Teil 2 Beurteilende Statistik mit MATLAB

Größe: px
Ab Seite anzeigen:

Download "Teil 2 Beurteilende Statistik mit MATLAB"

Transkript

1 Teil 2 Beurteilende Statistik mit MATLAB 2.1: Vergleich von Mittelwerten Anhand der Beispieldaten für den Einbindigen Traubenwickler aus Abschnitt 1.6 sowie anhand von simulierten Datenlisten wollen wir nun das (bekannteste und gebräuchlichste) Standard-Verfahren der beurteilenden Statistik, nämlich den Mittelwertvergleich durch den t-test, aufgreifen und (wieder mithilfe von MATLAB) exemplarisch einüben. Hierzu werden wir zunächst unabhängige Daten-Listen grafisch nebeneinanderstellen, dann eine geeignete Hypothese über die Beziehung zwischen deren Mittelwerten aufstellen, um schließlich aufgrund des statistischen Tests zu einer signifikanten Entscheidung zu gelangen Werteplots und Konfidenzbereiche der Mittelwertschätzer Während beim boxplot die Mediane und die Quartile mit dem Wertebereich eingezeichnet werden, bietet das folgende analoge Programm die Möglichkeit, für jede Spaltenliste einer Datentabelle X nicht nur alle Werte zu plotten, sondern auch die jeweiligen Mittelwerte und deren (1-alpha)100%-Konfidenzintervalle (im wesentlichen Aufgabe 3.2): function [M,MCI] = Konfiplot(X,alpha) M=[ ]; MCI=[ ]; J=size(X,2); % Anzahl der Spalten von X Xmin = 1.1*min(min(X)); Xmax = 1.1*max(max(X)); plot([1:j],xmin*ones(1,j),'.w') axis([0 J+1 Xmin Xmax]) hold on for j=1:j end %for hold off Werte = X(:,j); Werte = Werte (~isnan(werte)); Mittel = mean(werte); Varianz = var(werte); n=length(werte); plot(j*ones(n,1),werte,'.') plot(j,mittel,'or') X_unten = Mittel - Tzwei(n-1,alpha) * sqrt(varianz/n); X_oben = Mittel + Tzwei(n-1,alpha) * sqrt(varianz/n); plot([j j], [X_unten X_oben], 'r+-') M = [M, Mittel]; MCI = [MCI, [X_unten; X_oben]]; 28

2 Exemplarisch schauen wir uns das Resultat dieses (im CIP-Pool bereitgestellten) Programms an, indem wir drei Spaltenlisten mit 30 normalverteilten Daten simulieren, alle zum Erwartungswert 0 und zur Standardabweichung 2: NormDaten = normrnd(0,2,30,3). Der Befehl [M,MCI] = Konfiplot(NormDaten, 0.05) erstellt dann die Abbildung: Als die empirischen Mittelwerte der drei Spalten erhalten wir M = mit entsprechenden 95%-Konfidenz-Intervallen MCI = Wie auch grafisch gut zu sehen ist, schwanken die Wertebereiche und ihre Mittelwerte, aber die drei Konfidenz-Intervalle überlappen sich alle: Sie enthalten insbesondere alle den echten Erwartungswert 0. In 95% der Fälle muss dies eben so sein!! Wir könnten also von der puren Datenlage her schon die Hypothese aufstellen, dass sich die Mittelwerte der drei Datensätze nicht signifikant unterscheiden. (Diese würde dann mithilfe der Varianzanalyse anova1 dann auch nicht zu falsifizieren sein! Siehe spätere Kapitel). Nehmen wir uns nun die beiden Datensätze der männlichen (1. Spalte) und weiblichen (2.Spalte) Taubenwickler-Überlebenszeiten aus Abschnitt 1.6 her. Der entsprechende Konfiplot mit alpha = 0.05 ergibt: In der Tat zeigt schon der Plot der beiden Überlebenszeit-Wertebereiche (wohlgemerkt werden dabei die ganzzahligen Werte öfter wiederholt), dass etliche männliche Falter schon innerhalb der ersten Woche sterben, während mehr weibliche Falter über 2 Wochen lang leben. Dadurch liegt deren mittlere Überlebenszeit deutlich höher als bei den Männchen. Errechnet erhalten wir die empirischen Werte M = MCI = Sowohl numerisch als auch grafisch ist deutlich zu erkennen, dass die beiden 95%- Konfidenzbereiche sich nicht überlappen! Aus dieser empirischen Datenlage heraus können wir die klare Hypothese aufstellen, dass die mittlere Überlebenszeit der Weibchen signifikant größer ist als der der Männchen. 29

