Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse"

Transkript

1 Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seinar Therische Abfallbehandlung - Veranstaltung 4 - Dapfkraftprozesse Dresden, 09. Juni 2008 Dipl.- Ing. Christoph Wünsch, Prof. Dr.- Ing. habil. Dr. h.c. Bernd Bilitewski

2 Inhalt 1. Priärenergie-Uwandlungsverfahren 2. Wirkungsweise eines Dapferzeugers 2.1. Naturulauf und 2. Hauptsatz der Therodynaik 3.1. Anergie und Exergie 3.2. Therodynaische Zustandsgrößen 4. Verdapfen von Flüssigkeiten 4.1. T, S - Diagra von Wasserdapf 4.2. H, S - Diagra von Wasserdapf 5. Clausius - Rankine - Prozess 5.1. Berechnungsbeispiel (ideal) 5.2. Wasserdapftafeln 6. Turbinenwirkungsgrad 7. Vergleich - idealer, realer Dapfkraftprozess Folie 2 von 43

3 Priärenergie-Uwandlungsverfahren Folie 3 von 43

4 Priärenergie-Uwandlungsverfahren Folie 4 von 43

5 Wirkungsweise eines Dapferzeugers Folie 5 von 43

6 Wirkungsweise eines Dapferzeugers Folie 6 von 43

7 Wirkungsweise eines Dapferzeugers Folie 7 von 43

8 Schea eines Dapfkraftwerkes Folie 8 von 43

9 Naturulauf Folie 9 von 43

10 Naturulauf Folie 10 von 43

11 1. Und 2. Hauptsatz der Therodynaik 1. Hauptsatz der Therodynaik: Energieerhaltungssatz: Die Energie eines abgeschlossenen Systes bleibt unverändert. Verschiedene Energieforen können sich denach ineinander uwandeln, aber Energie kann weder aus de Nichts erzeugt noch kann sie vernichtet werden. Deshalb ist ein Perpetuu Mobile erster Art unöglich (kein Syste verrichtet Arbeit ohne Zufuhr einer anderen Energiefor und/oder ohne Verringerung seiner inneren Energie) Folie 11 von 43

12 1. Und 2. Hauptsatz der Therodynaik 2. Hauptsatz der Therodynaik: Es ist nicht jede Energiefor in beliebig andere Energieforen uwandelbar. Arbeit, andere echanische Energieforen und elektrische Energie lassen sich ohne Einschränkung vollständig in innere Energie oder Wäre uwandeln. Innere Energie oder Wäre ist hingegen nieals vollständig in Arbeit, echanische oder elektrische Energie uwandelbar. Prinzip der Irreversibilität (Nichtukehrbarkeit) von Prozessen Folie 12 von 43

13 Anergie und Exergie Energie ist Exergie und Anergie Jede Energie besteht aus Exergie und Anergie, Wobei einer der beiden Anteile auch Null sein kann. Bei allen Prozessen bleibt die Sue aus Exergie und Anergie konstant. Exergie ist Energie, die sich unter Mitwirkung einer vorgegebenen Ugebung in jede andere Energiefor uwandeln lässt. Anergie ist Energie, die sich nicht in Exergie uwandeln lässt. I. Bei allen irreversiblen Prozessen verwandelt sich Exergie in Anergie II. Nur bei reversiblen Prozessen bleibt die Exergie konstant III. Es ist unöglich, Anergie in Exergie zu verwandeln Folie 13 von 43

14 Therodynaische Zustandsgrößen Teperatur: Druck: In der Therodynaik wird die Teperatur T als Basisgröße eingeführt. Die Maßeinheit ist Kelvin [K]: 1 K ist der 273,14te Teil der therodynaischen Teperatur des Tripelpunktes von Wasser Unter Druck versteht an die Noralkraft, bezogen auf eine Flächeneinheit Innere Energie: Wird eine Syste Energie in For von Wäre oder Arbeit zugeführt, dann erhöht sich seine innere Energie Für das ideale Gas gilt: U 2 -U 1 = c V (T 2 -T 1 ) Folie 14 von 43

15 Therodynaische Zustandsgrößen Enthalpie Die Enthalpie ist eine aus der inneren Energie U, de Druck p und de Voluen V abgeleitet energetische Zustandsgröße: H = U + p V Für technische Berechnungen und Untersuchungen ist die Enthalpie eist besser geeignet als die innere Energie. Deshalb ist in verschiedenen Tafelwerken häufiger die spezifische Enthalpie als die spezifische innere Energie zu finden. Für das ideale Gas gilt: H 2 -H 1 = c p (T 2 -T 1 ) Folie 15 von 43

16 Therodynaische Zustandsgrößen Entropie Da die zugeführte Wäre keine Zustandsgröße ist, wird eine ihr entsprechende Zustandsgröße, die Entropie S, eingeführt. Die Definitionsgleichung in differentieller For lautet: ds= dq/ T = (du + p dv) / T = (dh - V dp) / T Für das ideale Gas kann dann durch Integration erittelt werden: S 2 -S 1 = c V ln(t 2 /T 1 ) + Rr ln (V 2 /V 1 ) S 2 -S 1 = c p ln(t 2 /T 1 ) - Rr ln (p 2 /p 1 ) S 2 -S 1 = c V ln(p 2 /p 1 ) + c p ln(v 2 /V 1 ) Bei eine adiabatischen reversiblen Prozess ändert sich die Entropie wegen dq= 0 nicht. Folie 16 von 43

17 Verdapfen von Flüssigkeiten - Beispiel: offenes Syste (Dapferzeuger) bei konstante Druck (isobare Verdapfung) - Zu jeder bestiten Teperatur gehört ein bestiter Druck Dapfdruck (Sättigungsdruck) - Druck uss zwischen Tripelpunkt und kritischen Punkt liegen, oberhalb erfolgt stetiger Übergang von Flüssig- in Gasphase a b c d e a) Flüssigkeit p = const - durch Kolben abgeschlossenes Syste - hoogenes Syste flüssige Phase - konstanter Druck durch Gewicht, t<t s t s t s t s t>t s - Zufuhr eines konstanten Wärestros - Erwärung der Flüssigkeit Erwären der Flüssigkeit Verdapfen Überhitzen des Dapfes Folie 17 von 43

18 Verdapfen von Flüssigkeiten - Beispiel: offenes Syste (Dapferzeuger) bei konstante Druck (isobare Verdapfung) - Zu jeder bestiten Teperatur gehört ein bestiter Druck Dapfdruck (Sättigungsdruck) - Druck uss zwischen Tripelpunkt und kritischen Punkt liegen, oberhalb erfolgt stetiger Übergang von Flüssig- in Gasphase a b c d e b) Flüssigkeit p = const - Erreichen der Siedeteperatur (Dapfdruckkurve wird erreicht) - Voluenvergrößerung durch Teperaturerhöhung - Wärezufuhr weiter konstant - Verdapfung beginnt t<t s t s t s t s t>t s Erwären der Flüssigkeit Verdapfen Überhitzen des Dapfes Folie 18 von 43

19 Verdapfen von Flüssigkeiten - Beispiel: offenes Syste (Dapferzeuger) bei konstante Druck (isobare Verdapfung) - Zu jeder bestiten Teperatur gehört ein bestiter Druck Dapfdruck (Sättigungsdruck) - Druck uss zwischen Tripelpunkt und kritischen Punkt liegen, oberhalb erfolgt stetiger Übergang von Flüssig- in Gasphase a b c d e p = const t<t s t s t s t s t>t s c) Nassdapf - Wasser und Dapf liegen i therodynaischen Gleichgewicht vor - Teperatur bleibt konstant - Verdapfung - Sattdapferzeugung, Nassdapf (i Dapf ist noch Wasser vorhanden,) - heterogenes Syste Erwären der Flüssigkeit Verdapfen Überhitzen des Dapfes Folie 19 von 43

20 Verdapfen von Flüssigkeiten - Beispiel: offenes Syste (Dapferzeuger) bei konstante Druck (isobare Verdapfung) - Zu jeder bestiten Teperatur gehört ein bestiter Druck Dapfdruck (Sättigungsdruck) - Druck uss zwischen Tripelpunkt und kritischen Punkt liegen, oberhalb erfolgt stetiger Übergang von Flüssig- in Gasphase a b c d e d) Sattdapf p = const - Verdapfung vollständig abgeschlossen - Sattdapf, trockengesättigter Dapf - hoogenes Syste - beträchtlich Voluenzunahe t<t s t s t s t s t>t s - Teperatur konstant Erwären der Flüssigkeit Verdapfen Überhitzen des Dapfes Folie 20 von 43

21 Verdapfen von Flüssigkeiten - Beispiel: offenes Syste (Dapferzeuger) bei konstante Druck (isobare Verdapfung) - Zu jeder bestiten Teperatur gehört ein bestiter Druck Dapfdruck (Sättigungsdruck) - Druck uss zwischen Tripelpunkt und kritischen Punkt liegen, oberhalb erfolgt stetiger Übergang von Flüssig- in Gasphase a b c d e e) Heißdapf p = const - Teperaturanstieg und Voluenvergrößerung des Dapfes - Heißdapf, überhitzter Dapf t<t s t s t s t s t>t s Erwären der Flüssigkeit Verdapfen Überhitzen des Dapfes Folie 21 von 43

22 Wasserdapftafel, Sättigungszustand Folie 22 von 43

23 T, Q Diagra von Wasser Zustandsverlauf von Wasser i T-Q-Diagra für 1 kg Wasser bei 1 bar - spezifisches Voluen von gesättigten Dapf ist bei 1 bar 1625 al größer als das spezifische Voluen der siedenden Flüssigkeit Folie 23 von 43

24 h,t Diagra von Wasser bei Verdapfen Folie 24 von 43

25 T, S - Diagra von Wasserdapf Folie 25 von 43

26 H, S Diagra von Wasserdapf Folie 26 von 43

27 H, S Diagra von Wasserdapf Folie 27 von 43

28 Clausius - Rankine - Prozess 1..2 isentrope (d.h. ohne Entropiezunahe) Druckerhöhung in der Pupe 2..3 isobare Wärezufuhr i Dapferzeuger (Erwärung bis zu Siedepunkt) 3..4 isobare Wärezufuhr i Dapferzeuger zur Verdapfung 4..5 isobare Wärezufuhr zur Überhitzung des Dapfes 5..6 isentrope Entspannung des Dapfes in der Turbine 6..1 isobare Wäreabfuhr zur Kondensation des Dapfes i Kondensator Folie 28 von 43

29 Dapferzeuger Folie 29 von 43

30 Clausius - Rankine - Prozess 1..2 isentrope (d.h. ohne Entropiezunahe) Druckerhöhung in der Pupe 2..3 isobare Wärezufuhr i Dapferzeuger (Erwärung bis zu Siedepunkt) 3..4 isobare Wärezufuhr i Dapferzeuger zur Verdapfung 4..5 isobare Wärezufuhr zur Überhitzung des Dapfes 5..6 isentrope Entspannung des Dapfes in der Turbine 6..1 isobare Wäreabfuhr zur Kondensation des Dapfes i Kondensator Folie 30 von 43

31 Turbine Folie 31 von 43

32 Clausius - Rankine - Prozess 1..2 isentrope (d.h. ohne Entropiezunahe) Druckerhöhung in der Pupe 2..3 isobare Wärezufuhr i Dapferzeuger (Erwärung bis zu Siedepunkt) 3..4 isobare Wärezufuhr i Dapferzeuger zur Verdapfung 4..5 isobare Wärezufuhr zur Überhitzung des Dapfes 5..6 isentrope Entspannung des Dapfes in der Turbine 6..1 isobare Wäreabfuhr zur Kondensation des Dapfes i Kondensator Folie 32 von 43

33 Luftkondensator LuKo Folie 33 von 43

34 Clausius - Rankine - Prozess 1..2 isentrope (d.h. ohne Entropiezunahe) Druckerhöhung in der Pupe 2..3 isobare Wärezufuhr i Dapferzeuger (Erwärung bis zu Siedepunkt) 3..4 isobare Wärezufuhr i Dapferzeuger zur Verdapfung 4..5 isobare Wärezufuhr zur Überhitzung des Dapfes 5..6 isentrope Entspannung des Dapfes in der Turbine 6..1 isobare Wäreabfuhr zur Kondensation des Dapfes i Kondensator Folie 34 von 43

35 Clausius - Rankine - Prozess 1..2 isentrope (d.h. ohne Entropiezunahe) Druckerhöhung in der Pupe 2..3 isobare Wärezufuhr i Dapferzeuger (Erwärung bis zu Siedepunkt, Verdapfung, Überhitzung) 3..4 isentrope Entspannung des Dapfes in der Turbine 4..1 isobare Wäreabfuhr zur Kondensation des Dapfes i Kondensator Folie 35 von 43

36 Clausius - Rankine - Prozess W cir (h 3 -h 4 )-(h 2 -h 1 ) h 4 -h 1 η th = = = 1- Q zu (h 3 -h 2 ) h 3 -h 2 Folie 36 von 43

37 Berechnungsbeispiel (ideal) I linken Diagra wird Dapf it 20 bar und 350 C erzeugt. In der Dapfkraftanlage wird der Dapf bis 1,1 bar entspannt. Zu bestien ist der therische Wirkungsgrad des Kreisprozesses. h 3 = 3138,6 kj/kg (Wasserdapftafel, überhitzter Dapf bei 20 bar, 350 C) h 4 = 2550 kj/kg (h, S-Diagra bei isentroper Expansion) h 1 = 428,84 kj/kg (Wasserdapftafel, Sättigungszustand bei1,1 bar) h 2 = h 1 + v (p 1 p 0 ) it v = 0, /kg = 430,81 kj kg kj kj ,84 kg kg η th = kj = 0,217 = 21,7 % 3138,6-430,81 kj kg kg Folie 37 von 43

38 Berechnungsbeispiel (ideal) I linken Diagra wird Dapf it 20 bar und 350 C erzeugt. In der Dapfkraftanlage wird der Dapf bis 1,1 bar entspannt. Zu bestien ist der therische Wirkungsgrad des Kreisprozesses. h 3 = 3138,6 kj/kg (Wasserdapftafel, überhitzter Dapf bei 20 bar, 350 C) h 4 = 2550 kj/kg (h, S-Diagra bei isentroper Expansion) h 1 = 428,84 kj/kg (Wasserdapftafel, Sättigungszustand bei1,1 bar) h 2 = h 1 + v (p 1 p 0 ) it v = 0, /kg = 430,81 kj kg kj kj ,84 kg kg η th = kj = 0,217 = 21,7 % 3138,6-430,81 kj kg kg Folie 38 von 43

39 Wasserdapftafel, Sättigungszustand Folie 39 von 43

40 Wasserdapftafel, überhitzter Dapf Folie 40 von 43

41 Turbinenwirkungsgrad η i = h Ein h real h Ein h isentrop = 3214 kj kj kg kg 3214 kj kj kg kg = 0,75 Folie 41 von 43

42 Turbinenwirkungsgrade Folie 42 von 43

43 Vergleich - idealer, realer Dapfkraftprozess idealer Dapfkraftprozess realer Dapfkraftprozess Folie 43 von 43

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vornae Matr.-Nr. Studiengang Prof. Dr.-Ing. G. Schitz Prüfung a 03. 0. 2013 i Fach Therodynaik II Fragenteil ohne Hilfsittel erreichbare Punktzahl: 20 Dauer: 20 Minuten 1. ( Punkte) Skizzieren Sie

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Reales Gas und Dampf

Reales Gas und Dampf Reales Gas und Dampf Die thermischen und kalorischen Zustandsgrößen eines Dampfes sind tabelliert und in Diagrammen zusammengestellt: p,ν-diagramm, T,s-Diagramm, h,s-diagramm (beim idealen Gas identisch

Mehr

Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik. ISBN (Buch): ISBN (E-Book):

Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik. ISBN (Buch): ISBN (E-Book): Gernot Wilhels Übungsaufgaben Technische Therodynaik ISBN (Buch): 978--446-45-6 ISBN (E-Book): 978--446-459- Weitere Inforationen oder Bestellungen unter http://www.hanser-fachbuch.de/978--446-45-6 sowie

Mehr

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0.

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0. 3 Lösungen Lösung zu 65. (a) Siehe Abbildung 1. (b) Schritt I: freie adiabatische Expansion, also ist δw 0, δq 0 und damit. Folglich ist nach 1. Hauptsatz auch U 0. Schritt II: isobare Kompression, also

Mehr

Berechnung von Zustandsgrößen für ideale Gas im geschlossenen und offenen System

Berechnung von Zustandsgrößen für ideale Gas im geschlossenen und offenen System Was Sie im letzten Lehrabschnitt gelernt haben 1 Einordnen von thermodynamischen Prozessen Berechnung von Zustandsgrößen für ideale Gas im geschlossenen und offenen System Aussage und mathematische Formulierung

Mehr

Thermodynamik I - Übung 7. Nicolas Lanzetti

Thermodynamik I - Übung 7. Nicolas Lanzetti Thermodynamik I - Übung 7 Nicolas Lanzetti Nicolas Lanzetti 13.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Die Entropie; Die T ds-gleichungen; Die erzeugte Entropie; Isentroper Wirkungsgrad;

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 7. März 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektro- und Thermodynamik Thermodynamik Teil II 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Allgemeines 3 1.1 Kategorisierung von Systemen..................

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

Dampftafel Für den Homogenen Zustand. HEAT Haus-, Energie- und Anlagentechnik. Vorlesung Thermodynamik

Dampftafel Für den Homogenen Zustand. HEAT Haus-, Energie- und Anlagentechnik. Vorlesung Thermodynamik Dampftafel 1 Zur Berechnung thermodynamischer Prozesse (Kraftwerk, Wärmepumpe, etc.) reicht das ideale Gasgesetz nicht mehr aus Stoffdaten der realen Fluide werden benötigt Für die Bestimmung der Stoffdaten

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

GRUNDLAGEN DER STRÖMUNGSMECHANIK

GRUNDLAGEN DER STRÖMUNGSMECHANIK Skriptu zu Fach Luftfahrzeugbau 4.Jahrgang HTL-Eisenstadt GRUNDLAGEN DER STRÖMUNGSMECHANIK Dipl.Ing.Dr.Günter Hacküller 009 Dipl.Ing.Dr.Günter Hacküller e-ail: guenter.hackueller@gx.at Grundlagen der Aerodynaik

Mehr

Thermodynamik 1 Klausur 08. September 2016

Thermodynamik 1 Klausur 08. September 2016 Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische Cheie lbert-ludwigs-universität Freiburg Lösungen zu 8. Übungsblatt zur Vorlesung hysikalische Cheie I SS 00 rof. Dr. Bartsch 8. (5 unkte) Benzol erstarrt unter at bei 5,5 C;

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 18. Februar 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Thermodynamik 1 Klausur 02. August 2010

Thermodynamik 1 Klausur 02. August 2010 Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Institut für Energietechnik, Professur Kraftwerkstechnik. Energietechnik. Dampfkraftprozess, Dampfkraftwerk

Institut für Energietechnik, Professur Kraftwerkstechnik. Energietechnik. Dampfkraftprozess, Dampfkraftwerk Institut für Energietechnik, Professur Kraftwerkstechnik Energietechnik Dampfkraftprozess, Dampfkraftwerk - Grundlagen - Dr.-Ing. Marco Klemm Professur Verbrennung, Wärme- und Stoffübertragung Folie 2

Mehr

Die 4 Phasen des Carnot-Prozesses

Die 4 Phasen des Carnot-Prozesses Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

3.3 Wärme als Energieform

3.3 Wärme als Energieform 3.3 Wäre als Energiefor Erinnere: Herleitung der Zustandsgleichung p V=n R T hatten wir die Teperatur eingeführt als Basisgröße die proportional zur Molekülenergie sein soll: 1 3 ε kin = u = kt d.h.: zur

Mehr

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen Technik Wirtschaft Inforatik Institut für ath-naturw Grundlagen Versuch : Kalorietrie 1 Aufgabenstellung Bestiung der Wärekapazität eines Kalorieters Bestiung der spezifischen Wärekapazität Festkörpern

Mehr

1. Klausur in "Technischer Thermodynamik II" (SoSe2014, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik II (SoSe2014, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Al. Professor Dr.-Ing. K. Sindler. Klausur in "Technischer Thermodynamik II" (SoSe04, 03.06.04) - VERSION - Name: Fachr.: Matr.-Nr.: Es

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

3. Klausur im Fach Thermodynamik I, SS 09 am

3. Klausur im Fach Thermodynamik I, SS 09 am e c o r e n e n o m g i y e c s n g i e n n v i e e r i n g..t. e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. 3. Klausur im Fach Thermodynamik I,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 12. März 2014 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Gefälle-Dampfspeicher

Gefälle-Dampfspeicher Gefälle-Dapfspeicher Prof. Dr.-Ing. habil. ernd Glück, Jößnitz (Plauen) Oktober 0. Übersicht und Konstruktionsprinzip Heute wird Dapf fast schließlich technologisch genutzt. Da der Dapfbedarf prozessbedingt

Mehr

Beispiel: Gegeben ist folgender Hebel mit den Kräften F

Beispiel: Gegeben ist folgender Hebel mit den Kräften F Gynasiu Münchberg Grundwissen Physik Jahrgangsstufe 8 (G8) Stand: Juli 007 Seite von 6. Energie Hebel Thea Erklärung und Beispiele Drehoent = Kraft Hebelar, kurz: M = F a (dabei wird nur die Koponente

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. September 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Klaus Lucas. Thermodynamik. Die Grundgesetze der Energie- und Stoffumwandlungen. 7. korrigierte Auflage. Springer

Klaus Lucas. Thermodynamik. Die Grundgesetze der Energie- und Stoffumwandlungen. 7. korrigierte Auflage. Springer Klaus Lucas Thermodynamik Die Grundgesetze der Energie- und Stoffumwandlungen 7. korrigierte Auflage Springer Inhaltsverzeichnis 1. Allgemeine Grundlagen 1 1.1 Energie- und Stoffumwandlungen 1 1.1.1 Energieumwandlungen

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Technische Thermodynamik

Technische Thermodynamik Heinz Herwig Christian H Kautz Technische Thermodynamik Studium Inhaltsverzeichnis Vorwort 11 Kapitel 1 Das Buch und sein Konzept 13 1.1 Umfang des vorliegenden Buches 14 1.2 Inhalt des vorliegenden Buches

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 7. August 2009 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw Gedankengang muss erkennbar

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Technische Thermodynamik II

Technische Thermodynamik II Technische Thermodynamik II Name,Vorname: Bitte deutlich (in Blockschrift) ausfüllen! Matr.-Nr: Studiengang: F 1 2 Σ Note 1 NAME, Vorname Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 16. 03. 2017

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische Cheie Albert-Ludwigs-Universität Freiburg hysikalische Cheie für Studierende der Mikrosystetechnik Lösungen zu 10. Übungsblatt i WS 010/11 rof. Dr. Gräber 10.1 L (8 unkte) Skizzieren

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye 27.

Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye   27. Formelsammlung Experimentalphysik II Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester 2003 Pascal Del Haye www.delhaye.de 27. Juli 2003 Inhaltsverzeichnis Thermodynamik 3. Ideale Gasgleichung........................

Mehr

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz ist die thermodynamische Formulierung des Satzes von der Erhaltung der Energie. Er besagt, daß Energie weder erzeugt noch

Mehr

Physikalische Chemie I

Physikalische Chemie I M.Bredol / MP Physikalische Chemie I / 10.3.16 1 Physikalische Chemie I Nachname orname Matrikel Aufgabe Punkte erreicht Note 1 20 2 20 3 20 4 22 5 18 Summe: 100 1. Gegeben seien 20 g Kohlendioxid, die

Mehr

Die Dampfdruckkurve. Aufnahme der Dampfdruckkurve von Wasser und Bestimmung der. Verdampfungsenthalpie

Die Dampfdruckkurve. Aufnahme der Dampfdruckkurve von Wasser und Bestimmung der. Verdampfungsenthalpie Berlin, den 31. Oktober 2000 Die Dapfdruckkurve Aufnahe der Dapfdruckkurve von Wasser und Bestiung der Verdapfungsenthalpie Durch unseren Versuch konnten wir die Gleichung der Dapfdruckkurve von destillierte

Mehr

Energie- und Kältetechnik Klausur SS 2008

Energie- und Kältetechnik Klausur SS 2008 Prof. Dr. G. Wilhelms Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.

Mehr

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur Lösung Aufgabe 6.2 Gaserflüssigung nach Linde heoretische Lufterflüssigungsanlage Reersibler Kälteprozess - Isotherme Verdichtung des Gases bei Umgebungstemperatur 1 2 2 1 - adiabate und reibungsfreie

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Thermodynamik I PVK - Tag 1. Nicolas Lanzetti

Thermodynamik I PVK - Tag 1. Nicolas Lanzetti Thermodynamik I PVK - Tag 1 Nicolas Lanzetti Nicolas Lanzetti 04.01.2016 1 Hinweise zu dem PVK Name: Nicolas Lanzetti; 5. Semester Maschinenbau; Mail: lnicolas@student.ethz.ch; Raum: ML F34; Zeit: Montag-Mittwoch,

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 4.09.00 Inhaltsverzeichnis Inhaltsverzeichnis Thermodynamische Hauptsätze. Aufgabe :..................................... Aufgabe :.....................................

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

Seminar Thermische Abfallbehandlung - Veranstaltung 6 - Maßnahmen zur Energieeffizienzsteigerung

Seminar Thermische Abfallbehandlung - Veranstaltung 6 - Maßnahmen zur Energieeffizienzsteigerung Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 6 - Maßnahmen zur Energieeffizienzsteigerung Dresden, 30. Juni 2008 Dipl.- Ing. Christoph Wünsch,

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik 1 Einleitung 2 Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5

Mehr

Thermodynamik I - Übung 10. Nicolas Lanzetti

Thermodynamik I - Übung 10. Nicolas Lanzetti Thermodynamik I - Übung 10 Nicolas Lanzetti Nicolas Lanzetti 11.12.2015 1 Heutige Themen Zusammenfassung letzter Woche; Die Exergie einer Strömung; Die Exergiebilanz für offene Systeme; Isentrope Prozesse.

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang Prof. Dr.-Ing. G. Schmitz Prüfung am 16. 07. 2012 im Fach Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 20 Minuten 1. (4 Punkte) Skizzieren

Mehr

5. Zweiter Hauptsatz der Thermodynamik 5.1 Reversible und irreversible Prozesse 5.2 Formulierung des zweiten Hauptsatzes

5. Zweiter Hauptsatz der Thermodynamik 5.1 Reversible und irreversible Prozesse 5.2 Formulierung des zweiten Hauptsatzes 5.1 5. Zweiter Hauptsatz der hermodynamik 5.1 Reversible und irreversible Prozesse Stoss zweier Billardkugeln: vorwärts und rückwärts laufender Film ist physikalisch sinnvoll, vom Betrachter nicht zu unterscheiden

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 10. März 2012 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

2. Klausur zur Vorlesung Einführung in die physikalische Chemie für Lehramtskandidaten Modul 4, Wintersemester 05/06

2. Klausur zur Vorlesung Einführung in die physikalische Chemie für Lehramtskandidaten Modul 4, Wintersemester 05/06 . Klausur zur Vorlesung Einführung in die hysikalische Cheie für Lehratskandidaten Modul 4, Winterseester 5/6 3. März 6, 9 5 45 Uhr Nae, Vornae:... Geburtsdatu, -ort:... Matrikelnuer:... Fachseester,.

Mehr

Thermodynamik 1 Klausur 03. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 03. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 03. März 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische heie lbert-ludwigs-universität Freiburg Lösungen zu 7. Übungsblatt zur orlesung hysikalische heie I SS 04 rof. Dr. Bartsch 7. L Berechnen Sie aus der olaren Standardentropie des

Mehr

Thermodynamik mit Mathcad

Thermodynamik mit Mathcad Thermodynamik mit Mathcad von Prof. Dr.-Ing. Michael Reimann Oldenbourg Verlag München Inhalt Vorwort V Einleitung 1 1 Grundbegriffe 7 1.1 Das thermodynamische System >... 7 1.2 Zustandsgrößen und Prozessgrößen

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 8. September 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 8. September 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Carnotscher Kreisprozess

Carnotscher Kreisprozess Carnotscher Kreisprozess (idealisierter Kreisprozess) 2 p 1, V 1, T 1 p(v) dv > 0 p 2, V 2, T 1 Expansionsarbeit wird geleistet dq fließt aus Wärmebad zu dq > 0 p 2, V 2, T 1 p(v) dv > 0 p 3, V 3, T 2

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch hermodynamik _ hermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch _ hermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Die Grundzüge der technischen Wärmelehre

Die Grundzüge der technischen Wärmelehre DIPL.-ING. GUSTAV PUSCHMANN DR.-ING. RAIMUND DRATH Die Grundzüge der technischen Wärmelehre 26., neubearbeitete Auflage mit 178 Bildern, einem A,«-Diagramm für Wasserdampf, einem A,a-Diagramm für Feuchtluft,

Mehr

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 2., aktualisierte Auflage Mit 36 Beispielen und 154 Aufgaben HANSER Inhaltsverzeichnis 1 Grundlagen der Thermodynamik 11 1.1 Aufgabe der Thermodynamik

Mehr

Zusammenfassung - Thermodynamik I

Zusammenfassung - Thermodynamik I Zusammenfassung - hermodynamik I imothy Habermacher, Ismail Morgenegg auf Basis von S. Liechti Allgemeines. Begriffe Begriffe Amorph Zähflüssiger Feststoff Glas Latente Energie Energie z. Phasenumwandlung

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. Februar 2017 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Musterlösung Aufgabe 1: Zweikammermesssysatem

Musterlösung Aufgabe 1: Zweikammermesssysatem Klausur Thermodynamik I (08.09.2016) 1 Musterlösung Aufgabe 1: Zweikammermesssysatem Teilaufgabe a) Da die Membrane zunächst für Wärme undurchlässig ist, handelt es sich um eine adiabate Zustandsänderung

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 25. Februar 2016 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr