Teil C: Elektrische Charakterisierung von Solarzellen

Größe: px
Ab Seite anzeigen:

Download "Teil C: Elektrische Charakterisierung von Solarzellen"

Transkript

1 Teil C: Elektrische Charakterisierung von Solarzellen Ziele dieses Praktikums Solarzellen kennt man mittlerweile aus dem täglichen Leben. Vielleicht benützen Sie einen Solartaschenrechner oder eine Solaruhr? In diesem Praktikum soll die Solarzelle das Objekt wissenschaftlicher Untersuchung sein. Es wird nicht darum gehen, das Funktionsprinzip der Solarzelle zu begreifen, sondern deren (elektrischen) Eigenschaften zu erforschen. Dazu gehören: Aufbau einer geeigneten Versuchsanordnung, Durchführung von aussagekräftigen Messreihen, graphische Darstellung der Messdaten, Auswertung und Diskussion der Messdaten. Die Lernziele sind: Sie wissen, wie man die Leerlaufspannung, den Kurzschlussstrom und die Strom-Spannungs- Kennlinie einer Solarzelle misst. Sie kennen den Verlauf der Strom-Spannungs-Kennlinien einer Solarzelle unter Beleuchtung. Sie kennen die photovoltaische Kenngrösse Punkt der maximalen Leistung, Füllfaktor und Wirkungsgrad. Grundlagen Strom aus Sonnenlicht kann von Solarzellen erzeugt werden, deren Hauptbestandteil ein Halbleiter, in der Regel Silizium, ist. Der photovoltaische Effekt bildet sich durch zwei aneinander grenzende Halbleiter-Schichten welche mit Metallkontakten versehen sind. An diesen Kontakten kann bei Sonnenlicht eine elektrische Spannung abgegriffen werden. Der von den Solarzellen produzierte Gleichstrom wird von einem Wechselrichter in Wechselstrom umgewandelt. Beim Anschluss eines Verbrauchers wird der Stromkreis geschlossen. Durch die Zusammenschaltung mehrerer Solarmodule erreicht man die nötige Leistung, um diese dann für unser Wechselstromnetz einzuspeisen. Aus der Hellkennlinie können Kennwerte einer Solarzelle gewonnen werden. Diese sind: Leerlaufspannung Die Leerlaufspannung U 0 ist die elektrische Spannung einer Solarzelle wenn beide Pole nicht miteinander verbunden sind, zwischen ihnen also kein Strom fliesst. Die an Solarzellen abgreifbare Spannung ist abhängig vom Halbleitermaterial. Bei Silizium beträgt sie etwa 0.5 V. Die Leerlaufspannung ist nur schwach von der Lichteinstrahlung abhängig. Kurzschlussstrom Der Kurzschlussstrom I K ist der Strom, den eine Solarzelle liefert, wenn beide Klemmen ohne jeden zusätzlichen Widerstand verbunden werden (Kurzschluss). Es entspricht den maximalen Strom der Zelle. Der Kurzschlussstrom steigt bei höherer Beleuchtungsstärke an. Punkt maximaler Leistung (MPP) Um der Solarzelle maximale Leistung zu entnehmen, muss man den Punkt auf der Kennlinie finden, der das Produkt P = U I maximiert. An diesem Punkt der I-U-Kennlinie einer Solarzelle kann die maximale Leistung entnommen werden. Dieser optimale Arbeitspunkt wird als maximunm power point (MPP) bezeichnet. Der MPP ist allerdings von der Strahlungsintensität abhängig. Um eine Solarzelle optimal zu nutzen ist also eine sorgfältige Abstimmung mit dem Verbraucher zu gewährleisten. Für AK 1

2 grössere Solarzellen-Anlagen gibt es elektronische Geräte, die den Widerstand des Verbrauchers an die Schwankungen der Lichtintensität anpassen und so die Anlage im MPP betreiben können. Die Spannung im bestmöglichen Betriebspunkt ist U MP P, der Strom im Betriebspunkt mit maximaler Leistung ist I MP P, und die maximale erzielbare Leistung ist P MP P. Füllfaktor Der Füllfaktor F F ist ist ein Mass für die Qualität einer Solarzelle. Er ist gegeben als Quotient aus maximaler Leistung und Produkt aus Lehrlaufspannung und Kurzschlussstrom: F F = P MP P U 0 I K = U MP P I MP P U 0 I K < 1 (1) Er beschreibt, wie gut die Strom-Spannungs- Kennlinie der Solarzelle dem Rechteck aus die Leerlaufspannung U 0 und Kurzschlussstrom I K angenähert ist. Je näher er an 100% liegt (je näher die Kennlinie also einem Rechteck kommt), desto besser ist die Solarzelle. Bei guten Solarzellen und definierter Einstrahlungsintensität beträgt F F ca Bei schlechteren Strahlungsbedingungen nimmt der Füllfaktor jedoch ab. Wirkungsgrad Der Wirkungsgrad η gibt an, wieviel Leistung von der eingestrahlten Leistung in brauchbare elektrische Leistung umgesetzt wurde. η = P abgegeben P aufgenommen = P elektrisch = U I (2) Der Wirkungsgrad ist am Punkt maximaler Leistung (maximale elektrische Leistung) definiert: η = P MP P = I MP P U MP P = F F U 0 I K (3) Ein hoher Wirkungsgrad ist erstrebenswert, weil er bei gleichen Lichtverhältnissen und gleicher Fläche zu einer größeren Ausbeute an elektrischem Strom führt. Der Wirkungsgrad beträgt bei industriell gefertigten Solarzellen zwischen 10% und 15%. Mit deutlich höherem technischen Aufwand können im Labor Wirkungsgrade von bis zu 24% Die Hersteller von Solarzellen beschönigen ihre Wirkungsgradangaben gern durch spezielle Messbedingungen (z.b. optimale Temperatur, optimales Bestrahlungsspektrum). Mit einem Strahlungsleistungsmessgerät wird die Leistung des eingestrahlten Lichts pro Fläche (Bestrahlungsstärke E) gemessen. Für die Ermittlung der Leistung, die auf die Solarzelle trifft, muss dieser Wert mit der effektiven Fläche A des Solarmoduls multipliziert werden: = A E. Die maximale Leistung des eingestrahlten Lichts pro Fläche bei Sonnenschein im Sommer beträgt ca W/m W/m 2 entspricht der Sonnenstrahlung morgens oder abends. AK 2

3 Versuch 1: Kurzschlussstrom und Leerlaufspannung einer Solarzelle Sie bauen zunächst elementare Schaltungen zur Messung der Leerlauf-Spannung und des Kurzschluss- Stromes auf. Sie lernen dabei die Komponenten Solarzelle und Strom- und Spannungsmessgerät kennen und die Bedeutung der Begriffe Leerlauf-Spannung und Kurzschluss-Strom verstehen. Aufbau Abbildung 1: Messschaltpläne für die Leerlaufspannung (links) und den Kurschlussstrom (rechts). Durchführung und Auswertung Tragen Sie alle Werte und Ergebnisse ins elektronischen Protokollblatt (Blatt 1) ein. 1. Bauen Sie die links abgebildete Schaltung auf und bestrahlen Sie die Solarzelle mit einer Lichtquelle. Der Spannungsmesser wird direkt mit der Solarzelle verbunden, so dass das Voltmeter eine positive Spannung anzeigt (Achtung Gleichspannungsmessung = DC). Welche Spannung messen Sie an einer beleuchteten, unbelasteten Solarzelle? U 0 = (4) Da das Voltmeter einen sehr grossen Widerstand hat, fliesst praktisch kein Strom. Die Zelle gibt also keine Leistung ab, es fliesst keine Energie. Man sagt, wir messen die Leerlaufspannung der Solarzelle. 2. Solarzelle zunächst mit einem Karton halb abdecken und Spannung am Multimeter ablesen. Wie ändert sich die Leerlaufspannung mit der Solarzellenfläche? U 0 = (5) 3. Versuchen Sie mit der Lampe die Solarzelle stärke und schwächer zu beleuchten. Wie ändert sich die Leerlaufspannung U 0 mit der Beleuchtung? Bemerkung Die Leerlaufspannung hängt vom Material (bei Silizium ca 0.5 V), von der Temperatur und von der Beleuchtung ab. Wenn die Beleuchtung eine gewisse minimale Stärke erriecht hat, ändert die Leerlaufspannung fast nicht mehr, wenn man noch stärker beleuchtet. Haben Sie das gesehen? AK 3

4 4. Bauen Sie die rechts abgebildete Schaltung auf. Das Voltmeter wird einfach mit dem Amperemeter vertauscht. Bestrahlen Sie die Solarzelle mit einer Lichtquelle. Verbinden Sie es direkt mit der Solarzelle (Achtung Gleichstromsmessung = DC). I K = (6) Das Ampèremeter hat einen sehr kleinen Widerstand und bildet beinahe einen Kurzschluss. Unser Amperemeter zeigt also den Kurzschlussstrom. 5. Solarzelle zunächst mit einem Karton halb abdecken und die Stromstärke am Multimeter wieder ablesen. I K = (7) Wie ändert sich die Kurzschlussstromstärke mit der Solarzellenfläche? 6. Versuchen Sie mit der Lampe die Solarzelle stärke und schwächer zu beleuchten. Wie ändert sich der Kurzschlussstrom? Bemerkung Der Strom hängt stark von der Beleuchtung ab. Bei doppelt so starker Beleuchtung fliesst der doppelte Strom. Dazu hängt der Strom linear von der Zellenfläche ab. Haben Sie das gesehen? 7. Kann man aus der Leerlaufspannung und dem Kurzschlussstrom die Leistung P der Solarzelle nach der Formel P = U I ausrechnen? Wie man dennoch etwas über die Leistung der Solarzelle aussagen kann, zeigt der nächsten Versuch. Versuch 2: Kennlinienaufnahme einer Solarzelle Die Ermittlung der Strom-Spannung-Kennlinie einer Solarzellen bildet die Grundlage für die Anpassung an den Dauerbetrieb und die effektive wirtschaftliche Nutzung beispielsweise einer Hausphotovoltaikanlage. Für die Anwendung ist interessant, wie die von der Solarzelle abgegebene Leistung optimiert werden kann. Bei Leerlauf oder Kurzschluss gib die Solarzelle keine Leistung ab! Durch Variation eines an die beleuchtete Solarzelle angeschlossenen Lastwiderstandes, der den Verbraucher simuliert, kann die Strom-Spannungs-Kennlinie unter Beleuchtung aufgenommen werden. Diese Kennlinie beinhaltet die wesentlichen Kennwerte zur Beurteilung der Leistungsfähigkeit einer Solarzelle: AK 4

5 Aufbau Anh a n g 3: Experimente 76 Experiment 4.1.4: Schalten Sie nun einen Widerstand als Verbraucher an die Solarzelle. Stellen Sie genügend grosse Messbereiche an den Messgeräten ein. Messen Sie den Strom vor oder nach dem Widerstand. Messen Sie zusätzlich die Spannung unmittelbar an der Solarzelle, denn das A- Meter bildet auch einen Verbraucherwiderstand. + Solarzelle I U R - Messung der Kennlinie (Charakteristik) einer Solarzelle Abbildung 2: Messschaltplan für die Messung der Kennlinie (Charakteristik) einer Solarzelle. Durchführung Sorgen Sie für eine konstante Beleuchtung, und machen Sie nun eine Messreihe mit verschiedenen Widerständen. Notieren Sie für jeden Widerstand den Widerstandswert, die Stromstärke und die Spannung auf das vorgesehene Blatt. Beginnen Sie bei den Extremen: Machen Sie zuerst einen Kurzschluss, indem Sie den Widerstand durch ein Kabel ersetzen. Sorgen Sie sodann für Leerlauf, indem Sie den Stromkreis beim Widerstand unterbrechen. 1. Bauen Sie die Schaltung mit dem Lastwiderstand R (Potentiometer) auf. Schliesst man die Beschriften Sie nun die Achsen im vorgesehenen Diagramm. Kontakte an einen Lastwiderstand an, fliesst ein sogenante Photostrom. Ergänzen Sie dann die Messreihe so, dass es Ihnen die zugehörigen Punkte im Diagramm erlauben, eine vollständige Kurve zu zeichnen. Machen Sie keine arithmetische, sondern eine geometrische Folge. Wählen Sie beispielsweise 1, 3, 10, 30, 100, 300. Die optimalen Widerstände hängen vom Zellentyp, von der Beleuchtung und von der Temperatur ab. Vor dem Einschalten muss die Schaltung vom Lehrer/in überprüft werden! 2. Belassen Sie die Solarzelle nahe bei der Lichtquelle und verschieben Sie diese nicht mehr, damit die Beleuchtungsintensität Sie stellen fest, dass die stets Charakteristik gleich bleibt. einer Solarzelle Die Solarzelle stark von derjenigen ist vor zu anderer grosser Strom-, Aufheizung durch respektive Spannungsquellen abweicht. die Lampe zu schützen. Die Leistung einer Solarzelle 3. Drehen den regelbaren Widerstand ganz auf die eine Seite. Der variable Widerstand hat drei Viel Strom oder viel Spannung sind ja schön und gut; aber wichtig ist die Leistung P = U. I. Eingäge: damit er als variabel funktioniert, den linken und den mittleren (rote) Eingang benutzen. Durch passenden Drehen Leistungsmassstab. des Stellards Zeichnen wird Sie die R Kurve geändert, mit abgegebenen bis maximal Leistung. 1 kω (in Uhrzeigersinn wird Berechnen Sie für Ihre Messpunkte je die Leistung, und wählen Sie in der y-richtung einen erhöht). Sie sehen, dass bei einem bestimmten Lastwiderstand die abgegebene Leistung maximal ist. Dieser Lastwiderstand hängt von der Beleuchtung und der Temperatur der Zelle ab. Markieren Sie den Punkt mit maximaler Leistung: MPP = maximum power point. Übertragen Sie diesen Punkt auch ins U-I-Diagramm. 4. Verstellen Sie den Potentiometer schrittweise und messen fünfzehn Mal Strom und Spannung bei unterschiedlichem Lastwiderstand. Notieren Sie auch eine Fehlerschranke für I und U jeweils: I =... A und U =... V. Wählen Sie die Widerstände so, dass der Verlauf der Kennlinie möglichst gut erkennbar wird. Falls nötig stehen weitere Potentiometers zur Verfügung. Für grössere Solarzellen-Anlagen gibt es elektronische Geräte, die den Widerstand des Verbrauchers an die Schwankungen der Lichtintensität anpassen und so die Anlage im MPP betreiben können. 5. Wiederholen Sie die Erfassung der Kennlinie bei geringer Beleuchtung (Lichtquelle entfernen). ETH-Leitpro gra m m Physik Stro m a us Lic ht Auswertung 1. Tragen Sie alle Werte und Ergebnisse In der gleichen elektronischen Exceldatei (Blatt 2). 2. Schreiben Sie im elektronischen Protokoll: Name, Datum, Typ der Solarzelle (komerziell oder selbstgemacht), Dimensionen (Breite x Höhe), Lichtquelle, usw. 3. Tippen Sie alle Werte in eine Excel-Tabelle ein (erste Kolonne U in Volt V, zweite Kolonne I in Ampere A). 4. Tragen Sie die Messpunkte in ein Diagramm ein. Diese Kurve nennt man eine U-I-Kennlinie und zeigt den Zusammenhang zwischen Strom und Spannung bei einer bestimmten Beleuchtungsstärke. Achten Sie auf die Überschrift und die Beschriftung der Achsen. Zeichnen Sie keine Verbindungslinie zwischen den Punkten. Fügen Sie die Fehlerbalken für U und I ein. 5. Beschreiben Sie in 2-3 Sätze die Kennlinie. Wie ändert sich die Stromstärke mit steigendem Lastwiderstand? Gilt hier das Ohmsche Gesetz? AK 5

6 Bemerkung Wir werden jetzt keine Trendlinie einfügen. Die Theorie, die die Kennlinie beschreibt ist schwierig. Eine Solarzelle besitzt eine exponentielle Strom-Spannungscharakteristik. Das lässt sich mit einer Polynom 3. Ordnung gut fitten. Versuchen Sie! Die Parameter haben keine physikalische Bedeutung. 6. Ermittlen Sie aus dem Diagramm den Kurzschlussstrom (vergleichen Sie mit dem Versuch 1). 7. Ermitteln Sie aus dem Diagramm die Leerlaufspannung (vergleichen Sie mit dem Versuch 1). 8. Berechnen Sie die Leistung P (weitere Kolonne in Excel). 9. Zeichnen Sie in das gleiche Diagramm die P-U-Kennlinie ein. Das Diagramm hat nun zwei Y- Achse. Die linke y-achse ist für die Stromstärke und die rechte y-achse ist für die Leistung. x-achse ist gleich für beide Kennlinie. Fügen Sie die Fehlerbalken für U und I ein. 10. Ermitteln Sie aus der aufgenommenen Kennlinie die maximale Leistung P MP P. Um den maximal power point (MPP) zu finden, legen Sie durch die Leistungskennline einen Polynom-Fit. Das Maximum des Polynoms ist die maximale Leistung. Der Punkt maximaler Leistung ist von der Beleuchtungsstärke abhängig. 11. Wie gross muss der Lastwiderstand R sein, damit die Solarzelle die maximale Leistung abgibt? 12. Ermitteln Sie die zugehörige Spannung bei maximaler Leistung (Nennspannung) U MP P und der zugehörigen Strom bei maximaler Leistung (Nennstrom) I MP P. 13. Bestimmen Sie für die gemessenen Kennlinien den Füllfaktor F F. 14. Bestimmen Sie den Wirkungsgrad der Solarzelle. Dazu muss eine Lichtquelle mit bekannter Leistung verwendet werden. Versuchen Sie die Lichtleistung abzuschätzen. Hinweis: eine Punktquelle strahlt in alle drei Richtungen und die Bestrahlungsstärke nimmt quadratisch mit dem Abstand r ab: E = quelle 4π r. Der Wirkungsgrad ( sichtbare Lichtleistung vs. elektrische 2 Leistung) einer Glühlampe beträgt ca. 5%. Ist der Wirkungsgrad der Solarzelle ein guter Wert? Wo verbleibt der Rest der Energie zu 100%? 15. Fügen Sie ins gleichen Diagramm die zweite I-U-Kennlinie bei geringer Beleuchtung. Was können Sie sagen? Merksatz Die Solarzelle sollte möglichst in der Nähe des Punktes maximaler Leistung (MPP) betrieben werden. Abschluss Benennen Sie Ihre Excel-datei Name1 Name2 TeilC.xls und senden Sie diese an die Kursleiter (krayenba at mng.ch oder didonem at mng.ch oder kommen Sie mit einem Datenträger vorbei). Sie sind erst dann fertig, wenn Ihre Arbeit kontrolliert und für gut befunden worden ist. Dazu müssen Sie persönlich bei den Kursleitern vorbeigehen. AK 6

Bearbeiten Sie in einer Zweiergruppe das Thema Photovoltaik. Lösen Sie der Reihe nach die Ihnen gestellten Aufträge.

Bearbeiten Sie in einer Zweiergruppe das Thema Photovoltaik. Lösen Sie der Reihe nach die Ihnen gestellten Aufträge. Photovoltaik Aufgaben Bearbeiten Sie in einer Zweiergruppe das Thema Photovoltaik. Lösen Sie der Reihe nach die Ihnen gestellten Aufträge. Bei Verständnisfragen hat Ihr Fachbuch oder Ihr Lehrer eine Antwort.

Mehr

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Geräte: Netzgerät mit Strom- und Spannungsanzeige, 2 Vielfachmessgeräte, 4 Kabel 20cm, 3 Kabel 10cm, 2Kabel 30cm, 1 Glühlampe 6V/100mA,

Mehr

1. Strom-Spannungs-Kennlinie, Leistungskurve und Wirkungsgrad des Solarmoduls

1. Strom-Spannungs-Kennlinie, Leistungskurve und Wirkungsgrad des Solarmoduls 1. Strom-Spannungs-Kennlinie, Leistungskurve und Wirkungsgrad des Solarmoduls Hintergrund: Gegeben ist ein Datenblatt eines Solarpanels. Der Schüler soll messtechnisch die Daten eines kleinen Solarmoduls

Mehr

Physik 4 Praktikum Auswertung PVM

Physik 4 Praktikum Auswertung PVM Physik 4 Praktikum Auswertung PVM Von J.W, I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Solarzelle......... 2 2.2. PV-Modul......... 2 2.3. Schaltzeichen........ 2 2.4. Zu ermittelnde

Mehr

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen

Mehr

Strom-Spannungs-Kennlinie und Leistung einer Solarzelle

Strom-Spannungs-Kennlinie und Leistung einer Solarzelle Strom-Spannungs-Kennlinie und Leistung einer Solarzelle ENT Schlüsselworte Solarzelle, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie

Mehr

Schülerexperiment: Messen elektrischer Größen und Erstellen von Kennlinien

Schülerexperiment: Messen elektrischer Größen und Erstellen von Kennlinien Schülerexperiment: Messen elektrischer Größen und Erstellen von Kennlinien Stand: 26.08.2015 Jahrgangsstufen 7 Fach/Fächer Natur und Technik/ Schwerpunkt Physik Benötigtes Material Volt- und Amperemeter;

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

Google-Ergebnis für

Google-Ergebnis für Solarzellen Friedrich-Schiller-Realschule Böblingen Basiswissen Elektronik - Wissen Schaltzeichen einer Solarzelle Geschichte: Wann wurde die erste Solarzelle entwickelt? Der photovoltaische Effekt wurde

Mehr

Schülerexperimente mit Solarzellen

Schülerexperimente mit Solarzellen Elektrodynamik: D. 7. 8 Schülerexperimente mit Solarzellen Die Schüler werden in 4 bzw. 8 Kleingruppen (ca. 3 4 Schüler pro Gruppe) eingeteilt. Jede Kleingruppe wird einem der Experimente zugeteilt, die

Mehr

Experimente mit Brennstoffzellen - Kennlinienaufnahme

Experimente mit Brennstoffzellen - Kennlinienaufnahme Experimente mit Brennstoffzellen - Kennlinienaufnahme Ziel dieses Unterrichtsentwurfes ist es, die Funktionsweise von Brennstoffzellen näher kennen zu lernen. Die Strom-Spannungs-Kennlinie eines Elektrolyseurs

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL SEKUNDARSTUFE II Modul: Versuch: Elektrochemie 1 Abbildung 1:

Mehr

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Versuch 27 Solarzellen

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Versuch 27 Solarzellen Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Protokoll Versuch 27 Solarzellen Harald Meixner Sven Köppel Matr.-Nr. 3794465 Matr.-Nr. 3793686 Physik Bachelor 2. Semester Physik Bachelor 2.

Mehr

Untersuchung der Abhängigkeit des Photostroms von der Entfernung zur Lichtquelle

Untersuchung der Abhängigkeit des Photostroms von der Entfernung zur Lichtquelle E1 S 3 Untersuchung der Abhängigkeit des Photostroms von der Entfernung zur Lichtquelle Name: Datum: Aufgaben: a) Miss die Höhe des Photostroms in Abhängigkeit von der Entfernung zur Lampe. b) Zeichne

Mehr

Spannung und Stromstärke einer Solarzelle Einfluss von der Fläche und der Beleuchtungsstärke

Spannung und Stromstärke einer Solarzelle Einfluss von der Fläche und der Beleuchtungsstärke Spannung und Stromstärke einer Solarzelle ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Lichtintensität, Elektrische Energie, Leerlaufspannung, Kurzschlussstromstärke Prinzip Solarzellen wandeln

Mehr

Wiederholung der Grundlagen (Schülerübungen)

Wiederholung der Grundlagen (Schülerübungen) Wiederholung der Grundlagen (Schülerübungen) 1. Baue die abgebildete Schaltung auf und messe bei verschiedenen Widerständen jeweils den Strom I: Trage deine Ergebnisse in die Tabelle ein: R ( ) U (V) I

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

A5 Eigenschaften von Solarzellen Spannung, Strom und Leistung

A5 Eigenschaften von Solarzellen Spannung, Strom und Leistung A5 Eigenschaften von Solarzellen Spannung, Strom und Leistung Hinweis: Auf die Auswertungen zu den einzelnen Teilexperimenten wird nachfolgend nur dann eingegangen, wenn sich dabei erfahrungsgemäß besondere

Mehr

Protokoll für das NAWI-Profil. Namen: / Klasse: Datum:

Protokoll für das NAWI-Profil. Namen: / Klasse: Datum: Protokoll für das NAWI-Profil Namen: / Klasse: Datum: Station M6: Verschaltungsarten von Solarzellen Aufgabe: Untersuche die Verschaltungsarten von Solarzellen. Vorbetrachtung: 1. Gib die Gesetzmäßigkeiten

Mehr

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung Elektrizitätslehre und Schaltungen Versuch 14 ELS-14-1 Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre.

Mehr

Nichtlineare Widerstände

Nichtlineare Widerstände Protokoll zu Methoden der Experimentellen Physik am 8. 4. 2005 Nichtlineare Widerstände (Bestimmung des Innenwiderstandes von Spannungsquellen und Bestimmung des Innenwiderstands einer Glühlampe) Von Christoph

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. T. Uelzen Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Solarzellen E Einführung. Das Material für dieses Experiment ist in Abb. 2.1 zu sehen.

Solarzellen E Einführung. Das Material für dieses Experiment ist in Abb. 2.1 zu sehen. 2.0 Einführung Das Material für dieses Experiment ist in Abb. 2.1 zu sehen. Abb. 2.1 Material für Experiment E2 A: Solarzelle B: Solarzelle C: Box mit Einschüben zur Montage von Lichtquellen, Solarzellen

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren

Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren PraktikantIn 1 Matrikelnr: PraktikantIn 2 Matrikelnr: Datum: Aufgabe 2 durchgeführt: Aufgabe 3 durchgeführt: Aufgabe 4a durchgeführt: Aufgabe 4b durchgeführt: Aufgabe 4c durchgeführt: Aufgabe 4d durchgeführt:

Mehr

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung Grundstromkreis, Widerstandsmessung Stichworte zur Vorbereitung Informieren Sie sich zu den folgenden Begriffen: Widerstand, spezifischer Widerstand, OHMsches Gesetz, KIRCHHOFFsche Regeln, Reihenund Parallelschaltung,

Mehr

Kennlinie der Brennstoffzelle

Kennlinie der Brennstoffzelle E z1 Kennlinie der Material: Zerlegbare mit Membran,3 mg/cm Pt sowie Wasserstoff- und Sauerstoffendplatte montiert nach Aufbauanleitung Komponenten aus Schülerkasten Solar-Wasserstoff-Technologie: Solarmodul

Mehr

1. Ziele. 2. Stichworte für die Vorbereitung. 3. Wie groß ist der Widerstandswert? C01 ELEKTRISCHER WIDERSTAND C01

1. Ziele. 2. Stichworte für die Vorbereitung. 3. Wie groß ist der Widerstandswert? C01 ELEKTRISCHER WIDERSTAND C01 ELEKTISCHE WIDESTAND 1. Ziele Es ist gar nicht so leicht, den Widerstandwert eines gewöhnlichen ohmschen Widerstandes einigermaßen genau zu bestimmen. Sie werden sehen, wie stark das Ergebnis sowohl von

Mehr

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man

Mehr

Physik für die Sekundarstufe II. Wasserstoff. Energie für morgen. Averil Macdonald. heliocentris

Physik für die Sekundarstufe II. Wasserstoff. Energie für morgen. Averil Macdonald. heliocentris Physik für die Sekundarstufe II Wasserstoff Energie für morgen Averil Macdonald heliocentris Inhalt Teil 1 Vorbereitete experimentelle Lektionen mit Lehrerinformationen zur Vermittlung von Rahmenplaninhalten

Mehr

Lehrfach: Solare Energietechnik Versuch: Solarstrahlung und Solarmodule. Prof. Dr.-Ing. Kühne Sept Bearb.: Dr.-Ing. Menzel

Lehrfach: Solare Energietechnik Versuch: Solarstrahlung und Solarmodule. Prof. Dr.-Ing. Kühne Sept Bearb.: Dr.-Ing. Menzel SOMO Lehrfach: Solare Energietechnik Versuch: Solarstrahlung und Solarmodule Oc Hochschule Zittau/Görlitz; Fakultät Elektrotechnik und Informatik Prof. Dr.-Ing. Kühne Sept. 2018 Bearb.: Dr.-Ing. Menzel

Mehr

4.2 Halbleiter-Dioden und -Solarzellen

4.2 Halbleiter-Dioden und -Solarzellen 4.2 Halbleiter-Dioden und -Solarzellen Vorausgesetzt werden Kenntnisse über: Grundbegriffe der Halbleiterphysik, pn-übergang, Raumladungszone, Sperrschichtkapazität, Gleichrichterkennlinie, Aufbau und

Mehr

Elektrolytischer Trog

Elektrolytischer Trog Elektrolytischer Trog Theorie Er dient zur experimentellen Ermittlung von Potentialverteilungen. Durchführung Die Flüssigkeit im Trog soll ein Dielektrikum sein. (kein Elektrolyt) Als Spannungsquelle dient

Mehr

1 Schaltungen von Hochleistungs-LEDs

1 Schaltungen von Hochleistungs-LEDs 1 Schaltungen von Hochleistungs-LEDs 1.1 Zwei identische Reihenschaltungen, die parallel an U Gleich geschaltet sind. U R 2 = U gleich 2 = 12 V 6,6 V = 5,4 V R 2 = U R 2 = 5,4 V = 18 Ω ( = R 1) I 2 300

Mehr

Schelztor-Gymnasium Esslingen Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 -

Schelztor-Gymnasium Esslingen Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 - Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 - Name: Datum: weitere Gruppenmitglieder : Vorbereitung: DORN-BADER Mittelstufe S. 271, roter Kasten S. 272, roter Kasten, S. 273, Abschnitt 2. Thema:

Mehr

1 Schaltungen von Hochleistungs-LEDs

1 Schaltungen von Hochleistungs-LEDs 1 Schaltungen von Hochleistungs-LEDs Schaltung 1 Schaltung 2 Schaltung 3 R1 R2 R3 C leich U Wechsel U Wechsel leich = 12 V (leichspannung) Û Wechsel = 17 V (Spitzenwert), sinusförmig, Frequenz: 50 Hz Nennwerte

Mehr

1. Kurzarbeit aus der Physik * Klasse 7a * * Gruppe A

1. Kurzarbeit aus der Physik * Klasse 7a * * Gruppe A 1. Kurzarbeit aus der Physik * Klasse 7a * 06.12.2016 * Gruppe A Name:... 1. Überlege genau, welche Lämpchen jeweils leuchten. Kennzeichne heller leuchtende Lämpchen mit einem Stern. ( 1 bedeutet Schalter

Mehr

Labor Elektrotechnik. Versuch: Temperatur - Effekte

Labor Elektrotechnik. Versuch: Temperatur - Effekte Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5 Versuch: Temperatur - Effekte 13.11.2001 3. überarbeitete Version Markus Helmling Michael Pellmann Einleitung Der elektrische Widerstand ist

Mehr

Stromstärke Elektrischer Strom ist bewegte Ladung Der Ladungstransport erfolgt in Metallen durch Leitungselektronen, in Elektrolyten durch Ionen, in G

Stromstärke Elektrischer Strom ist bewegte Ladung Der Ladungstransport erfolgt in Metallen durch Leitungselektronen, in Elektrolyten durch Ionen, in G Elektrischer Strom Stromstärke Elektrischer Strom ist bewegte Ladung Der Ladungstransport erfolgt in Metallen durch Leitungselektronen, in Elektrolyten durch Ionen, in Gasen durch Ionen und Elektronen.

Mehr

Versuch E01a Grundlegende elektrische Schaltungen

Versuch E01a Grundlegende elektrische Schaltungen Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch E01a Grundlegende elektrische Schaltungen Aufgaben 1. Bauen Sie eine Reihenschaltung bestehend aus drei Widerständen mit

Mehr

Solarthermiesystem. Wärme von der Sonne. innovative Solarsysteme für Schule und Ausbildung. Experimentiergerät: SUSE Zusatzgeräte optional:

Solarthermiesystem. Wärme von der Sonne. innovative Solarsysteme für Schule und Ausbildung. Experimentiergerät: SUSE Zusatzgeräte optional: NILS Niedersächsische Lernwerkstatt für solare Energiesysteme am Institut für Solarenergieforschung ISFH Hameln/ Emmerthal An- Institut der Leibniz Universität Hannover Dr. Roland Goslich + Winfried Klug

Mehr

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung Versuch Nr. 02: Bestimmung eines Ohmschen Widerstandes nach der Substitutionsmethode Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor:

Mehr

Aufnahme von Kennlinien eines liniaren Bauelementes

Aufnahme von Kennlinien eines liniaren Bauelementes TFH Berlin Messtechnik Labor Seite1 von 6 Aufnahme von Kennlinien eines liniaren Bauelementes Ort: TFH Berlin Datum: 29.09.03 Uhrzeit: von 8.00h bis 11.30h Dozent: Arbeitsgruppe: Prof. Dr.-Ing. Klaus Metzger

Mehr

Strom-Spannungs-Kennlinie einer PEM Brennstoffzelle

Strom-Spannungs-Kennlinie einer PEM Brennstoffzelle Lehrer-/Dozentenblatt Strom-Spannungs-Kennlinie einer PEM Brennstoffzelle Aufgabe und Material Lehrerinformationen Zusatzinformationen Eine PEM Brennstoffzelle besitzt keine lineare Leistungskurve, sondern

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 12.02.1999 Aufg. P max 0 2 1 7 2 12 3 10 4 9 5 18 6 11 Σ 69 N P Zugelassene

Mehr

Experimentiertag. Datum: Name: Klasse: Schule:

Experimentiertag. Datum: Name: Klasse: Schule: Experimentiertag Datum: Name: Klasse: Schule: E1 V 1 Generator, Propeller, Solarmodul Wovon hängt die Spannung ab? 1.) Spannung aus dem Generator: (Taucht in der Spannungsanzeige kein Minuszeichen auf,

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1 Versuch GET 1: Vielfachmesser, Kennlinien und Netzwerke Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Fachgebiet Grundlagen

Mehr

Basics of Electrical Power Generation Photovoltaik

Basics of Electrical Power Generation Photovoltaik Basics of Electrical Power Generation Photovoltaik 1/ 23 GE Global Research Freisinger Landstrasse 50 85748 Garching kontakt@reg-energien.de Inhalte 1. Prinzip 2. Technik 3. Verschattung 2/ 23 1 Prinzip

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering Experimentier-Box Mini 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische

Mehr

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV AUSWERTUNG: ELEKTRISCHE MESSMETHODEN TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. MESSUNGEN BEI GLEICHSTROM Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 7, 15V. 1.1. Innenwiderstand

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

Robert-Bosch-Gymnasium

Robert-Bosch-Gymnasium Robert-Bosch-Gymnasium NWT Klassenstufe 10 Versuch 2 Regenerative Energien: Brennstoffzelle Albert Pfänder, 22.4.2014 Brennstoffzellen-Praktikum, Versuch 2 Kennlinien der Brennstoffzelle Versuchszweck

Mehr

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.

Mehr

Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD

Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD PROT OKOLL Versuche zur S OLA RZELLE Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD Arbeitsgruppenprotokoll Günter EIBENSTEINER Matrikelnummer 9856136 Christian J. ZÖPFL Matrikelnummer 9855155 Inhaltsverzeichnis

Mehr

Hinweise zum Extrapolieren (Versuche 202, 301, 109)

Hinweise zum Extrapolieren (Versuche 202, 301, 109) Hinweise zum Extrapolieren (Versuche 202, 301, 109) Bei vielen physikalischen Experimenten wird das (End-) Messergebnis von Größen mitbestimmt, die in einer einfachen Beschreibung nicht auftauchen (z.b.

Mehr

GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN

GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN GRNDLAGENLABOR CLASSIC LINEARE QELLEN ERSATZSCHALTNGEN ND KENNLINIEN Inhalt:. Einleitung und Zielsetzung...2 2. Theoretische Aufgaben - Vorbereitung...2 3. Praktische Messaufgaben...3 Anhang: Theorie Quellen,

Mehr

Klasse: CodeNr.: 1 Code Nr.: Datum: Name: 1.)

Klasse: CodeNr.: 1 Code Nr.: Datum: Name: 1.) Klasse: CodeNr.: 1 Code Nr.: 0 5 0 5 0 5 0 5 0 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 1 1 Was bedeutet die Aufschrift "6V" auf einer Glühbirne? Was geschieht, wenn man diese Aufschrift nicht beachtet?

Mehr

Spannung und Stromstärke bei Reihenschaltung von Solarzellen

Spannung und Stromstärke bei Reihenschaltung von Solarzellen Lehrer-/Dozentenblatt Spannung und Stromstärke bei Reihenschaltung von Solarzellen Aufgabe und Material Lehrerinformationen Zusätzliche Informationen Die Schüler sollen eine Reihenschaltung von Solarzellen

Mehr

ETP1-4. Konstantspannungsquelle, gesteuerte Quelle. Übersicht

ETP1-4. Konstantspannungsquelle, gesteuerte Quelle. Übersicht Department Informations- und Elektrotechnik Studiengruppe: Übungstag (Datum): Labor für Grundlagen der Elektrotechnik ETP1-4 Protokollführer (Name, Vorname): Weitere Übungsteilnehmer: Professor: Testat:

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben

Mehr

Praktikum GEP2 Technische Informatik HAW Hamburg. Versuch 1. Spannungs- und Strommessung, Spannungsteiler, Stromteiler und Ersatzspannungsquelle

Praktikum GEP2 Technische Informatik HAW Hamburg. Versuch 1. Spannungs- und Strommessung, Spannungsteiler, Stromteiler und Ersatzspannungsquelle Versuch 1 Spannungs- und Strommessung, Spannungsteiler, Stromteiler und Ersatzspannungsquelle Gruppe: Tisch: Versuchsdatum:.. Teilnehmer: Korrekturen: Testat: Vers. 17/18 Versuch 1 1 / 6 Lernziel In diesem

Mehr

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 2. Weitere Übungsteilnehmer: Messungen an linearen und nichtlinearen Widerständen

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 2. Weitere Übungsteilnehmer: Messungen an linearen und nichtlinearen Widerständen Department nformations- und Elektrotechnik Studiengruppe: Übungstag: Professor: Labor für Grundlagen der Elektrotechnik EE1- ETP1 Labor 2 Testat: Protokollführer (Name, Vorname): Weitere Übungsteilnehmer:

Mehr

Grundpraktikum II E5 Gleichrichterschaltungen

Grundpraktikum II E5 Gleichrichterschaltungen Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik Grundpraktikum II E5 Gleichrichterschaltungen Julien Kluge 16. Dezember 2015 Student: Julien Kluge (564513) julien@physik.hu-berlin.de Partner:

Mehr

PTC-Widerstand. Material. Thema. Aufbau. Experiment. Messergebnisse

PTC-Widerstand. Material. Thema. Aufbau. Experiment. Messergebnisse PTC-Widerstand 1 STE Leitung, unterbrochen, 4 Stecker 1 STE Widerstand 500 Ω 1 STE PTC-Widerstand 1 Amperemeter Zündhölzer Der Widerstand von Halbleitern kann von der Temperatur abhängen. Versorgungsspannung:

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

1. Ablesen eines Universalmessgerätes und Fehlerberechnung

1. Ablesen eines Universalmessgerätes und Fehlerberechnung Laborübung 1 1-1 1. Ablesen eines Universalmessgerätes und Fehlerberechnung Wie groß ist die angezeigte elektrische Größe in den Bildern 1 bis 6? Mit welchem relativen Messfehler muss in den sechs Ableseübungen

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen ersuchsdurchführung ersuch : Messungen an linearen und nichtlinearen Widerständen. Linearer Widerstand.. orbereitung Der Widerstand x ist mit dem digitalen ielfachmessgerät zu messen. Wie hoch darf die

Mehr

Referat: Innenwiderstand

Referat: Innenwiderstand Referat: Innenwiderstand Ingo Blechschmidt 4. März 2007 Inhaltsverzeichnis 1 Referat: Innenwiderstand 1 1.1 Referatsthema...................... 1 1.2 Überblick......................... 2 1.2.1 Innenwiderstand

Mehr

Umgang mit Diagrammen Was kann ich?

Umgang mit Diagrammen Was kann ich? Umgang mit Diagrammen Was kann ich? Aufgabe 1 (Quelle: DVA Ph 2008 14) Tom führt folgendes Experiment aus: Er notiert in einer Tabelle die Spannstrecken x, um die er das Auto rückwärts schiebt, und notiert

Mehr

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin:

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin: Grundpraktikum I Spannungsquellen 1/5 Übungsdatum: 7.11. Abgabetermin: 3.1. Grundpraktikum I Spannungsquellen stephan@fundus.org Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum I Spannungsquellen

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein Lehrerfortbildung Elektronik - Versuchsanleitung Nichtlineare Bauelemente Zielsetzung

Mehr

ELEXBO. ELektro - EXperimentier - BOx

ELEXBO. ELektro - EXperimentier - BOx ELEXBO ELektro - EXperimentier - BOx 1 Inhaltsverzeichnis 2 Einleitung.3 Grundlagen..3 Der elektrische Strom 4 Die elektrische Spannung..6 Der Widerstand...9 Widerstand messen..10 Zusammenfassung der elektrischen

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. T. Uelzen Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Laborpraktikum 3 Arbeitspunkt und Leistungsanpassung

Laborpraktikum 3 Arbeitspunkt und Leistungsanpassung 18. Januar 2017 Elektrizitätslehre I Martin Loeser Laborpraktikum 3 rbeitspunkt und Leistungsanpassung 1 Lernziele Sie kennen die formalen Zusammenhänge zwischen Spannung, Stromstärke und (dissipierter)

Mehr

Praktikum Grundlagen Elektrotechnik, Prof. Kern

Praktikum Grundlagen Elektrotechnik, Prof. Kern Praktikum Grundlagen Elektrotechnik, Prof. Kern Christoph Hansen, Christian Große Wörding, Sonya Salam chris@university-material.de Inhaltsverzeichnis Einführung 2 Auswertung und Interpretation 3 Teil

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Spannung und Stromstärke bei Parallelschaltung von Solarzellen

Spannung und Stromstärke bei Parallelschaltung von Solarzellen Lehrer-/Dozentenblatt Spannung und Stromstärke bei Parallelschaltung von Solarzellen Aufgabe und Material Lehrerinformationen Zusätzliche Informationen Die Schüler sollen eine Parallelschaltung von Solarzellen

Mehr

Elektrischer Widerstand

Elektrischer Widerstand Dr Angela Fösel & Dipl Phys Tom Michler Revision: 21092018 Abbildung 1: Ohms Drehwage, mit der er den Stromfluss in Drähten messen und daraus ihren Widerstand bestimmen konnte Die elektrische Ladung war

Mehr

Das ohmsche Gesetz (Artikelnr.: P )

Das ohmsche Gesetz (Artikelnr.: P ) Das ohmsche Gesetz (Artikelnr.: P1381000) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Elektrizitätslehre Unterthema: Der elektrische Widerstand Experiment:

Mehr

Laborbericht. Fach: Elektrotechnik. Datum: Übung: 1.3 Kondensator. Berichtführer: Malte Spiegelberg. Laborpartner: Dennis Wedemann

Laborbericht. Fach: Elektrotechnik. Datum: Übung: 1.3 Kondensator. Berichtführer: Malte Spiegelberg. Laborpartner: Dennis Wedemann Laborbericht Fach: Elektrotechnik Datum: 15.12.2008 Übung: 1.3 Kondensator Berichtführer: Malte Spiegelberg Laborpartner: Dennis Wedemann 1. Materialliste Voltmeter: ABB M 2032 (Nr. 01, 02, 18, 19, 21)

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 31.03.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 4 2 5 2 2 erreicht Aufgabe 8 9 10 11 Summe Punkte 2 4 3 4 35 erreicht Hinweise:

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

Unterrichtssequenz Solarzelle

Unterrichtssequenz Solarzelle Material 2 Unterrichtssequenz Solarzelle In der ersten Stunde werden die physikalischen Grundlagen der Wirkungsweise einer Solarzelle sowie ihr prinzipieller ufbau erarbeitet. Im Zentrum dieser Sequenz

Mehr

I. Bezeichnungen und Begriffe

I. Bezeichnungen und Begriffe UniversitätPOsnabrück Fachbereich Physik Vorlesung Elektronik 1 Dr. W. Bodenberger 1. Einige Bezeichnungen und Begriffe I. Bezeichnungen und Begriffe Spannung: Bezeichnung: u Signalspannung U Versorgungsspannung

Mehr

Spannungs- und Stromquellen

Spannungs- und Stromquellen Elektrotechnik Grundlagen Spannungs- und Stromquellen Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ideale Quellen 2 2 Reale Quellen 2 3 Quellenersatzschaltbilder 4 4

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL SEKUNDARSTUFE II Modul: Photovoltaik Versuch: I. AUFGABENSTELLUNG

Mehr

Auswertung. D07: Photoeffekt

Auswertung. D07: Photoeffekt Auswertung zum Versuch D07: Photoeffekt Alexander Fufaev Partner: Jule Heier Gruppe 434 1 Einleitung In diesem Versuch geht es darum, den Photoeffekt auf verschiedene Weisen zu untersuchen. In Versuchsteil

Mehr

R 1 : I m = 200mA, 500mA und 800mA R 2 : U m = 2V, 4V und 6V R 3 : U m = 9V, 12V und 15V

R 1 : I m = 200mA, 500mA und 800mA R 2 : U m = 2V, 4V und 6V R 3 : U m = 9V, 12V und 15V Grundlagen der Elektrotechnik für Mechatroniker Praktikum ersuch Messungen an linearen und nichtlinearen Widerständen. Einführung Dieser ersuch soll verdeutlichen, daß bei einer Messung nur dann sinnvolle

Mehr

Thema Elektrizitätslehre Doppellektion 7

Thema Elektrizitätslehre Doppellektion 7 Natur und Technik 2 Physik Lektionsablauf Thema Elektrizitätslehre Doppellektion 7 Ziele Einblick in das Leben eines Forscher erhalten Das Ohmsche Gesetz herleiten Das Ohmsche Gesetz und die Umformungen

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 2 Ersatzspannungsquelle und Leistungsanpassung Teilnehmer: Name orname Matr.-Nr. Datum

Mehr

Elektrizitätslehre Elektrische Grundschaltungen Stromkreis und Schalter

Elektrizitätslehre Elektrische Grundschaltungen Stromkreis und Schalter SVN Physik 13-05-11 PS 3.4.1.1 Elektrizitätslehre Elektrische Grundschaltungen Stromkreis und Schalter Der einfache Stromkreis Aufgabe Es sind einfache Stromkreise zu bauen und die zugehörigen Schaltpläne

Mehr

Klausur "Elektrotechnik" am

Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 07.07.2000 Aufg. P max 0 2 1 9 2 12 3 10 4 9 5 18 6 5 Σ 65 N P Zugelassene

Mehr

Fortgeschrittenen Praktikum TU Dresden 08. Mai Solarzelle (SZ)

Fortgeschrittenen Praktikum TU Dresden 08. Mai Solarzelle (SZ) Fortgeschrittenen Praktikum TU Dresden 08. Mai 2009 Solarzelle (SZ) Klaus Steiniger, Alexander Wagner, Gruppe 850 klaus.steiniger@physik.tu-dresden.de, alexander.wagner@physik.tu-dresden.de Betreuer: Hannah

Mehr