3 2.1.2 Paarweiser Mittelwertvergleich mithilfe von ttest2 Wir haben also zwei Datenlisten vorliegen: die Überlebenszeiten ZeitenW der weiblichen und die ZeitenM der männlichen Falter. Von den empirischen Mittelwerten (und ihren Konfidenzintervallen) her haben wir die folgende Hypothese aufgestellt Hypothese H1: Für die theoretischen Erwartungswerte der Überlebenszeiten gilt muew > muem Der t-test schaut nun nach, ob die Differenz ZeitenW - ZeitenM der beiden empirischen Mittelwerte so groß ist, dass unter der (marginalen) Hypothese H0: muew = mue M ein solcher Wert höchstens in alpha*100% der Fälle vorkommen würde. Dann kann die Hypothese H1 mit (1-alpha)100%-Signifikanz angenommen werden! Dies ist der sogenannte einseitige t-test mit code 1 für (mue_1 > mue_2) bzw. mit code -1 für (mue_1 < mue_2) Im obigen Beispiel lautet das Ergebnis des entsprechenden MATLAB-Befehls mit dem üblichen alpha = 0.05: [h,p,ci] = ttest2(zeitenw,zeitenm, 0.05, 1); h = 1 Dies bedeutet, dass mit 5% Fehlertoleranz H1 angenommen werden kann! Der zweite Ausgabewert p berechnet (unabhängig vom eingegebenen alpha-parameter) die Restwahrscheinlichkeit der t-verteilung oberhalb des errechneten t-wertes und bedeutet: Die Annahme der Hypothese H1 könnte in p*100% der Fälle doch falsch sein! Per Konvention sagen wir, dass die Hypothese H1 bei p < 0.05 signifikant bei p < 0.01 hoch signifikant bei p < höchst signifikant anzunehmen ist. In unserem Beispiel erhalten wir p = e-006 << Dies bedeutet, dass die Weibchen im Mittel sogar höchst-signifikant länger leben als die Männchen! Wie stark der Unterschied zwischen den beiden theoretischen mittleren Überlebenszeiten ist, wird durch den dritten Ausgabewert bemessen, nämlich das Konfidenzintervall für die Differenz (muew muem) der beiden Erwartungswerte. Dieses Intervall ist nach oben hin unendlich, da ja der einseitige Test (mit code 1 ) durchgeführt wurde! Im Beispiel erhalten wir: CI = Inf (=unendlich) Das heisst, bei einer Fehlertoleranz von 5% können wir behaupten, dass die mittlere Überlebenszeit der weiblichen Falter mindestens um den Wert 1.3 höher liegt als die der männlichen Falter. 30

4 2.1.3 Mittelwertvergleich zu festem Wert mithilfe von ttest (einfacher t-test) Anhand des einfachen t-tests, zum Vergleich des Mittelwerts mit einem vorgegebenen Wert, wollen wir uns nochmals die statistische Vorgehensweise des t-tests verdeutlichen und die Bedeutung des p-(signifikanz-)wertes veranschaulichen. Hierzu betrachten wir eine Datenliste X von 15 (normalverteilten) Daten. Als empirischer Mittelwert ergibt sich Mean = und als Varianz bzw. Standardabweichung Varianz = ; STD = Die geschätzte Varianz des theoretischen Mittelwertes ist bekanntlich S² = Varianz / 15 und als Schätzer für S = SDM (Standard Deviation of Mean) erhalten wir S = sqrt(varianz / 15) = STD / v15 = Dieser Schätzer geht ja in die Formel für das nebenstehende abgebildete Konfidenzintervall ein (siehe 2.1.1). Aufgrund der Datenlage bietet es sich an, die folgende Hypothese zu testen: Hypothese H1: Der den Daten X zugrundeliegende theoretische Mittelwert ist größer als 0 mue(x) > 0 Hierzu benutzen wir, analog zu oben, wieder den (einseitigen, genauer den) rechsseitigen t-test (analog wieder mit code 1 ) [h,p] = ttest(x, 0, 0.05, 1) Es wird nun der Mittelwert von X mit 0 verglichen. Wir erhalten die folgenden Ausgaben: h = 1 Die Hypothese H1 kann (mit 5% Fehler) angenommen werden. p = Für den Signifikanz- p-wert gilt: p < 0.05, Also ist der Erwartungwert mue(x) signifikant größer als 0. Als Test-Wert für den t-test wird hierbei der (entsprechend so genannte) t-wert berechnet: T(X) = ( mean(x) 0 ) / S und zwar unter Annahme, dass die (marginalen) Null-Hypothese H0: mue(x) = 0 gilt!!!!! Er ergibt sich in unserem Beispiel zu T(X) = Wie unten eingezeichnet, ist nun der berechnete p-wert nichts anderes als die Fläche des oberen Verteilungsschwanzes der t-verteilung zum Freiheitsgrad df = 15 1 = 14, also die Wahrscheinlichkeit dafür, dass unter der Hypothese H0 (!) eventuell t-werte vorkommen, die größer oder gleich T(X) sind. 31

5 Hätten wir das obige Konfiplot-Bild mit den Daten X nicht gesehen, hätten wir vielleicht die Vor-Information, nämlich dass die Werte eher oberhalb von als unterhalb liegen, nicht gehabt. Dann hätten wir auch ein schwächere Hypothese aufstellen können, um nämlich die Frage testen, ob denn der Mittelwert überhaupt von Null verschieden ist: Hypothese H1: Der den Daten X zugrundeliegende Erwartungswert ist von 0 verschieden mue(x)? 0 Jetzt müssen wir den beidseitigen t-test benutzen (mit code 0 ): [h,p] = ttest(x, 0, 0.05, 0) oder einfach ttest(x, 0) Jetzt erhalten wir aber die folgenden Ausgaben: h = 0 Die Hypothese H1 kann nicht angenommen werden. p = Für den Signifikanz- p-wert gilt: p > 0.05!!! Wir müssen es also bei der Null-Hypothese H0: mue(x) = 0 belassen und formulieren: Der Erwartungswert mue(x) ist nicht signifikant verschieden von 0. Was ist der Grund, dass wir hier beim beidseitigen t-test ein schlechteres statistisches Ergebnis bekommen als beim obigen einseitigen t-test? Nun, der hier berechnete Test-Wert T(X) = ist genau derselbe. Aber, wie wir sofort erkennen, ist jetzt der p-wert p = genau doppelt so groß (!) wie vorher. Das liegt daran, dass wir beim hiesigen beidseitigen Test auch die Möglichkeiten abfragen müssen, dass unter der Hypothese H0 negative t-werte auftauchen. Genauer: p = W-keit { t = T(X) } Denn wir wissen eben nicht, ob der theoretische Erwartungswert größer oder kleiner als 0 ist! Im Beispiel kann die Null-Hypothese in mehr als 7.8% der Fälle solch große t -Werte ergeben! Dementsprechend ist, wie im Bild unten eingezeichnet, jetzt der p-wert die Gesamtfläche beider Verteilungsschwänze der t-verteilung zum Freiheitsgrad df = 14. Das negative Ergebnis entspricht übrigens genau dem Konfiplot-Bild (oben), denn dort enthält das beidseitige Konfidenzintervall des Erwartungswertes in der Tat die Null!!! Beim rechtsseitigen t-test erhielten wir also ein besseres statistisches Ergebnis, weil wir dort aufgrund des deutlich positiven Wertes mean(x)= von vorneherein ausgeschlossen hatten, dass negative t-werte als mögliche Fehler auftreten! 32

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Biometrische Planung von Versuchsvorhaben

Biometrische Planung von Versuchsvorhaben Biometrische Planung von Versuchsvorhaben Einführung in das Prinzip der Lehrstuhl für Mathematik VIII Statistik http://statistik.mathematik.uni-wuerzburg.de/~hain Ziel des Vortrags Im nachfolgenden Vortrag

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

ANalysis Of VAriance (ANOVA) 1/2

ANalysis Of VAriance (ANOVA) 1/2 ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 5.5.2006 1 Ausgangslage Wir können Schätzen (z.b. den Erwartungswert) Wir können abschätzen, wie zuverlässig unsere Schätzungen sind: In welchem Intervall

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

3.Wiederholung: Toleranzbereiche Für EX Geg:

3.Wiederholung: Toleranzbereiche Für EX Geg: 3.Wiederholung: Toleranzbereiche Für EX Geg: Vl. 24.2.2017 Schätzfunktion für Güte: Ist X Problem: Feb 17 13:21 > Wir berechnen Bereiche (Toleranzbereiche) für sind untere und obere Grenzen, berechnet

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind?

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind? Modul G 20.12.2007 Zur Hausaufgabe 3 Erkläre die folgenden Plots und Berechnungen zu Wahrscheinlichkeiten aus technischer und statistischer Sicht. a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen,

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9.

7. Übung: Aufgabe 1. b), c), e) Aufgabe 2. a), c), e) Aufgabe 3. c), e) Aufgabe 4. Aufgabe 5. Aufgabe 6. Aufgabe 7. Aufgabe 8. Aufgabe 9. 7. Übung: Aufgabe 1 b), c), e) Aufgabe a), c), e) Aufgabe 3 c), e) Aufgabe 4 b) Aufgabe 5 a) Aufgabe 6 b) Aufgabe 7 e) Aufgabe 8 c) Aufgabe 9 a), c), e) Aufgabe 10 b), d) Aufgabe 11 a) Aufgabe 1 b) Aufgabe

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

library(lattice) source(file.path(pfadu, "proben.r")) form = read.table(file.path(pfadu, "bet.txt")) e.df = read.table(file.path(pfadu, "e.

library(lattice) source(file.path(pfadu, proben.r)) form = read.table(file.path(pfadu, bet.txt)) e.df = read.table(file.path(pfadu, e. library(lattice) source(file.path(pfadu, "proben.r")) form = read.table(file.path(pfadu, "bet.txt")) e.df = read.table(file.path(pfadu, "e.txt")) 1. SE (Standard Error) und Konfidenzintervall (Siehe Vorlesung,

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013 BRP Mathematik VHS Floridsdorf 15.6.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013 Notenschlüssel:

Mehr

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - -

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - - 2 Deskriptive Statistik 1 Kapitel 2: Deskriptive Statistik A: Beispiele Beispiel 1: Im Rahmen einer Totalerhebung der Familien eines Dorfes (N = 100) wurde u.a. das diskrete Merkmal Kinderanzahl (X) registriert.

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Kapitel 3: Der t-test

Kapitel 3: Der t-test Kapitel 3: Der t-test Durchführung eines t-tests für unabhängige Stichproben 1 Durchführung eines t-tests für abhängige Stichproben 4 Durchführung eines t-tests für eine Stichprobe 6 Vertiefung: Vergleich

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Biostatistik. Lösung

Biostatistik. Lösung Prof. Dr. Achim Klenke Fridolin Kielisch 13. Übung zur Vorlesung Biostatistik im Sommersemester 2015 Lösung Aufgabe 1: a) Ich führe einen zweiseitigen Welch-Test durch, weil ich annehme, dass die Daten

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 9

Übung zur Vorlesung Statistik I WS Übungsblatt 9 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft

Mehr

Prüfung aus Statistik 2 für SoziologInnen

Prüfung aus Statistik 2 für SoziologInnen Prüfung aus Statistik 2 für SoziologInnen 11. Oktober 2013 Gesamtpunktezahl =80 Name in Blockbuchstaben: Matrikelnummer: Wissenstest (maximal 16 Punkte) Kreuzen ( ) Sie die jeweils richtige Antwort an.

Mehr

Biostatistik 7. Zweistichproben-t-Test, F-Test

Biostatistik 7. Zweistichproben-t-Test, F-Test Biostatistik 7. Zweistichproben-t-Test, F-Test Zweistichproben-t-Test Vergleich von zwei unabhängigen Stichproben Versuchssituation: dieselbe Variable wird bei zwei unabhängigen Stichproben geprüft Kontrollgruppe,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

3) Testvariable: T = X µ 0

3) Testvariable: T = X µ 0 Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern

Mehr

Statistik K urs SS 2004

Statistik K urs SS 2004 Statistik K urs SS 2004 3.Tag Grundlegende statistische Maße Mittelwert (mean) Durchschnitt aller Werte Varianz (variance) s 2 Durchschnittliche quadrierte Abweichung aller Werte vom Mittelwert >> Die

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Versuchsplanung Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Gliederung Grundlagen der Varianzanalyse Streuungszerlegung und Modellschätzer Modellannahmen und Transformationen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Wie liest man Konfidenzintervalle? Teil I. Premiu m

Wie liest man Konfidenzintervalle? Teil I. Premiu m Wie liest man Konfidenzintervalle? Teil I Premiu m Was sind Konfidenzintervalle? Ein Konfidenzintervall (KI) ist ein Maß für die Unsicherheit bezüglich einer Schätzung eines Effekts. Es ist ein Intervall

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs tatistik für Wirtschaftswissenschaften Lösungen UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Brückenkurs tatistik für Wirtschaftswissenschaften: Lösungen

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Beispiel: Kann ein neugeborenes Küken Körner erkennen oder lernt es dies erst durch Erfahrung? Um diese Frage zu entscheiden, wird folgendes Experiment geplant: Sobald das Küken

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Fragestellungen. Ist das Gewicht von Männern und Frauen signifikant unterschiedlich? (2-sample test)

Fragestellungen. Ist das Gewicht von Männern und Frauen signifikant unterschiedlich? (2-sample test) Hypothesen Tests Fragestellungen stab.glu 82 97 92 93 90 94 92 75 87 89 hdl 56 24 37 12 28 69 41 44 49 40 ratio 3.60 6.90 6.20 6.50 8.90 3.60 4.80 5.20 3.60 6.60 glyhb 4.31 4.44 4.64 4.63 7.72 4.81 4.84

Mehr

Mittelwertvergleiche, Teil II: Varianzanalyse

Mittelwertvergleiche, Teil II: Varianzanalyse FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Bevölkerungs-Mittelwert 99 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

T-Test für unabhängige Stichproben

T-Test für unabhängige Stichproben T-Test für unabhängige Stichproben Wir gehen von folgendem Beispiel aus: Wir erheben zwei Zufallstichproben, wobei nur die Probanden der einen Stichprobe einer speziellen experimentellen Behandlung (etwa

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen SPSSinteraktiv von Signifikanztests - 1 - Übersicht über verschiedene Signifikanztests und ihre Verfahren zur Überprüfung von Unterschieden in der zentralen Tendenz Unterschieden werden können Testsituationen

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Grundlagen der schließenden Statistik

Grundlagen der schließenden Statistik Grundlagen der schließenden Statistik Schätzer, Konfidenzintervalle und Tests 1 46 Motivation Daten erhoben (Umfrage, Messwerte) Problem: Bei Wiederholung des Experiments wird man andere Beobachtungen

Mehr

Fallzahlplanung bei unabhängigen Stichproben

Fallzahlplanung bei unabhängigen Stichproben Seminar Aktuelle biometrische Probleme benjamin.hofner@stat.uni-muenchen.de 2. Januar 2005 Inhaltsverzeichnis Einführung in die Fallzahlplanung 2. Grundlegendes zur Fallzahlplanung...........................

Mehr

x(n x) cm 2 ) zweier Betonsorten wird überprüft. Dabei ergaben Sorte 1 185 186 184 186 185 187 186 187 185 Sorte 2 183 182 185 182 181 179

x(n x) cm 2 ) zweier Betonsorten wird überprüft. Dabei ergaben Sorte 1 185 186 184 186 185 187 186 187 185 Sorte 2 183 182 185 182 181 179 . Aufgabe: Zwei bis drei Millionen deutsche Haushalte sind überschuldet. Einer der Hauptgründe für die Überschuldung privater Haushalte ist eine gescheiterte Selbstständigkeit. In einer Stichprobe von

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Testen von Unterschiedshypothesen mit parametrischen Verfahren Der t-test

Testen von Unterschiedshypothesen mit parametrischen Verfahren Der t-test Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 5 Seite 1 Testen von Unterschiedshypothesen mit parametrischen Verfahren Der t-test Im Folgenden

Mehr

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab.

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests A parametrisch -- ANOVA Beispieldatei: Seegräser_ANOVA H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. µ

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Auswertung: Irina Zamfirescu Auftraggeber: Mag. Klaus Brehm Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Fragestellung: Wirkt sich

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Vergleich zweier Stichproben

Vergleich zweier Stichproben zurück zum Inhaltsverzeichnis Die Werte sind verbunden, abhängig oder korreliert. Beispiel: Eine Probe wird mit zwei Messgeräten bestimmt. Es gibt eine paarweise Zuordnung. Die Werte sind unabhängig also

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Herzlich willkommen zum Thema SPSS

Herzlich willkommen zum Thema SPSS Herzlich willkommen zum Thema SPSS (SUPERIOR PERFORMING SOFTWARE SYSTEM) Qualitative und quantitative Forschungsmethoden Qualitative Methoden: Qualitative Verfahren werden oft benutzt, wenn der Forschungsgegenstand

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Biometrische und Ökonometrische Methoden II Lösungen 2

Biometrische und Ökonometrische Methoden II Lösungen 2 TECHNISCHE UNIVERSITÄT MÜNCHEN - WEIHENSTEPHAN SS 01 MATHEMATIK UND STATISTIK, INFORMATIONS- UND DOKUMENTATIONSZENTRUM Biometrische und Ökonometrische Methoden II Lösungen 2 1. a) Zunächst wird die Tafel

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr