Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar Klausur zur Veranstaltung Erhebungstechniken

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar Klausur zur Veranstaltung Erhebungstechniken"

Transkript

1 Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar 2009 Klausur zur Veranstaltung Erhebungstechniken im Wintersemester 2008 / 2009 Name, Vorname: Studiengang (Bachelor/Diplom): Matrikelnummer: Hinweise: Es gibt fünf Aufgaben. Für eine erfolgreichen Teilnahme an der Klausur ist das Erreichen von 50% der Gesamtpunktzahl hinreichend. Als Lösung genügt aber keinesfalls nur die Angabe eines Endergebnisses, sondern der Rechenweg ist nachvollziehbar zu dokumentieren. Aufgabe erreichbare erreichte Punkte Punkte Gesamt 100 Note:

2 Name, Vorname: 2 Aufgabe 1: (20 Punkte) Beantworten Sie die folgenden zehn Fragen! (möglichst kurz, aber präzise) Frage 1: Wie ist eine einfache Zufallsstichprobe definiert? Frage 2: Um wie viel müssen Sie den Stichprobenumfang erhöhen, damit Sie die Präzision Ihrer Schätzung bei einer einfachen Zufallsstichprobe vervierfachen? Frage 3: Wann ist die Präzision einer einstufigen Auswahl größer als die einer einfachen Zufallsauswahl ohne Zurücklegen? Frage 4: Was ist eine repräsentative Stichprobe? Frage 5: Wie viele Stichproben (ohne Zurücklegen) gibt es, wenn aus einer Grundgesamtheit vom Umfang N eine Stichprobe vom Umfang n ausgwählt werden soll?

3 Name, Vorname: 3 Frage 6: Welche Eigenschaften sollten Klumpen bei einer einstufigen Auswahl haben? Frage 7: Was ist ein Schichtungseffekt? Frage 8: Was ist eine Beurteilungsstichprobe? Frage 9: Wie ist n y i im homograden Fall bei einer einfachen Zufallsauswahl ohne i=1 Zurücklegen verteilt? Frage 10: Wie lautet das Grundprinzip zur Konstruktion von Schichten?

4 Name, Vorname: 4 Aufgabe 2: ( Punkte) Zum Zwecke der Lebensmittelüberwachung wird in einer landwirtschaftlich geprägten Region ein Monitoringprogramm durchgeführt. Dazu werden von 200 Landwirten der Region 10 mittels einfacher Zufallsstichprobe ausgewählt, von deren geschlachteten Rindern Organproben entnommen und auf Schwermetallbelastungen (Cadmium, Cd in mg/kg) geprüft. Die Ergebnisse dieser Messungen sind in nachfolgender Tabelle zusammengestellt. Landwirt Cd in mg/kg (a) Schätzen Sie die mittlere Belastung und den Anteil der Landwirte, deren Rinder eine Belastung höher als 5 mg/kg Cadmium aufweisen. (b) Geben Sie für die Schätzer aus (a) Schätzer für deren Varianzen sowie die Standardabweichungen an. (c) Wie lautet das approximative Konfidenzintervall zum Niveau 0.95 für die mittlere Belastung? (Hinweis: u 0.95 = ,u = ) (d) Wie groß müsste man bei einer zukünftigen Untersuchung den Stichprobenumfang wählen, damit das Konfidenzintervall zur mittleren Belastung höchstens eine Breite von 1 mg/kg besitzt?

5 Name, Vorname: 5

6 Name, Vorname: 6 Aufgabe 3: ( Punkte) Da bei der letzten Wahl der Anteil der Wähler der Opportunistischen Partei (OP) in verschiedenen Bevölkerungskreisen unterschiedlich war, entschließt man sich für eine Wahlprognose zu einem geschichteten Auswahlverfahren aus vier Bevölkerungsschichten. Neben der Frage, ob bei der nächsten Wahl die OP gewählt wird, wird zusätzlich das Alter der befragten Personen erhoben. Die Ergebnisse der Erhebung sind in der nachfolgenden Tabelle zusammengefasst: Schicht h W h ˆPh ȳ h. s 2 h n h Hierbei bezeichnet ˆP h den Anteil der Personen, die die OP wählen wollen, ȳ h. das Durchschnittsalter, s 2 h die empirische Varianz des Alters und n h der Stichprobenumfang in der in der Schicht h, h = 1,2,3,4. (a) Schätzen Sie den zu erwartenden Anteil P, den die OP bei der nächsten Wahl erhält und das Durchschnittsalter erwartungstreu. (b) Geben Sie ein approximatives Konfidenzintervall zum Niveau 0.95 für das Durchschnittsalter an. (Hinweis: u 0.95 = ,u = ) (c) Berechnen Sie für beide erhobenen Merkmale eine optimale Aufteilung des Stichprobenumfangs.

7 Name, Vorname: 7

8 Name, Vorname: 8 Aufgabe 4: (10 Punkte) Bei der CD-Produktion der Firma Schall & Rausch treten leider auch Qualitätsmängel auf, die während der Herstellung nicht bemerkt werden. Zur Qualitätsprüfung vor Auslieferung wird deshalb aus den 1000 bereits verpackten Kartons eines Produktionsabschnittes eine einfache Zufallsstichprobe von 10 Kartons entnommen und hierin werden jeweils alle 20 CDs auf ihre Qualität überprüft. Bei dieser Überprüfung stellten sich 3, 1, 0, 0, 1, 1, 2, 1, bzw. 0 CDs als defekt heraus. Schätzen Sie den Anteil defekter CDs während des Produktionsabschnittes erwartungstreu.

9 Name, Vorname: 9 Aufgabe 5: (10 Punkte) Zeigen Sie, dass bei einer einfachen Zufallsstichprobe mit Zurücklegen für die Schätzung von Anteilswerten die folgende Aussage gilt: ist ein erwartungstreuer Schätzer für Var(p) = 1 n 1 p (1 p) Var(p) = 1 n P (1 P), wobei p der erwartungstreue Schätzer für P ist.

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 12 2009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 10 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2004/2005 Universität Karlsruhe 14. Februar 2005 Dr. Bernhard Klar Sebastian Müller Aufgabe 1: (15 Punkte) Klausur zur Vorlesung Statistik für Biologen Musterlösungen

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Muster einer Fachabschlußklausur (90 Min.)

Muster einer Fachabschlußklausur (90 Min.) Muster einer Fachabschlußklausur (90 Min.) Teilnehmer (Name, Vorname): Mathematik 3 für Wirtschaftsingenieure Matrikelnummer: erreichte Punkte Max. erreichte Punkte Max. Aufg. 1 11 Aufg. 5 10 Aufg. 2 11

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Auswahlverfahren. Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl. Dipl.-Päd. Ivonne Bemerburg

Auswahlverfahren. Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl. Dipl.-Päd. Ivonne Bemerburg Auswahlverfahren Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl Blockseminar: Methoden quantitativer Grundgesamtheit und Stichprobe Die Festlegung einer Menge von Objekten, für die die Aussagen der

Mehr

TECHNISCHE UNIVERSITÄT DORTMUND Wintersemester 2010/2011 FAKULTÄT STATISTIK Dr. H. Hansen

TECHNISCHE UNIVERSITÄT DORTMUND Wintersemester 2010/2011 FAKULTÄT STATISTIK Dr. H. Hansen TECHNISCHE UNIVERSITÄT DORTMUND Wintersemester 2010/2011 FAKULTÄT STATISTIK 11.02.2011 Dr. H. Hansen Klausur für den Bachelorstudiengang zur Vorlesung Statistik für Ökonomen Bitte in Druckschrift ausfüllen

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/ Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/2015 13.02.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Statistik II Februar 2005

Statistik II Februar 2005 Statistik II Februar 5 Aufgabe Zufällig ausgewählten Personen der Zielgruppe wird der Prototyp eines neuen Konsumgutes vorgelegt, um die Zahlungsbereitschaft Z ( pro Einheit des Konsumgutes) zu ermitteln.

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Stichprobenverfahren. Sommersemester Einführung 1

Stichprobenverfahren. Sommersemester Einführung 1 Sommersemester 2015 1. Einführung 1 Personen Jun.-Prof. Dr. Hans Manner Lehrstuhlvertretung Statistische Methoden mit Schwerpunkt Psychometrie Raum: M 737 E-mail: manner@statistik.tu-dortmund.de Tel.:

Mehr

Kapitel 10. Stichproben

Kapitel 10. Stichproben Kapitel 10 n In der deskriptiven Statistik werden die Charakteristika eines Datensatzes durch Grafiken verdeutlicht und durch Maßzahlen zusammengefasst. In der Regel ist man aber nicht nur an der Verteilung

Mehr

Stichproben und statistische Fehler

Stichproben und statistische Fehler Kapitel 0 Stichproben und statistische Fehler 0. Verfahren zur Auswahl von Stichproben Stichprobenauswahl als Bestandteil von Teilerhebungen: Aus dem Ergebnis der Untersuchung der Stichprobe soll dann

Mehr

Grundlagen der Statistik

Grundlagen der Statistik www.nwb.de NWB Studium Betriebswirtschaft Grundlagen der Statistik Band 2: Wahrscheinlichkeitsrechnung und induktive Statistik Von Professor Dr. Jochen Schwarze 9., vollständig überarbeitete Auflage STUDIUM

Mehr

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur Gesamtpunktzahl der Statistik I-Klausur: 12 Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur 03.07.2015 Name, Vorname: Matrikelnr.: Um die volle Punktzahl zu erhalten, müssen Sie bei den Berechnungen

Mehr

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik Name, Vorname Matrikelnummer Teilklausur des Moduls 32741 Kurs 42221: Vertiefung der Statistik Datum Termin: 21. März 2014, 14.00-16.00 Uhr Prüfer: Univ.-Prof. Dr. H. Singer Vertiefung der Statistik 21.3.2014

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Eigene MC-Fragen Kap. 6 Auswahlverfahren

Eigene MC-Fragen Kap. 6 Auswahlverfahren Eigene MC-Fragen Kap. 6 Auswahlverfahren 1. Werden Untersuchungseinheiten für die Teilerhebung nach vorher festgelegten Regen aus der Grundgesamtheit ausgewählt, spricht man von Stichprobe sample Auswahl

Mehr

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Prüfung aus Statistik 2 für SoziologInnen

Prüfung aus Statistik 2 für SoziologInnen Prüfung aus Statistik 2 für SoziologInnen 26. Jänner 2008 Gesamtpunktezahl =80 Name in Blockbuchstaben: Matrikelnummer: SKZ: 1) Bei einer Erhebung über den Beliebtheitsgrad von Politikern wurden n=400

Mehr

Wolf falsch eingeschätzt und deshalb falsche Werbemaßnahmen ergriffen.

Wolf falsch eingeschätzt und deshalb falsche Werbemaßnahmen ergriffen. Aufgabenstellung Klausur Methoden der Marktforschung 0.08.004 Der Automobilhersteller People Car verkauft eine neue Variante seines Erfolgsmodells Wolf zunächst nur auf einem Testmarkt. Dabei muss das

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

5. Auswahlverfahren für Stichprobenelemente

5. Auswahlverfahren für Stichprobenelemente Grundlagen Uneingeschränkte Zufallsauswahl (z.b. Roulette, Würfeln) Zufallszahlen müssen eine vorgegebene Verteilung erfüllen (Gleichverteilung) Zufallszahlen müssen zufällig aufeinander folgen (keine

Mehr

Muster einer Fachabschlußklausur (90 Min.)

Muster einer Fachabschlußklausur (90 Min.) Muster einer Fachabschlußklausur (90 Min.) Mathematik 3 für Wirtschaftsingenieure Teilnehmer (Name, Vorname): Matrikelnummer: erreichte Punkte Max. erreichte Punkte Max. Aufg. 1 11 Aufg. 5 15 Aufg. 2 9

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

3.2 Stichprobenauswahl (Sampling)

3.2 Stichprobenauswahl (Sampling) 3.2 Stichprobenauswahl (Sampling) Stichprobe = als Stichprobe bezeichnet man eine Teilmenge einer Grundgesamtheit, die unter bestimmten Gesichtspunkten ausgewählt wurde. Der Stichprobenentnahme vorgelagert

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 017 4 Spezielle Zufallsgrößen Einführung 1 Wahrscheinlichkeit: Definition

Mehr

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie Institut für Mathematische Stochastik WS 1999/2000 Universität Karlsruhe 11. Mai 2000 Dr. Bernhard Klar Nachklausur zur Vorlesung Statistik für Studierende der Biologie Bearbeitungszeit: 90 Minuten Name:

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

1 wenn Erfolg im j-ten Versuch

1 wenn Erfolg im j-ten Versuch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 5.1 Binomialverteilung - Alternative Darstellung n Versuche mit 2 möglichen Ausgängen. Setze Y j = 1 wenn Erfolg im j-ten Versuch 0 wenn

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle Aufgabe 11.1 NewYorkTimes, Monday, May17,2010:

Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle Aufgabe 11.1 NewYorkTimes, Monday, May17,2010: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Konfidenzintervalle

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Auswahlverfahren. Schnell, R. Hill, P. B. Esser, E. 1999, Methoden der empirischen Sozialforschung. München: Oldenbourg. Seiten ;

Auswahlverfahren. Schnell, R. Hill, P. B. Esser, E. 1999, Methoden der empirischen Sozialforschung. München: Oldenbourg. Seiten ; Auswahlverfahren Objektbereich & Grundgesamtheit Vollerhebung Volkszählung Teilerhebung angestrebte Grundgesamtheit Auswahlgesamtheit Inferenzpopulation Willkürliche Auswahl Bewußte Auswahl Schnell, R.

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Prof. Dr. Bernhard Arnold, Institut für Statistik und Ökonometrie der Universität Hamburg. Lebensdaueranalyse und Zuverlässigkeit von Systemen

Prof. Dr. Bernhard Arnold, Institut für Statistik und Ökonometrie der Universität Hamburg. Lebensdaueranalyse und Zuverlässigkeit von Systemen Prof. Dr. Bernhard Arnold, Institut für Statistik und Ökonometrie der Universität Hamburg Lebensdaueranalyse und Zuverlässigkeit von Systemen Aufgabe 1 Bestimmen Sie für 0

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 14. Oktober 2006 Nachname: Vorname: Matrikelnummer: Studienkennzahl: Beispiel 1: Kreuze die jeweils richtige Antwort an (maximal 6 Punkte) 1.1. Bei einer rechtsschiefen

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Ab wann sind Effekte messbar? Zum Problem der kleinen Fallzahlen

Ab wann sind Effekte messbar? Zum Problem der kleinen Fallzahlen Ab wann sind Effekte messbar? Zum Problem der kleinen Fallzahlen AG Evaluation des Forum Mentoring Frankfurt, 6. Juli 2010 Dr. Vera Hennefeld Kontakt: Centrum für Evaluation Postfach 15 11 50 D-66041 Saarbrücken

Mehr

Auswahlverfahren. Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben

Auswahlverfahren. Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben Auswahlverfahren Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben Definition der Grundgesamtheit Untersuchungseinheit: Objekt an dem Messungen vorgenommen werden Grundgesamtheit

Mehr

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Voraussetzung für die Anwendung von Stichproben: Stichproben müssen repräsentativ sein, d.h. ein verkleinertes

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Statistik Einführung // Tests auf einen Parameter 8 p.2/74

Statistik Einführung // Tests auf einen Parameter 8 p.2/74 Statistik Einführung Tests auf einen Parameter Kapitel 8 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Tests

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

Vertiefung der. Wirtschaftsmathematik. und Statistik (Teil Statistik)

Vertiefung der. Wirtschaftsmathematik. und Statistik (Teil Statistik) Selbstkontrollarbeit 1 Vertiefung der Wirtschaftsmathematik und Statistik (Teil Statistik) 18. Januar 2011 Aufgaben Aufgabe 1 Gegeben sei eine binomialverteilte Zufallsvariablen X mit den Parametern N

Mehr

Statistik II für Wirtschaftswissenschaftler

Statistik II für Wirtschaftswissenschaftler Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen

Mehr

TEIL 5: AUSWAHLVERFAHREN

TEIL 5: AUSWAHLVERFAHREN TEIL 5: AUSWAHLVERFAHREN Dozent: Dawid Bekalarczyk GLIEDERUNG Auswahlverfahren eine Umschreibung Grundbegriffe Graphische Darstellung: Grundgesamtheit und Stichprobe Vor- und Nachteile: Voll- vs. Teilerhebung

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Rangkorrelationskoeffizient nach Spearman

Rangkorrelationskoeffizient nach Spearman Grundgesamtheit vs. Stichprobe Wer gehört zur Grundgesamtheit? Die Untersuchungseinheiten, die zur Grundgesamtheit gehören, sollten nach zeitlichen Kriterien räumlichen Kriterien sachlichen Kriterien Wie

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Grundkurs Statistik für Politologen und Soziologen

Grundkurs Statistik für Politologen und Soziologen Grundkurs Statistik für Politologen und Soziologen Bearbeitet von Uwe W Gehring, Cornelia Weins 5., überarbeitete Auflage 2010. Buch. 345 S. Softcover ISBN 978 3 531 16269 0 Format (B x L): 14,8 x 21 cm

Mehr

Experimentelle und quasiexperimentelle

Experimentelle und quasiexperimentelle Experimentelle und quasiexperimentelle Designs Experimentelle Designs Quasi- experimenttel Designs Ex- post- facto- Desingns Experimentelle Designs 1. Es werden mindestens zwei experimentelle Gruppen gebildet.

Mehr

Statistik I für Betriebswirte Vorlesung 11

Statistik I für Betriebswirte Vorlesung 11 Statistik I für Betriebswirte Vorlesung 11 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 22. Juni 2012 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Zur Stichprobenziehung innerhalb der PISA-Erweiterung:

Zur Stichprobenziehung innerhalb der PISA-Erweiterung: Zur Stichprobenziehung innerhalb der PISA-Erweiterung: Die Stichprobenziehung innerhalb der PISA-Erweiterung folgt den Prinzipien einer disproportional geschichteten Stichprobe, bei der zu Ermittlung von

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

o o o o o o o o o o o o

o o o o o o o o o o o o Klumpen-Stichproben = Cluster Sampling Obs.: Bei einer uneingeschränkten Zufallsauswahl wird pro Randomisierungs- Schritt genau eine Beobachtung gemacht. Ein ganz wesentlicher Punkt : Jedes zufällig ausgewählte

Mehr

Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen

Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Inhalt Stichproben

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, FB 1, Fach Soziologie Das Problem SozialwissenschaftlerInnen erheben sehr oft Daten aus Stichproben. Es

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung:

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Grundbegriffe der Wahrscheinlichkeitsrechnung Notation: Y y Zufallsvariable Merkmalswert Definition 1 Eine Zufallsvariable Y heißt a) diskret, falls sie nur endlich oder abzählbar unendlich viele Werte

Mehr

Herzlich willkommen zur Vorlesung. Methoden der empirischen Sozialforschung I. Stichproben

Herzlich willkommen zur Vorlesung. Methoden der empirischen Sozialforschung I. Stichproben FB 1 W. Ludwig-Mayerhofer Methoden I Stichproben 1 Einstieg/Überblick Paradigmen Werturteile/Ethik Forschungslogik Hypothesen Forschungsdesign Messung Standardisierte Befragung Qualitative Interviews Beobachtung

Mehr

Vorlesung Stichproben WS 2009/2010

Vorlesung Stichproben WS 2009/2010 Institut für Statistik Statistisches Beratungslabor Prof. Dr. Helmut Küchenhoff WS 2009/2010 http://www.stat.uni-muenchen.de/~helmut/stichproben_0910.html Übung: Monia Mahling donnerstags 08:00 bis 10:00

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Universität Stuttgart Fachbereich Mathematik. Klausur Statistik für Wirtschaftswissenschaftler WS 2010/11. PD Dr. J. Dippon Dipl.-Math. A.

Universität Stuttgart Fachbereich Mathematik. Klausur Statistik für Wirtschaftswissenschaftler WS 2010/11. PD Dr. J. Dippon Dipl.-Math. A. Universität Stuttgart Fachbereich Mathematik PD Dr. J. Dippon Dipl.-Math. A. Madlener Klausur Statistik für Wirtschaftswissenschaftler WS 2010/11 26. Februar 2011 VORNAME: MATRIKELNUMMER: NAME: STUDIENGANG:

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr