2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1"

Transkript

1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1

2 .1 Schrödingergl. mit Radial-Potenzial V(r) Physik IV SS 005. H Grundl.. ) cos( ) )sin( sin( ) )cos( sin( θ φ θ φ θ r z r y r x = = = allg.: Potenzial V=V(r,t). H-Atom: Zeitunabhängige Schrödinger Gleichung für ein kugelsymmetrisches Potenzial V = V(r), mit r= r : Math.Formelsammlung: mit in Polarkoordinaten r, θ, φ folgt: ψ ψ ϕ ψ θ θ ψ θ θ θ ψ E r V mr r r r m r = + + ) ( sin 1 sin sin 1 1 h h ψ ψ ψ E r V m = + ) ( h

3 Separation der Variablen Diese Gleichung ist separierbar durch den Produkt-Ansatz: ψ(r,θ,φ) = R(r)Θ(θ)Φ(φ). Wie mache ich aus 1 Schrödingergleichung 3 Gleichungen für R(r), Θ(θ), Φ(φ)? Schaffe Φ(φ) auf die linke Seite, den Rest mit R(r), Θ(θ) auf die rechte Seite: 1 Φ d dϕ Φ = sin θ d R dr r dr + dr sinθ d dθ sinθ + Θ dθ dθ m ( E h V ( r)) r sin θ Diese Gleichung: (1/Φ) Φ/ φ = Rest(r, θ) gilt für beliebige Werte von r, θ, φ, d.h. beide Seiten müssen gleich einer Konstanten Λ sein, z.b.: (1/Φ) Φ/ φ = Λ = Schwingungsgleichung mit (normierter) Lösung: Φ m (φ) = (π) ½ e imφ, mit Λ = m. Damit Φ(0) = Φ(π) = stehende Welle ist, muss Magnet-Quantenzahl m ganzzahlig sein. (N.B.: die Φ m (φ) sind orthonormiert: 0 π Φ m *Φ n dφ = δ mn ) Physik IV SS 005. H Grundl..3

4 Drei DGln. Gleicher Trick mit Rest(r,θ)=Λ=m : Schaffe die r-abhängigkeit auf linke Seite, die θ Abhängigkeit auf rechte Seite: 1 d dr m 1 d dθ ( r ) + r ( E V ( r)) = sinθ m + R dr dr h Θsinθ dθ dθ sin θ Setze beides = Konstante λ. Dies gibt mit DGl. für Φ(φ) insgesamt drei DGln. für R(r), Θ(θ), Φ(φ). Mit V(r) = Coulomb-Potenzial: (1) () (Λ = m, m = 0, ±1, ±, ) (3) Physik IV SS 005. H Grundl..4

5 . Kugelflächen-Funktionen Y lm (θ,φ) Gleichungen 3.: s.o. Gleichungen.+3. (ohne Beweis): Für ein kugelsymm. Potenzial V(r) ist die Winkelabhängigkeit Θ(θ)Φ(φ) der Lösungen der Schrödinger- Gleichung immer gegeben durch die Kugelflächenfunktionen Y lm (θ,φ)= ½ P lm (cosθ)e imφ, mit Legendre-Polynomen P lm. Damit Θ(θ) endlich bleibt, muss der Grad l des Polynoms eine endliche ganze Zahl sein: l = 0, 1,,, und λ = l(l+1). N.B.: die Y lm (θ,φ) bilden ein vollständiges Orthonormalsystem. Physik IV SS 005. H Grundl..5

6 Beispiele Kugelfunktionen Y lm (θ,φ) : ~ cos θ Y 10 (θ,φ) ~ cosθ: z + cosθ θ Physik IV SS 005. H Grundl..6

7 Rotations-Symmetrie der Y lm (θ,φ) Y 3 0 (θ,φ) l, m >> 1: klassische Bahn Physik IV SS 005. H Grundl..7

8 Vorzeichen der Kugelfunktionen Y lm (θ,φ) z Physik IV SS 005. H Grundl..8

9 Beispiel: n=7 Orbitale 7g 7s 7p 7f 7d Physik IV SS 005. H Grundl..9

10 . Radial-Wellenfunktionen R n,l (r) ohne Beweis: Gleichung (1) mit λ = l(l+1) hat endliche Lösungen R(r) nur: für die Werte l = 0, 1,,, n 1, und für die diskreten Energiewerte E n = R H Z /n, dh. selbes Ergebnis wie aus Bohr-Modell (Balmer Formel), mit Rydberg-Energie R H =e /4πε 0 a 0 (=CoulombWW im Abstand a 0 ) =½α mc Physik IV SS 005. H Grundl..10

11 Beispiele für R n,l (r) R n,l (r) dv = Wahrscheinlichkeit, das Elektron am Ort x,y,z zu finden in dv=dxdydz Physik IV SS 005. H Grundl..11

12 Radiale Wahrscheinlichkeits-Verteilung r R n,l (r) 4πr R n,l (r) dr = Wahrscheinlichkeit, das Elektron im Abstand r zu finden in Kugelschale 4πr dr Physik IV SS 005. H Grundl..1

13 Gesamtwellenfunktionen ψ(r,θ,φ)=r n,l (r) Y lm (θ,φ) Physik IV SS 005. H Grundl..13

14 Beispiele Gesamt-Wellenfunktion n=3, l=m=0: 3s-Zustand n=, l=1, m=0: pσ-zustand Physik IV SS 005. H Grundl..14

15 Mechanik:.4 Bahn-Drehimpuls L ist erhalten für Zentralpotenzial V(r) Quantenmechanik: Polar-Koordinaten: Vgl. Schrödingergleichung in Polarkoordinaten S..! Physik IV SS 005. H Grundl..15

16 Bahn-Drehimpuls Quantenzahlen Die Kugel-Flächenfunktionen Y lm (θ,φ) sind daher Eigenfunktionen: 1. der Schrödingergleichung, d.h. des Hamiltonoperators H, und gleichzeitig. der Drehimpuls-Operatoren l und l z : l ψ = l(l+1)ħ ψ und l z ψ = mħ ψ Die Zustände ψ(r,θ,φ)=r n,l (r) Y lm (θ,φ) des Wasserstoffatoms haben daher die folgenden "guten Quantenzahlen": die Haupt-Quantenzahl n = 1,, 3, der Energie-Eigenwerte E n die Bahndrehimpuls-Quantenzahl l = 0, 1,, 3,, n 1 genannt: s p d f -Orbitale die magnetischer Quantenzahl m = l z = l,, 0, 1,, 3,, l 1, l genannt: σπδφ -Orbitale l hat den Betrag l = l(l+1) ħ und die z-komponente mħ. Nur die Grössen E n, l und l z sind gleichzeitig bestimmbar, nicht aber die Grössen l x, l y, l z, d.h. die Phase f des Vektors l in der x-y Ebene ist unbestimmt. Physik IV SS 005. H Grundl..16

17 Richtungsquantelung des Drehimpulses l = l(l+1) ħ Physik IV SS 005. H Grundl..17

18 Wdh.: die Begriffe der Quantenmechanik Operator A definiert eine physikalische Messgröße ("Observable") Beispiele: Impulsoperator p = iħ Drehimpulsoperator L = r µ p = iħr µ Hamiltonoperator H = p /m + V = (ħ /m) +V Operatoren sind im allgemeinen nicht vertauschbar: AB BA Beispiel: p x x x p x da, angewandt auf ψ: / x (xψ) x / x ψ Zustand ψ ist Eigenfunktion des Operators A mit Eigenwert a wenn: Aψ = aψ, wobei A = Operator, a = Wert der Messgröße ( = Zahl) Beispiele: 1. Schrödingergleichung Hψ = E n ψ : Die Zustände ψ (r,θ,φ)=r n,l (r) Y lm (θ,φ) sind Eigenfunktionen des Hamiltonoperators H mit den Eigenwerten E n der Observablen E.. Die ebenen Wellen e ik x sind Eigenfunktion des Impulsoperators p = iħ mit dem Eigenwert ħk der Observablen p, da: p x ψ = iħ / x e ik x = ħk x ψ, etc. Physik IV SS 005. H Grundl..18

19 Erwartungswert = Mittelwert: Beispiel: weitere Begriffe AÚ = Ûψ*Aψ dv E kin Ú = (ħ /m e ) Ûψ* ψ dv Unschärfe A = Schwankungsquadrat = ( A Ú - AÚ ) ½. Der Erwartungswert AÚ ist "scharf": A = 0, wenn AÚ = Eigenwert a von A, denn es ist: A = A Ú AÚ = Ûψ*A ψ dv (Ûψ*Aψ dv) = a (1 1) = 0 wenn ψ = Eigenfunktion von A. a heisst dann eine "gute Quantenzahl". Wenn Ψ gleichzeitig Eigenfunktion von zwei Operatoren A und B, mit Eigenwerten a und b, dann sind die Observablen A und B gleichzeitig scharf messbar. Wegen ABΨ = abψ = BAΨ sind dann beide Operatoren vertauschbar: AB = BA Unser Beispiel: Die Messgrößen E n, l, m sind gleichzeitig bestimmbar, da die Operatoren H, l, l z dieselben Eigenfunktionen R n,l (r) Y lm (θ,φ) haben, dh. wechselseitig vertauschbar sind. Physik IV SS 005. H Grundl..19

20 H-Atom Energieniveaus Bahndrehimpuls-Quantenzahl l: Hauptquantenzahl n Schrödingergleichung ergibt dieselben Energie-Eigenwerte wie das Bohr-Modell: E n = R H Z /n, unabhängig von Bahndrehimpuls l. Physik IV SS 005. H Grundl..0

21 .5 Spin s s µ s e Spin des Elektrons s = ½ : s = [s(s+1)] ½ ħ = ¾ ħ, s z = m s ħ, m s = ½ Elektron; Spin ½ Fermion magnetisches Moment des Elektrons µ s = γ s γ = gyromagnetisches Verhältnis jeder Zustand kann mit Elektronen besetzt werden Physik IV SS 005. H Grundl..1

22 Stern-Gerlach Effekt Kraft auf Atom im inhomogenen Magnetfeld B z (z): F = µ B = µ z B z / z gibt direktes Abbild der Richtungsquantelung µ z = γs z = ½ γħ (γ = gyromagn. Verhältnis) Physik IV SS 005. H Grundl..

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Das Wasserstoffatom. Kapitel 11

Das Wasserstoffatom. Kapitel 11 04 Kapitel Das Wasserstoffatom Das Verständnis des einfachsten Atoms, d.h. des Wasserstoffatoms, ist eine der Grundlagen des Verständnisses aller Atome. Die theoretische Behandlung des Wasserstoffatoms

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Erratum: Potentialbarriere

Erratum: Potentialbarriere Erratum: Potentialbarriere E

Mehr

Die Schrödingergleichung in zwei Dimensionen

Die Schrödingergleichung in zwei Dimensionen a Die Schrödingergleichung in zwei Dimensionen ψ(x, y) E pot 0 b Im zwei-dimensionalen Fall können wir für die Wellenfunktion ψ(x, y) einen Ansatz mit separierten Variablen machen, ψ(x, y) = f(x) (y).

Mehr

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses 1 Drehimpuls Wir werden im folgenden dreidimensionale Probleme der Quantenmechanik behandeln. Ein wichtiger Begriff dabei ist der Drehimpuls. Wir werden zuerst die Definition des quantenmechanischen Drehimpulses

Mehr

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2 y 2 2 z 2 = 2 r 2 2 r r 1 2 L r 2 ħ 2 11. Das Wasserstoffatom H = p2 2 U r μ = Masse (statt m, da m später als Quantenzahl verwendet wird) U r = e2

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Wasserstoffatom Vorlesung: Mo 1h-12h, Do9h-1h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

3 Einfache, vollständig lösbare quantenmechanische Systeme

3 Einfache, vollständig lösbare quantenmechanische Systeme 3 Einfache, vollständig lösbare quantenmechanische Systeme Durch eine geeignete Transformation der Variablen lassen sich einige Probleme, die nach genauen Lösungen der Schrödingergleichung verlangen, auf

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

2.1. Das Wasserstoffatom Atommodelle (vor 1900)

2.1. Das Wasserstoffatom Atommodelle (vor 1900) 2.1. Das Wasserstoffatom 2.1.1. Atommodelle (vor 1900) 105 2.1.2. Eigenzustände des Wasserstoffatoms Ein einfaches Beispiel: Wasserstoff in Wechselwirkung mit einem klassischen Feld. Eigenenergien wasserstoffähnlicher

Mehr

8 Das Wasserstoffatom

8 Das Wasserstoffatom 8DAS WASSERSTOFFATOM 41 Nomenklatur von Rotations-Vibrations-Übergängen. Bei den Spektroskopikern hat sich folgender Code eingebürgert: J := J J = 1 0 1 Code O P Q R S Hinter diese Buchstaben schreibt

Mehr

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome) VL 12 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2

Mehr

2 Einführung in die Prinzipien der Quantenmechanik

2 Einführung in die Prinzipien der Quantenmechanik Einführung in die Prinzipien der Quantenmechanik.1 Bedeutung von Axiomen (Postulaten) Axiome (Axiom griechisch für Grundsatz) sind Postulate, die nicht beweisbar sind, mit denen aber durch logische Folgerungen

Mehr

Matrixdarstellung von Operatoren

Matrixdarstellung von Operatoren Kapitel 6 Matrixdarstellung von Operatoren 6 Matrizen in der Quantenmechanik Die Entdeckung der Quantenmechanik geht auf Werner Heisenberg zurück Er assoziierte physikalische Größen wie x und p mit Feldern

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches

Mehr

Schrödingergleichung für Einelektronen-Systeme

Schrödingergleichung für Einelektronen-Systeme Das Wasserstoffatom Die Schrödingergleichung ist nur für Einelektronensysteme analytisch lösbar. Als Analogon sei das Dreikörperproblem der Mechanik genannt, welches im allgemeinen nicht analytisch gelöst

Mehr

5. Atome mit 1 und 2 Leucht-Elektronen 5.1 Alkali-Atome 5.2 He-Atom

5. Atome mit 1 und 2 Leucht-Elektronen 5.1 Alkali-Atome 5.2 He-Atom 5. Atome mit 1 und 2 Leucht- 5.1 Alkali-Atome 5.2 He-Atom 5.1 5.1 Alkali Atome ein "Leuchtelektron" Alkali Erdalkali 5.2 Tauchbahnen grosser Bahndrehimpuls l: geringes Eintauchen kleiner Bahndrehimpuls

Mehr

Kapitel 2. Zeitunabhängige Störungstheorie. 2.1 Ohne Entartung der ungestörten Energie Niveaus

Kapitel 2. Zeitunabhängige Störungstheorie. 2.1 Ohne Entartung der ungestörten Energie Niveaus Kapitel Zeitunabhängige Störungstheorie.1 Ohne Entartung der ungestörten Energie Niveaus Näherungs-Verfahren In den meisten Fällen läßt sich die Schrödinger Gleichung nicht streng lösen. Aus diesem Grund

Mehr

4.3 Das Wasserstoffatom

4.3 Das Wasserstoffatom 1.3 Das Wasserstoffatom Das Wasserstoffatom besteht aus einem Atomkern, der für den normalen Wasserstoff einfach durch ein Proton gegeben ist, mit der Masse m p, und einem Elektron mit der Masse m e. Vernachlässigen

Mehr

8.3 Die Quantenmechanik des Wasserstoffatoms

8.3 Die Quantenmechanik des Wasserstoffatoms Dieter Suter - 409 - Physik B3 8.3 Die Quantenmechanik des Wasserstoffatoms 8.3.1 Grundlagen, Hamiltonoperator Das Wasserstoffatom besteht aus einem Proton (Ladung +e) und einem Elektron (Ladung e). Der

Mehr

Harmonische Polynome im R 3

Harmonische Polynome im R 3 Harmonische Polynome im R 3 Christoph Fürst, Alexander Grubhofer, Claudia Jabornegg Gerlinde Sigl, Stefan Steinerberger Einführung und Definitionen Definition Sei C (R 3 ) die Menge der {f : R 3 C : f

Mehr

Gesamtdrehimpuls Spin-Bahn-Kopplung

Gesamtdrehimpuls Spin-Bahn-Kopplung Gesamtdrehimpuls Spin-Bahn-Kopplung > 0 Elektron besitzt Bahndrehimpuls L und S koppeln über die resultierenden Magnetfelder (Spin-Bahn-Kopplung) Vektoraddition zum Gesamtdrehimpuls J = L + S Für J gelten

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4

FERIENKURS EXPERIMENTALPHYSIK 4 FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 2 Streutheorie, Bohrsches Atommodell, Schrödingergleichung des Wasserstoffatoms Felix Bischoff, Christoph Kastl, Max v. Vopelius 25.08.2009 Die Struktur der Atome

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011.

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011. Skript ur 19. Vorlesung Quantenmechanik, Freitag den 4. Juni, 011. 13.5 Weitere Eigenschaften des Spin 1/ 1. Die Zustände und sind war Eigenustände der -Komponente ŝ des Spin- Operators s, sie stellen

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Quantenmechanische Probleme in drei Raumdimensionen

Quantenmechanische Probleme in drei Raumdimensionen KAPITEL VI Quantenmechanische Probleme in drei Raumdimensionen VI. Dreidimensionaler Kastenpotential Der Vollständigkeit halber... VI. Teilchen in einem Zentralpotential In diesem Abschnitt werden die

Mehr

10. Das Wasserstoffatom quantenmechanisch

10. Das Wasserstoffatom quantenmechanisch 10. Das Wasserstoffatom quantenmechanisch 9.1. Operatoren, Messwerte 9.2. Zeitabhängige und stationäre Schrödingergleichung 9.3. Beispiel 1: Ebene Wellen als Lösung der Potentialfreien Schrödingergleichung

Mehr

6. Viel-Elektronen Atome

6. Viel-Elektronen Atome 6. Viel-Elektronen 6.1 Periodensystem der Elemente 6.2 Schwerere 6.3 L S und j j Kopplung 6.1 6.1 Periodensystem der Elemente 6.2 Auffüllen der Elektronen-Orbitale Pauliprinzip: je 1 Elektron je Zustand

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Schalenmodell Kern- und Teilchenphysik Schalenmodell Das Tröpfchenmodell ist ein phänemonologisches Modell mit beschränktem Anwendungsbereich. Es wird an die Experimente angepasst (z.b. die Konstanten

Mehr

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers Notizen zur Kern-Teilchenphysik II (SS 4):. Erhaltungsgrößen Prof. Dr. R. Santo Dr. K. Reygers http://www.uni-muenster.de/physik/kp/lehre/kt-ss4/ Kern- Teilchenphysik II - SS 4 1 Parität (1) Paritätsoperator:

Mehr

Quantenmechanik I. Script zur Vorlesung von. Jan Louis

Quantenmechanik I. Script zur Vorlesung von. Jan Louis Quantenmechanik I Script zur Vorlesung von Jan Louis II. Institut für Theoretische Physik der Universität Hamburg, Luruper Chaussee 149, 761 Hamburg, Germany 5. Juni 01 Inhaltsverzeichnis 1 Hamilton Formalismus

Mehr

Grundlagen der Chemie Allgemeine Chemie Teil 2

Grundlagen der Chemie Allgemeine Chemie Teil 2 Allgemeine Chemie Teil 2 Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu AO-Theorie Wellenmechanik So wie Licht

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung Das Wasserstoffatom und dessen Spektrum Markus Kotulla, Markus Perner, Stephan Huber 30.08.011 Inhaltsverzeichnis 1 Einführung 1 Das Wasserstoffatom 1.1 Schematische

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

5 Das Wasserstoffatom

5 Das Wasserstoffatom 5. Grundgleichungen 5.. Problemstellung n 6 5 4 H α Hβ Hγ Hδ Wie bereits bei der Einführung dargelegt, war die Existenz und Stabilität von Atomen eine der wesentlichsten Diskrepanzen zwischen der klassischen

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Der unendlich hohe Potentialtopf. Es muss aber auch erfüllt werden: + + In Matrixform: exp( jkl) exp( jkl)

Der unendlich hohe Potentialtopf. Es muss aber auch erfüllt werden: + + In Matrixform: exp( jkl) exp( jkl) Der unendlich hohe Potentialtopf Wiederholung! Ende 8.4.5 Es muss aber auch erfüllt werden: ψ()=ψ(l)= V e - + + ψ () = A exp( jk) + A exp( jk) = A + A = A = A + + ψ ( L) = A exp( jkl) + A exp( jkl) = Lineares

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

Quantenmechanik für das Lehramtsstudium Zuviel Theorie?

Quantenmechanik für das Lehramtsstudium Zuviel Theorie? Quantenmechanik für das Lehramtsstudium Zuviel Theorie? Wolfgang Kinzel WE Heraeus Seniorprofessor, Theoretische Physik, Universität Würzburg Lautrach 2017 Wolfgang Kinzel (WE Heraeus Seniorprofessor,

Mehr

Quantentheorie für Nanoingenieure Klausur Lösung

Quantentheorie für Nanoingenieure Klausur Lösung 07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht

Mehr

Kapitel 2. Atome im Magnetfeld quantenmechanische Behandlung. 2.1 Normaler Zeeman-Effekt

Kapitel 2. Atome im Magnetfeld quantenmechanische Behandlung. 2.1 Normaler Zeeman-Effekt Kapitel 2 Atome im Magnetfeld quantenmechanische Behandlung 2.1 Normaler Zeeman-Effekt Zur quantentheoretischen Behandlung des normalen Zeeman-Effekts verwenden wir, dass sich ein Magnetfeld B aus einem

Mehr

Ferienkurs Experimentalphysik Probeklausur - Musterlösung

Ferienkurs Experimentalphysik Probeklausur - Musterlösung Ferienkurs Experimentalphysik 4 010 Probeklausur - Musterlösung 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was

Mehr

Das quantenmechanische Atommodell

Das quantenmechanische Atommodell Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

3. Vom Wasserstoffatom zum Periodensystem der Elemente

3. Vom Wasserstoffatom zum Periodensystem der Elemente 3. Vom Wasserstoffatom zum Periodensystem der Elemente Im vorangegangenen Kapitel haben wir uns mit den grundlegenden Konzepten der Quantenmechanik auseinandergesetzt. Ein weiteres Ziel dieser Vorlesung

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

Moderne Physik 36. Atome (Atoms) 36.1 Das Atom und die Atomspektren (The nuclear atom)

Moderne Physik 36. Atome (Atoms) 36.1 Das Atom und die Atomspektren (The nuclear atom) M. Musso: Physik II Teil 36 Atome Seite 1 Tipler-Mosca Physik Moderne Physik 36. Atome (Atoms) 36.1 Das Atom und die Atomspektren (The nuclear atom) 36. Das Bohr'sche Modell des Wasserstoffatoms (The Bohr

Mehr

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Aufbau von Atomen Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Wiederholung Im Kern: Protonen + Neutronen In der Hülle: Elektronen Rutherfords Streuversuch (90) Goldatome

Mehr

Atome und ihre Eigenschaften

Atome und ihre Eigenschaften Atome und ihre Eigenschaften Vom Atomkern zum Atom - von der Kernphysik zur Chemie Die Chemie beginnt dort, wo die Temperaturen soweit gefallen sind, daß die positiv geladenen Atomkerne freie Elektronen

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls 2.2. Der Spin 2.2.1. Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls Dies entspricht einem Kreisstrom. n r r I e Es existiert ein entsprechendes magnetisches

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms

Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms Das Noethertheorem in der Quantenmechanik und die SO(4)-Symmetrie des Wasserstoffatoms Matthias Jacobi und Hendrik Spahr 13.12.2006 1 Inhaltsverzeichnis 1 Das Noethertheorem in der Quantenmechanik 3 1.1

Mehr

5 Spezielle Funktionen

5 Spezielle Funktionen 5 Spezielle Funktionen In diesem Kapitel werden einige wichtige Funktionen der Mathematischen Physik vorgestellt. Solche Funktionen sind in der Quantentheorie in mehrfacher Hinsicht von Bedeutung: Einmal

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Am Ende der heutigen Vorlesung (am 27.05.) : Vorstellung von Fachschaftsvertretern

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Daltonsche Atomhypothese (1808)

Daltonsche Atomhypothese (1808) Daltonsche Atomhypothese (1808) Chemische Elemente bestehen aus kleinsten, chemisch nicht weiter zerlegbaren Teilchen, den Atomen. Alle Atome eines Elementes haben untereinander gleiche Masse, während

Mehr

Theorie des Wasserstoffatoms bei Betrachtung der Schrödinger-Gleichung im Impulsraum nach Vladimir Aleksandrovich Fock

Theorie des Wasserstoffatoms bei Betrachtung der Schrödinger-Gleichung im Impulsraum nach Vladimir Aleksandrovich Fock Institut für Theoretische Physik Theorie des Wasserstoffatoms bei Betrachtung der Schrödinger-Gleichung im Impulsraum nach Vladimir Aleksandrovich Fock Im Seminar zur Theorie der Atome, Kerne und kondensierten

Mehr

Ferienkurs Quantenmechanik. Grundlagen und Formalismus

Ferienkurs Quantenmechanik. Grundlagen und Formalismus Ferienkurs Quantenmechanik Sommersemester 203 Seite Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Grundlagen und Formalismus In der Quantenmechanik werden Zustände

Mehr

Ferienkurs Experimentalphysik 4 - SS 2008

Ferienkurs Experimentalphysik 4 - SS 2008 Physik Departement Technische Universität München Karsten Donnay (kdonnay@ph.tum.de) Musterlösung latt 3 Ferienkurs Experimentalphysik - SS 28 1 Verständnisfragen (a) Was ist eine gute Quantenzahl? Was

Mehr

Das Wasserstoffatom Energiestufen im Atom

Das Wasserstoffatom Energiestufen im Atom 11. 3. Das Wasserstoffatom 11.3.1 Energiestufen im Atom Vorwissen: Hg und Na-Dampflampe liefern ein charakteristisches Spektrum, das entweder mit einem Gitter- oder einem Prismenspektralapparat betrachtet

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Herbst 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Reibung Ein Teilchen der Masse m bewege sich mit der Anfangsgeschwindigkeit v 0 > 0 in x-richtung und soll durch

Mehr

J 2. Rotations-Spektroskopie. aus der klassischen Physik. Drehimpuls. Energie eines Rotators. Trägheitsmoment

J 2. Rotations-Spektroskopie. aus der klassischen Physik. Drehimpuls. Energie eines Rotators. Trägheitsmoment Rotations-Spektroskopie aus der klassischen Physik J E = I Drehimpuls Energie eines Rotators Trägheitsmoment I = mr Atommassen Geometrie von Molekülen Abstandsinformationen!!! C 3 -Rotation C -Rotation

Mehr

10.6 Mehratomige ideale Gase

10.6 Mehratomige ideale Gase 10.6 Mehratomige ideale Gase Wir wenden uns jetzt dem Problem molekularer idealer Quantengase zu. 10.6.1 Quantenmechanik der starren Hantel Eine starre Hantel aus zwei Punktmassen m 1 und m 2, die durch

Mehr

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen

Mehr

Die Lösungen der S.-Glg. für das freie Teilchen

Die Lösungen der S.-Glg. für das freie Teilchen Die Lösungen der S.-Glg. für das freie Teilchen Zeitabhängige S- G l g., ħ ħ x (, (, m i = + Vrt rt Analogie zu den eletromagnetischen Wellen, Materiewellen, intuitives Raten etc. Ansatz f ü r W e l l

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 28. Mai 2009 5 Atome mit mehreren Elektronen Im Gegensatz zu Ein-Elektronen

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

zum Ende seines Lebens infolge schlechter Durchblutung des Gehirn an schwerem Gedächtnisschwund.

zum Ende seines Lebens infolge schlechter Durchblutung des Gehirn an schwerem Gedächtnisschwund. Kapitel 12 Der Zeeman-Effekt In diesem Kapitel befassen wir uns mit dem Einfluss eines externen Magnetfelds auf das Spektrum eines Atoms. Wir werden sehen, dass infolge dieser Beeinflussung die Entartung

Mehr

Quantenmechanik für Lehramtskandidaten und Meteorologen

Quantenmechanik für Lehramtskandidaten und Meteorologen Quantenmechanik für Lehramtskandidaten und Meteorologen Alexander Shnirman Institut für Theorie der Kondensierten Materie, Karlsruher Institut für Technologie Dated: 17. Januar 014) 1 Contents I. Motivation

Mehr

Die Schrödingergleichung II - Das Wasserstoffatom

Die Schrödingergleichung II - Das Wasserstoffatom Die Schrödingergleichung II - Das Wasserstoffatom Das Wasserstoffatom im Bohr-Sommerfeld-Atommodell Entstehung des Emissionslinienspektrums von Wasserstoff Das Bohr-Sommerfeld sche Atommodell erlaubt für

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Wasserstoff-Atom Lösung der radialen SGL

Wasserstoff-Atom Lösung der radialen SGL Wassestoff-Atom Lösung de adialen SGL Die adiale SGL des H-Atoms lautet: d R d + dr d + ηr + α R ( + 1) R = mit μee η= μ Ze α= e 4 πε Lösungsansatz: 1) Auffinden de Lösung fü (Asymptotische Lösung: R ())

Mehr

Atomvorstellung: Antike bis 19. Jh.

Atomvorstellung: Antike bis 19. Jh. GoBack Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell 1 / 24 Atomvorstellung der Griechen Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell Die

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung):

Mehr

Ferienkurs Quantenmechanik - Lösungen Sommersemester 2013

Ferienkurs Quantenmechanik - Lösungen Sommersemester 2013 Theoretische Physik III) 1. September 013 Seite 1 Ferienkurs Quantenmechanik - Lösungen Sommersemester 013 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München 1. September

Mehr

8 Das Bohrsche Atommodell

8 Das Bohrsche Atommodell 8 Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse,

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

Ferienkurs Experimentalphysik Probeklausur - Musterlösung

Ferienkurs Experimentalphysik Probeklausur - Musterlösung Ferienkurs Experimentalphysik 4 2010 Probeklausur - Musterlösung 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Elektronen im Magnetfeld Seminar zur Theorie der Atome, Kerne und kondensierten Materie

Elektronen im Magnetfeld Seminar zur Theorie der Atome, Kerne und kondensierten Materie Elektronen im Magnetfeld Seminar zur Theorie der Atome, Kerne und kondensierten Materie Institut für theoretische Physik Institut für Festkörpertheorie Betreuer: Prof. Dr. Krüger Mark Stringe 04. Dezember

Mehr

Das von Neumannsche Theorem. von Martin Fiedler

Das von Neumannsche Theorem. von Martin Fiedler Das von eumannsche Theorem von Martin Fiedler Einleitung In der Mitte des letzten Jahrhunderts beschäftigten sich viele Physiker mit der Frage nach der Vollständigkeit der Quantentheorie. Einige Physiker,

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 9 Quantenmechanik mit Näherungsmethoden, oder: Wie rechne ich etwas aus? Vorlesungskript für den 6. August 9 Max Knötig Inhaltsverzeichnis Einführung Zeitunabhängige, nicht-entartete

Mehr