komplexen

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Vorwort Dr. Hans Marthaler Benno Jakob reto reuter Matthias Burkhardt Dr. Hans Marthaler Katharina Schudel Benno Jakob reto reuter

Vorwort Dr. Hans Marthaler Benno Jakob reto reuter Matthias Burkhardt Dr. Hans Marthaler Katharina Schudel Benno Jakob reto reuter Vorwort Mathematik ist ein wichtiges Hilfsmittel und Werkzeug für künftige Fachhochschulstudierende und Berufsleute. Die beiden Bände Mathematik I und II enthalten die für das Studium vorausgesetzten Inhalte

Mehr

Mathematik. Bündner Kantonsschule Scola chantunala grischuna Scuola cantonale grigione. 1. Stundendotation. 4 H 5 H 6 H Grundlagenbereich 3 3

Mathematik. Bündner Kantonsschule Scola chantunala grischuna Scuola cantonale grigione. 1. Stundendotation. 4 H 5 H 6 H Grundlagenbereich 3 3 Mathematik 1. Stundendotation 4 H 5 H 6 H Grundlagenbereich 3 3 2. Didaktische Hinweise und Allgemeine Bildungsziele nach RLP BM 12 Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

Logarithmische Gleichungen

Logarithmische Gleichungen GS -.08.05 - g_loggl.mcd Logarithmische Gleichungen Definition: Eine Gleichung der Form log b ( ) = a mit > 0, a IR und b IR + \ {} heißt Logarithmusgleichung. Besondere Basen: Basis b = 0 heißt Dekadischer

Mehr

Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1)

Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1) Mathematik Stoffplan Wirtschaftsschule Thun Kaufleute M-Profil (BM 1) Der römische Schriftsteller Stobäus berichtet, dass Euklid (er lebte im 4./3. Jahrhundert v.chr.) von einem jungen Zuhörer gefragt

Mehr

Einführung Mathematik Betriebsökonomie

Einführung Mathematik Betriebsökonomie Betriebsökonomie Code Fachbereich(e) Studiengang /-gänge Vertiefungsrichtung(en) - WMS0Pas Wirtschaftsmathematik & -statistik BSc Betriebsökonomie Passerelle Art des Studiengangs Bachelor Master CAS/MAS/EMBA

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um:

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

HKV BS BM1. Mathematik. Aeschengraben Basell. Fachlehrplan Vorlage Mathematik für HKV beider Basel. Grundlagenbereich

HKV BS BM1. Mathematik. Aeschengraben Basell. Fachlehrplan Vorlage Mathematik für HKV beider Basel. Grundlagenbereich HKV BS Aeschengraben 15 4002 Basell BM1 Fachlehrplan Vorlage Mathematik für HKV beider Basel Grundlagenbereich Mathematik HKV beider Basel FLP Vorlage - Mathematik für KVBZ Liestal 1 Mathematik 1.1 Allgemeine

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

WD-D Grundlagenfach Mathematik

WD-D Grundlagenfach Mathematik BERUFSMATURITÄTSSCHULE GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN Schullehrplan Berufsmaturität WD-D Grundlagenfach Mathematik SLP_WD-D_Mathematik_G_V1.0 / 2015 1. Allgemeine Bildungsziele Mathematik im

Mehr

Vorbereitung auf die erste Klassenarbeit

Vorbereitung auf die erste Klassenarbeit 01 QUADRATISCHE FUNKTIONEN Wiederholungen Alles um Quadratische Funktionen Vorbereitung auf die erste Klassenarbeit Aufgabe 1: Schuljahr 2017/18 Seite 1/12 Aufgabe 2: Schuljahr 2017/18 Seite 2/12 Aufgabe

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen. Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge

Mehr

Die Lektionendotation im Fach Mathematik beträgt 200 Lektionen. Davon sind 10% für den interdisziplinären Unterricht freizuhalten.

Die Lektionendotation im Fach Mathematik beträgt 200 Lektionen. Davon sind 10% für den interdisziplinären Unterricht freizuhalten. 7. Mathematik Berufsmaturität gesundheitliche und soziale Richtung Vollzeitlicher Ausbildungsgang (BM II) 7.1 Allgemeines Die Lektionendotation im Fach Mathematik beträgt 200 Lektionen. Davon sind 10%

Mehr

BM1. Leistungs- und Lernziele im Fach. Mathematik

BM1. Leistungs- und Lernziele im Fach. Mathematik BM1 Leistungs- und Lernziele im Fach Mathematik 01.08.2008 Allgemeine Bildungsziele in Anlehnung an den Rahmenlehrplan Die Mathematik ist eine ausgesprochene Grundlagenwissenschaft. Sie ist im Erwerbsund

Mehr

Einstiegsvoraussetzungen 3. Semester

Einstiegsvoraussetzungen 3. Semester Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die

Mehr

Prozessbezogene Kompetenzen

Prozessbezogene Kompetenzen 1. Quadratische Funktionen ca. 4 Wochen S.12-35 Der freie Fall Normalparabel: y = x 2 Verschobene Normalparabel: y = x 2 + e Arbeiten mit dem Taschenrechner: Wertetabellen Verschobene Normalparabel: y

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

6.6.1 Allgemeine Bildungsziele Allgemeine Bildungsziele gemäss Rahmenlehrplan Fachspezifische Richtziele nach RLP

6.6.1 Allgemeine Bildungsziele Allgemeine Bildungsziele gemäss Rahmenlehrplan Fachspezifische Richtziele nach RLP 6.6 Fachlehrplan Mathematik 6.6.1 Allgemeine Bildungsziele Allgemeine Bildungsziele gemäss Rahmenlehrplan Die Mathematik ist eine ausgesprochene Grundlagenwissenschaft. Sie ist im Erwerbsund im Freizeitbereich

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

Mathematik. Kaufmännische Berufsmaturität 2. Stoffplan Wirtschaftsschule Thun. berufsbegleitend

Mathematik. Kaufmännische Berufsmaturität 2. Stoffplan Wirtschaftsschule Thun. berufsbegleitend Mathematik Stoffplan Wirtschaftsschule Thun Kaufmännische Berufsmaturität 2 berufsbegleitend Fassung vom 05.06.2013 Der römische Schriftsteller Stobäus berichtet, dass Euklid (er lebte im 4./3. Jahrhundert

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Der Logarithmus als Umkehrung der Exponentiation

Der Logarithmus als Umkehrung der Exponentiation Der Logarithmus als Umkehrung der Exponentiation -E -E2 Voraussetzungen Umkehrfunktion: Welche Funktionen haben eine Umkehrfunktion? Warum sind Umkehrfunktionen so wichtig? Exponentialfunktion: Definition

Mehr

Gleichungslehre - 1.Teil Kapitel 3 aus meinem Lehrgang ALGEBRA. Ronald Balestra CH - 7028 St. Peter

Gleichungslehre - 1.Teil Kapitel 3 aus meinem Lehrgang ALGEBRA. Ronald Balestra CH - 7028 St. Peter Gleichungslehre - 1.Teil Kapitel 3 aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 7. März 2010 Überblick über die bisherigen ALGEBRA - Themen: 1 Mengenlehre 1.1 Die

Mehr

Lernziele Matbu.ch 9+

Lernziele Matbu.ch 9+ Lernziele Matbu.ch 9+ Beachte auch den Refernzrahmen des Stellwerk9 www.stellwerk-check.ch Auf der Website www.math-circuit.ch findest du diverses Übungsmaterial. LU Priorität Grobziel (aus Mathbu.ch 9+)

Mehr

Einführungsbeispiel Kostenfunktion

Einführungsbeispiel Kostenfunktion Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die

Mehr

4 Gleichungen und Ungleichungen

4 Gleichungen und Ungleichungen In diesem Kapitel werden Techniken zur Bestimmung der Lösungsmengen von Gleichungen und Ungleichungen rekapituliert. 4.1 Eindimensionale Gleichungen und Ungleichungen Eine Gleichung oder Ungleichung ohne

Mehr

Kompetenzliste 0503_US_wd.indd 1 15.06.2011 11:31:33

Kompetenzliste 0503_US_wd.indd 1 15.06.2011 11:31:33 Kompetenzliste 15.06.2011 11:31:33 Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Angewandten Mathematik 2

Mehr

Heinz Rapp. Mathematik. Grundlagen für die Fachschule Technik. Mit über 500 Abbildungen 2., überarbeitete Auflage. vieweg

Heinz Rapp. Mathematik. Grundlagen für die Fachschule Technik. Mit über 500 Abbildungen 2., überarbeitete Auflage. vieweg Heinz Rapp Mathematik Grundlagen für die Fachschule Technik Mit über 500 Abbildungen 2., überarbeitete Auflage 31 vieweg Inhaltsverzeichnis 1 Mathematische Begriffe und Schreibweisen 1 1.1 Zahlen 1 1.1.1

Mehr

2. Funktionen einer Variablen

2. Funktionen einer Variablen . Funktionen einer Variablen Literatur: [SH, Kapitel 4].1. Definitionen.. Typen von Funktionen..1. Lineare Funktionen... Quadratische Funktionen..3. Polynome..4. Potenzfunktionen..5. Exponentialfunktionen..6.

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Computertechnik / Automatisierungstechnik Elektrotechnik

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

MATHEMATIK. Bildungsziele. Fachmittelschule Seetal Mathematik Lehrplan Profil Pädagogik/Musik. 1. Klasse 2. Klasse 3. Klasse

MATHEMATIK. Bildungsziele. Fachmittelschule Seetal Mathematik Lehrplan Profil Pädagogik/Musik. 1. Klasse 2. Klasse 3. Klasse MATHEMATIK 1. Klasse 2. Klasse 3. Klasse 2 Jahreslektionen à 70 Minuten 2 Jahreslektionen à 70 Minuten 2 Jahreslektionen à 70 Minuten Bildungsziele Die Mathematik ist eine ausgesprochene Grundlagenwissenschaft.

Mehr

Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs

Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs Exponentialgleichungen: Teil 1 1-E Mathematik, Vorkurs Exponentialgleichungen: Aufgaben 1, 2 Aufgabe 1: Berechnen Sie mithilfe der Potenzgesetze [ 36 2 3 6 ] : 1 3 6 ; [ 35 : 2 2 ] 3 2 5 3 Aufgabe 2: Fassen

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Lehrabschlussprüfungen 009 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA. Operationen, Gleichungen, Funktionen + DATENANALYSE

Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA. Operationen, Gleichungen, Funktionen + DATENANALYSE Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA + DATENANALYSE Operationen, Gleichungen, Funktionen y x VORWORT Mathematik ist ein wichtiges Hilfsmittel und Werkzeug, um naturwissenschaftliche und technische

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

1.3 Gleichungen und Ungleichungen

1.3 Gleichungen und Ungleichungen 1.3 Gleichungen und Ungleichungen Ein zentrales Thema der Algebra ist das Lösen von Gleichungen. Ganz einfach ist dies für sogenannte lineare Gleichungen a x = b Wenn hier a 0 ist, können wir beide Seiten

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

Die berufsbildenden Schulen im Land Bremen. Handelsschule. Mathematik. Rahmenplan. Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft

Die berufsbildenden Schulen im Land Bremen. Handelsschule. Mathematik. Rahmenplan. Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft Die berufsbildenden Schulen im Land Bremen Handelsschule Mathematik Rahmenplan Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen 2 Handelsschule Rahmenplan Mathematik Herausgegeben von

Mehr

Einstiegsvoraussetzungen 1. Semester

Einstiegsvoraussetzungen 1. Semester Einstiegsvoraussetzungen 1. Semester Bereich: Zahlen und Maße Mengen können Mengen angeben. verstehen die Begriffe Element von und Teilmenge und können sie anwenden. kennen die Mengenoperationen Vereinigung,

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1 .1 Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen & Gleichungssysteme Quadratische und Gleichungen

Mehr

Funktionen. Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts

Funktionen. Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Funktionen Allgemeines Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Datei Nr. 800 Stand: 5. Juli 0

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

KANTONSSCHULE Lehrplan Fachmittelschule Mathematik und Naturwissenschaften CH 6210 SURSEE Berufsfeld Pädagogik Mathematik 1/6. 1.

KANTONSSCHULE Lehrplan Fachmittelschule Mathematik und Naturwissenschaften CH 6210 SURSEE Berufsfeld Pädagogik Mathematik 1/6. 1. CH 6210 SURSEE Berufsfeld Pädagogik Mathematik 1/6 Mathematik 1. Allgemeines Stundendotation 1. Klasse 2. Klasse 3. Klasse 1. Semester 3 3 3 2. Semester 3 3 3 2. Bildungsziele Die Mathematik ist eine ausgesprochene

Mehr

Mathematik für BWL-Bachelor: Übungsbuch

Mathematik für BWL-Bachelor: Übungsbuch Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor: Übungsbuch Ergänzungen für Vertiefung und Training STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis AI Mathematisches Handwerkszeug: Beispiele

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 15. September 2014 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr