7 Beziehungen im Raum

Größe: px
Ab Seite anzeigen:

Download "7 Beziehungen im Raum"

Transkript

1 Lange Zeit glaubten die Menschen, die Erde sei eine Scheibe. Heute zeigen dir Bilder aus dem Weltall sehr deutlich, dass die Erde die Gestalt einer Kugel hat. 7 Beziehungen im Raum Gradnetz der Erde Längengrade Längengrade (Meridiane) sind Halbkreise, die wie abgebildet die geographischen Pole verbinden. Sie verlaufen senkrecht zum Erdäquator wurde von 25 Ländern ein Anfangslängenkreis (Nullmeridian) bestimmt. Davon ausgehend wurden jeweils 180 Längengrade nach Westen und nach Osten festgelegt. Durch welchen Ort verläuft der Anfangslängenkreis (Nullmeridian)? 140

2 Breitengrade Geographische Koordinaten Der Äquator teilt die Erde in die nördliche und die südliche Halbkugel. Parallel zum Äquator verlaufen nach Norden und nach Süden jeweils 90 Breitenkreise (Breitengrade), die alle den gleichen Abstand zueinander haben. Jeder Punkt der Erdoberfläche ist durch die Angabe der Längen- und Breitengrade und deren Unter teilung in Gradminuten und Gradsekunden genau bestimmt (1 Grad = 60 Minuten, 1 Minute = 60 Sekunden). Die Werte des Längen- und Breitengrades eines Ortes werden als seine geographischen Koordinaten bezeichnet. Versuche die geographischen Koordinaten deines Wohnortes zu bestimmen. Notiere zunächst die geographische Breite, danach die geographische Länge

3 Gerade Linien Strecke, Gerade, Strahl 4 Stelle mithilfe der abgebildeten Karte einen Rundflug zusammen. Es gibt mehrere Möglichkeiten. 1. Preis: Rundflug über Deutschland! Sie können insgesamt 2000 km fliegen. Stellen Sie sich Ihren eigenen Rundflug zusammen. Freie Wahl aus den angegebenen Flugstrecken. Jede Stadt kann nur einmal angeflogen werden. Start- und Zielort: Köln Mit einem Laserstrahl werden in einem Tunnel Messungen durchgeführt. 1 Überall in deiner Umgebung findest du gerade Linien. Frau Müller schneidet eine Hecke. Zu welchem Zweck hat sie eine Schnur gespannt? 2 Jeweils drei der abgebildeten Punkte sollen auf einer geraden Linie liegen. Wie kannst du das überprüfen? Beschreibe dein Vorgehen. Strecke AB = Strecke a Eine Strecke ist die kürzeste Verbindung zwischen zwei Punkten. Eine Strecke wird durch ihre Endpunkte oder mit kleinen lateinischen Buchstaben bezeichnet. 3 Versuche aus freier Hand, fünf gerade Linien zu zeichnen. Überprüfe anschließend, ob die Linien gerade sind. 146 Die Länge einer Strecke kannst du messen.

4 Gerade Linien Strecke, Gerade, Strahl 5 Zeichne jeweils eine Strecke mit der angegebenen Länge in dein Heft. Strecke AB CD EF GH KL Länge 3 cm 4 cm 3,5 cm 56 mm 4,6 cm Strecke MN OP RS TU Länge 29 mm 8,5 cm 92 mm 0,6 dm 6 Denke dir eine Strecke AB jeweils über die Endpunkte A und B hinaus beliebig weit verlängert, es entsteht eine Gerade. Begründe, warum du immer nur einen Ausschnitt der Geraden zeichnen kannst. Nimm doch ein größeres Blatt! Ich kann nicht weiter zeichnen. 8 Trage die Punkte A (2 2), B (10 2), C (12 7), D (10 11), E (10 8), F (6 2), G (12 11), H (4 11), l (6 4) und K (6 8) in ein Koordinatensystem ein. Zeichne, wenn möglich, durch drei der angegebenen Punkte eine gerade Linie. 9 Zeichne die Strecke mit den angegebenen Endpunkten in ein Koordinatensystem. Gib die Koordinaten von drei Punkten an, die auf der Strecke liegen. Koordinaten der Endpunkte a) A (1 3) B (7 15) b) C (4 4) D (14 9) c) E (0 0) F (16 4) d) G (2 11) H (14 7) e) M (16 15) N (21 5) f) O (2 0) P (12 10) 10 Wie viele Geraden, Strahlen und Strecken findest du in der Abbildung? 7 Gib an, ob es sich in der Abbildung um eine Gerade, einen Strahl oder eine Strecke handelt. Miss die Länge der einzelnen Strecken. Eine Gerade hat keinen Anfangspunkt und keinen Endpunkt. Geraden werden mit kleinen Buchstaben (g, h, a, b, ) bezeichnet. Zwei Punkte legen genau eine Gerade fest. Ein Strahl (eine Halbgerade) hat einen Anfangspunkt, aber keinen Endpunkt. 147

5 Grundwissen: Geometrische Grundbegriffe Eine Strecke ist die kürzeste Verbindung zwischen zwei Punkten. Eine Strecke wird durch ihre Endpunkte oder mit kleinen Buchstaben bezeichnet. Die Länge einer Strecke kannst du messen. Eine Gerade hat keinen Anfangspunkt und keinen Endpunkt. Geraden werden mit kleinen Buchstaben (g, h, a, b,...) bezeichnet. Zwei Punkte legen genau eine Gerade fest. Ein Strahl (eine Halbgerade) hat einen Anfangspunkt, aber keinen Endpunkt. Die Geraden g und h stehen senkrecht zueinander, sie bilden rechte Winkel. Man schreibt: g h Man sagt: g senkrecht zu h In einer Zeichnung wird ein rechter Winkel durch das Symbol gekennzeichnet. Die Länge der Strecke AB ist der Ab - stand des Punktes A von der Geraden g. Der Abstand wird auf der Senkrechten zur Geraden g durch Punkt A gemessen. Zwei Geraden g und h, die zu einer dritten Geraden senkrecht stehen, heißen zueinander parallel. Man schreibt: Man sagt: g h g parallel zu h Zueinander parallele Geraden haben überall den gleichen Abstand. 153

6 Lernkontrolle 1 1 Suche aus dem Bild die Strecken heraus und miss jeweils ihre Länge. 4 Gib zu jedem Punkt die Koordinaten an. 2 Übertrage die Punkte und die Gerade g in dein Heft. a) Zeichne durch die einzelnen Punkte die Senkrechte zu g. b) Zeichne durch die Punkte P und Q jeweils eine Parallele zu g. 5 Zeichne in einem Koordinatensystem eine Gerade durch die Punkte A (2 1) und B (8 7). Zeichne eine weitere Gerade ein, die durch den Punkt C (1 8) geht und die senkrecht auf der ersten Geraden steht. Wo schneidet diese Senkrechte die x- Achse? 6 Welche Abstände haben jeweils die Parallelen a und b, a und c, a und d, b und c, b und d, c und d? 3 Zeichne zwei zueinander parallele Geraden im Abstand von 4,3 cm. Wiederholung 1 Multipliziere schriftlich. a) b) c) Berechne das Produkt. a) b) c) a) Multipliziere 26 und 17. b) Bestimme das Produkt aus 36 und 25. c) Drei Faktoren sind 24, 18 und 100. Berechne das Produkt. d) Bestimme das 17fache von 111. e) Berechne das Doppelte des Produktes aus 575 und Dividiere schriftlich. a) 615 : 5 b) 1179 : 9 c) 4002 : : : : : : : 7 5 Bestimme den Quotienten. a) 1680 : 30 b) 3132 : 12 c) 4386 : : : : : : : 13 6 a) Dividiere 3210 durch 5. b) Bestimme den Quotienten aus 728 und 52. c) Mit welcher Zahl musst du 13 multiplizieren, um als Produkt 299 zu erhalten? d) Das Produkt ist 392, ein Faktor 14. Bestimme den zweiten Faktor. 158

Koordinatensystem, Strecken, Geraden

Koordinatensystem, Strecken, Geraden Koordinatensystem, Strecken, Geraden Zeichne eine Rechts- und eine Hochachse und trage folgende Punkte ein: P(2 1), Q(10 1), R(10 9), S(2 9), T(4 3), U(8 3), V(8 7), W(4 7). Zeichne die Strecken PQ QR

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Aufgaben zu geometrischen Grundbegriffen 1

Aufgaben zu geometrischen Grundbegriffen 1 Aufgaben zu geometrischen Grundbegriffen 1 Punkt, Gerade, Strecke und Strahl 1. Gib alle Buchstaben an, mit denen ein Punkt bezeichnet wird. A 2. Schreibe verschiedene Redewendungen auf, in denen das Wort

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

GPS - Anwendungen. im Zusammenhang mit satellitengestützter Ortung

GPS - Anwendungen. im Zusammenhang mit satellitengestützter Ortung im Zusammenhang mit satellitengestützter Ortung Gestalt der Erde und Darstellungsmöglichkeiten auf Karten : Die Erde hat annähernd Kugelform. Durch die Erdrotation entsteht eine Abplattung an den Polen

Mehr

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e)

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e) Mathematik-Arbeitsblatt Klasse: 29.10.2015 Aufgabe 1 (5Z1.11-004-e) H2:I1:K1 0 1 2 Setze < oder > ein! a) 397 3397 c) 456 655 e) 2345 2435 1 b) 67 890 67 980 d) 632 432 f) 10 001 1001 Aufgabe 2 (5Z1.11-013-m)

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Unsere Erde ist ins Netz gegangen

Unsere Erde ist ins Netz gegangen 34 Unsere Erde ist ins Netz gegangen Die Katastrophe ereignete sich am 14. April 1912. Auf der Jungfernfahrt von Southampton nach New York rammte die Titanic einen Eisberg. Das Schiff wurde unter der Wasserlinie

Mehr

2. UNTERRICHTSTUNDE: DIE LAGE DER VEREINIGTEN STAATEN: EINE LANDKARTE LESEN KÖNNEN

2. UNTERRICHTSTUNDE: DIE LAGE DER VEREINIGTEN STAATEN: EINE LANDKARTE LESEN KÖNNEN THEMA: USA 2. UNTERRICHTSTUNDE 34 2. UNTERRICHTSTUNDE: DIE LAGE DER VEREINIGTEN STAATEN: EINE LANDKARTE LESEN KÖNNEN Ziele: die Schüler sollen sich über die Größe der Vereinigten Staaten bewusst werden

Mehr

Kartenkunde. Beispiel: Maßstab 1 : 50 000 Auf der Karte: 1 cm = 500 m in der Natur

Kartenkunde. Beispiel: Maßstab 1 : 50 000 Auf der Karte: 1 cm = 500 m in der Natur Allgemeines Die Karte ist das verkleinerte (durch den entsprechenden Maßstab) verebnete (durch Kartenprojektion) durch Kartenzeichen und Signaturen erläuterte Abbild eines Teils der Erdoberfläche. Maßstab

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie

Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie Skript Beispiele Musteraufgaben Seite 1 Impressum Mathefritz Verlag Jörg Christmann Pfaffenkopfstr. 21E 66125 Saarbrücken verlag@mathefritz.de

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.8 2015/07/09 15:09:47 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Koordinatensysteme und GPS

Koordinatensysteme und GPS Koordinatensysteme und GPS Koordinatensysteme und GPS Koordinatensysteme: Definition Ein Koordinatensystem ist ein Bezugssystem, mit dem die Positionen von geographischen Features, Bildern und Beobachtungen,

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

SIS Vortragsreihe. Astronomische Koordinatensysteme

SIS Vortragsreihe. Astronomische Koordinatensysteme SIS Vortragsreihe Astronomische Koordinatensysteme Das Himmelsgewölbe Zur Vereinfachung stellen wir uns das Himmelsgewölbe als hohle Kugel vor. Die Fix-Sterne sind an dieser Kugel befestigt oder einfach

Mehr

Selbstbeurteilung Ich habe es mehrheitlich. Ich habe grosse Mühe. Ich fühle mich sicher. Ich fühle mich etwas. verstanden.

Selbstbeurteilung Ich habe es mehrheitlich. Ich habe grosse Mühe. Ich fühle mich sicher. Ich fühle mich etwas. verstanden. Geografie Kartenkunde: Test Name Was habe ich gelernt? Ich fühle mich sicher Selbstbeurteilung Ich habe es mehrheitlich verstanden Ich fühle mich etwas unsicher Ich kann einen Gegenstand aus verschiedenen

Mehr

Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten

Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten Ziele Erklären können, warum es Tag und Nacht gibt Die Drehbewegungen der Erde erläutern können Über das Gradnetz

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

5 10 Preis (in Euro) 0,50

5 10 Preis (in Euro) 0,50 Deine Ziele: Du kannst den Begriff "direkte Proportionalität" erklären. Du kannst überprüfen, ob eine Zuordnung direkt proportional ist. Du kannst direkt proportionale Zuordnungen im Koordinatensystem

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Es wird versucht, die geometrischen Grundlagen zur Entscheidung dieser Frage aufzuarbeiten.

Es wird versucht, die geometrischen Grundlagen zur Entscheidung dieser Frage aufzuarbeiten. Hans Walser, [20160609] Gestalt der Erde 1 Worum geht es? Im späten 17. Jahrhundert entspann sich ein wissenschaftlicher treit um die Gestalt der Erde (Brotton 2012,. 308): Die Anhänger von Descartes (1596-1650)

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen.

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 1 as Geodreieck als Mess- und Prüfinstrument VORNSI 1. Lies die Sätze. Ordne den ildern die richtige Nummer zu. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 2 Mit der Mittellinie

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Pflichtaufgaben A B C D E F. 2,20 m. 1,45 m. 1,10 m. (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen)

Pflichtaufgaben A B C D E F. 2,20 m. 1,45 m. 1,10 m. (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen) Abschlussprüfung Realschule Pflichtaufgaben P1 (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen) 5(0,2x 0,8) = 8x (1 + 2x) P1.2 Löse die Formel nach h auf: V = 2 π r 3 h P1.3

Mehr

Wissen und Können zum Maßstab und zur Ähnlichkeit 1

Wissen und Können zum Maßstab und zur Ähnlichkeit 1 Wissen und Können zum Maßstab und zur Ähnlichkeit 1 1. Bedeutungen der Begriffe in der Mathematik Der Begriff Maßstab wird in der Mathematik nur bei der Eintafelprojektion eines Köpers zur Angabe der Höhe

Mehr

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt. FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen

Mehr

Orientierung auf dem virtuellen Globus

Orientierung auf dem virtuellen Globus Heinz Schumann Orientierung auf dem virtuellen Globus Wer sich nicht orientiert, die Übersicht verliert! 1 Einleitung Im Zeitalter der Globalisierung, das auch durch den internationalen Flugverkehr geprägt

Mehr

Das Lineal (Lernposter)

Das Lineal (Lernposter) Das Lineal (Lernposter) Das Lineal ist ein Zeichengerät. Es ist ein Hilfsmittel zum Zeichnen von geraden Linien und Strecken. Mithilfe der Skala kannst du Längen von Linien und Strecken messen. Der erste

Mehr

DOWNLOAD. Geometrisches Zeichnen: Grundlagen und Beziehungen. Erstes Zeichnen mit Geräten: parallele, senkrechte und sich schneidende Linien

DOWNLOAD. Geometrisches Zeichnen: Grundlagen und Beziehungen. Erstes Zeichnen mit Geräten: parallele, senkrechte und sich schneidende Linien DOWNLOAD Ralph Birkholz Geometrisches Zeichnen: Grundlagen und Beziehungen Erstes Zeichnen mit Geräten: parallele, senkrechte und sich schneidende Linien Downloadauszug aus dem Originaltitel: Das Werk

Mehr

Gruppenunterricht zum Thema «Orientierung auf der Erdkugel»

Gruppenunterricht zum Thema «Orientierung auf der Erdkugel» Gruppenunterricht zum Thema «Orientierung auf der Erdkugel» Fach Schulstufe: Alter der Schülerinnen: Art der Gruppenarbeit: Dauer: Autor: Betreuer: Geographie Gymnasium, etwa 7. Schuljahr 13 bis 14 Jahre

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Mittel- und Oberstufe - MITTEL:

Mittel- und Oberstufe - MITTEL: Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Gruppenarbeit: Lagebeziehungen Gruppe A

Gruppenarbeit: Lagebeziehungen Gruppe A Gruppe A Hier soll die Lage von Geraden im Koordinatensystem untersucht werden. Bearbeiten Sie folgende Fragen (am besten mit Hilfe von Skizzen): 1) Wie kann man überprüfen, ob eine gegebene Gerade durch

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Die Erde im Überblick

Die Erde im Überblick Die Erde im Überblick Lernziele Kontinente und Ozeane Alte Weltbilder kennen und erklären können Grober Aufbau unseres Sonnensystems kennen Kontinente und Ozeane kennen und benennen können Pro Kontinent

Mehr

Liechtensteinisches Gymnasium

Liechtensteinisches Gymnasium Schriftliche Matura 2015 Liechtensteinisches Gymnasium Prüfer: Huber Sven Klasse 7Wa Zeit: 240 Minuten Name: Klasse: Instruktionen: 1) Gib die zur Rechnung nötigen Einzelschritte an. 2) Skizzen müssen

Mehr

4.2. Aufgaben zu quadratischen Funktionen

4.2. Aufgaben zu quadratischen Funktionen .. Aufgaben zu quadratischen Funktionen Aufgabe : Stauchung und Streckung der Normalparabel a) Zeichne die Schaubilder der folgenden Funktionen in das Koordinatensstem. b) Vervollständige die darunter

Mehr

Orientierung Lehrerinformation

Orientierung Lehrerinformation Lehrerinformation 1/7 Arbeitsauftrag Windrose gestalten und mit den entsprechenden Himmelsrichtungen beschriften Kompass basteln mit der Sonne Ziel Die SuS können räumliche spunkte verorten und für die

Mehr

Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium

Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Für einen effektiven Mathematikunterricht ist es unerlässlich, dass Schüler auf grundlegende Kenntnisse und Fertigkeiten zurückgreifen

Mehr

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1 Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten

Mehr

----------------------------------- THW-Jugend. Ortsverband Salzgitter ----------------------------------- Kartenkunde. Ausbildungsunterlagen

----------------------------------- THW-Jugend. Ortsverband Salzgitter ----------------------------------- Kartenkunde. Ausbildungsunterlagen ----------------------------------- THW-Jugend Kartenkunde Seite Vorwort 1 Ortsverband Salzgitter ----------------------------------- 1. Allgemeines - Kartenkunde 2 1.1 Der Maßstab 2 1.2 Das UTM-Gitter

Mehr

Kompetenztest. Geometrische Grundbegriffe. Kompetenztest. Testen und Fördern. Geometrische Grundbegriffe. Name: Klasse: Datum:

Kompetenztest. Geometrische Grundbegriffe. Kompetenztest. Testen und Fördern. Geometrische Grundbegriffe. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Wie viele Symmetrieachsen (Spiegelachsen) hat die Figur? keine 1 2 4 2) Ordne den symmetrischen Figuren links die passenden Spiegelachsen rechts zu. 1) 2) Alle

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Bauvermessung. Grundvorlesung im BA-Studiengang Bauingenieurwesen Prof. Dr.-Ing. H.-J. Przybilla. Hochschule Bochum Fachbereich Geodäsie 1

Bauvermessung. Grundvorlesung im BA-Studiengang Bauingenieurwesen Prof. Dr.-Ing. H.-J. Przybilla. Hochschule Bochum Fachbereich Geodäsie 1 Bauvermessung Grundvorlesung im BA-Studiengang Bauingenieurwesen Prof. Dr.-Ing. H.-J. Przybilla Quellen: Resnik/Bill: Vermessungskunde für den Planungs-, Bau- und Umweltbereich Witte/Schmidt: Vermessungskunde

Mehr

7.7. Aufgaben zu Abständen und Winkeln

7.7. Aufgaben zu Abständen und Winkeln 7.7. Aufgaben zu Abständen und Winkeln Aufgabe : Schnittwinkel zwischen Geraden Bestimmen Sie die Innenwinkel und ihre Summe für das Viereck ABCD. Berechnen Sie auch die Koordinatengleichung der Trägerebene,

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Die Neugestaltung der topographischen Karten Österreichs basierend auf dem UTM-Referenzsystem

Die Neugestaltung der topographischen Karten Österreichs basierend auf dem UTM-Referenzsystem Die Neugestaltung der topographischen Karten Österreichs basierend auf dem UTM-Referenzsystem Walter Gruber Institut für Geographie und angewandte Geoinformatik der Universität Salzburg Die Neugestaltung

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe 1.0 Berechne: 1.1 230 1000 = 1.2 4 357 25 = 756 187 + 44 163 190 79 + 83 = 1.3 ( ) ( ) 1.4 123 ( 123 64) 87 ( 234 186) + = 1.5 3408 83 = 2.0 Ergänze die fehlenden Ziffern. 2.1 + 7 3 6 5 8 8 9 6 1 5 3.0

Mehr

S t a t i o n e n b e t r i e b A u f g a b e n b l ä t t e r. (um diese Aufgabe zu lösen, verwende bitte deinen Atlas!)

S t a t i o n e n b e t r i e b A u f g a b e n b l ä t t e r. (um diese Aufgabe zu lösen, verwende bitte deinen Atlas!) S t a t i o n e n b e t r i e b A u f g a b e n b l ä t t e r Beantworte die folgenden Fragen! (um diese Aufgabe zu lösen, verwende bitte deinen Atlas!) 1. Station Auf welcher Insel liegt der Punkt mit

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Marie-Curie-Gymnasium Waldstrasse 1a 16540 Hohen Neuendorf Tel.: 03303/9580 Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Um euch den Einstieg in den Mathematikunterricht zu erleichtern,

Mehr

Teilnehmerunterlage BOS-Sprechfunker. 4. Kartenkunde

Teilnehmerunterlage BOS-Sprechfunker. 4. Kartenkunde 4. KARTENKUNDE Karten bilden einen maßstäblich verkleinerten Teil der Erdoberfläche ab, in dem das Gitternetz des Globus auf eine Fläche projiziert wird. Maßstäbe, Kartenzeichen, Signaturen oder Gitternetzlinien

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit Seite 1 40 Seite 2 Seite 2 Seite 3 Seite 4 Seite 5 Seite 6 9 Seite 10 13 Seite 14 17 Seite 18 21 Seite 22 25 Seite 26 29 Seite 30 33 Seite 34 36 Seite 37 40 Seite 41 44 Seite 45 48 Seite 49 52 Seite 53

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5)

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5) 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A( ) ; B( 0,5) und C( 0,5 ) 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

Zusammenfassung und Wiederholung zu Geraden im IR ²

Zusammenfassung und Wiederholung zu Geraden im IR ² Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Beispiel. Beispiel. Beispiel

Beispiel. Beispiel. Beispiel Posten 1 Atlas Karten Auf der vordersten Umschlagseite des Atlas ist eine Europakarte abgebildet. Einzelne Länder und Regionen sind mit einem nummerierten Rechteck umrahmt. Die Nummern zeigen, auf welcher

Mehr

STRECKEN MESSEN IM UTM- KOORDINATENSYSTEM

STRECKEN MESSEN IM UTM- KOORDINATENSYSTEM STRECKEN MESSEN IM UTM- KOORDINATENSYSTEM GEOMEDIA DESKTOP UND GEOMEDIA SMART CLIENT Tipps & Tricks 02.04.2016 INHALT Einleitung... 3 Messen in GeoMedia Desktop... 4 Beispieldaten... 4 Messverfahren Planar...

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

DOWNLOAD. Grundlagen der Geometrie. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner

DOWNLOAD. Grundlagen der Geometrie. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner DOWNLOAD Michael Körner Grundlagen der Geometrie Kopiervorlagen zum Grundwissen Ebene Michael Körner Grundwissen Ebene Geometrie 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel:

Mehr

Das weiß ich schon! Das will ich wissen?

Das weiß ich schon! Das will ich wissen? Das weiß ich schon! Das will ich wissen? 1 Schreibe zum Thema Längen : 1. Das weiß ich schon: 2. Das will ich wissen: Bringe Material oder Bücher zum Thema für unseren Thementisch mit! Wer ist der Größte?

Mehr

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z) Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Gewußt...? Kap. 1: Sonnenstand. ... wieviel Handspannen die Sonne im Winter mittags über dem Horizont steht?

Gewußt...? Kap. 1: Sonnenstand. ... wieviel Handspannen die Sonne im Winter mittags über dem Horizont steht? Gewußt...? In diesem Dokument sind einige Besonderheiten im jahreszeitlichen und örtlichen Verlauf der Sonne zusammengestellt und aufgrund der astronomischen Zusammenhänge erklärt. Die entsprechenden Daten,

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr