Data Analysis II (Data Mining Techniques) WS 07/08. Contents

Größe: px
Ab Seite anzeigen:

Download "Data Analysis II (Data Mining Techniques) WS 07/08. Contents"

Transkript

1 Contents 0. Introduction 1. Instance Based Learning 2. Naïve Bayes 3. Clustering 4. Decision Trees 5. Association Rules 6. Support Vector Machines Folie 1

2 Short Introduction Assumption: quantities of interest governed by probability distributions Optimal decisions by reasoning about these probabilities together with observed data Features: each observed training example increases or decreases the probability that a hypothesis is correct classify new instances by combining predictions of multiple hypotheses weighted by their probabilities difficulty: initial knowledge of probabilities required (or estimation based on background knowledge or assumption) Intro to Naive Bayes: Folie 2

3 Thomas Bayes (c April 17,1761) was a British mathematician and Presbyterian minister, known for having formulated a special case of Bayes' theorem, which was published posthumously. Biography Thomas Bayes was born in London. He is known to have published two works in his lifetime: Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence and Government is the Happiness of His Creatures (1731), and An Introduction to the Doctrine of Fluxions, and a Defence of the Mathematicians Against the Objections of the Author of the Analyst (published anonymously in 1736), in which he defended the logical foundation of Isaac Newton's calculus against the criticism of George Berkeley, Author of The Analyst. It is speculated that Bayes was elected as a Fellow of the Royal Society in 1742 on the strength of the Introduction to the Doctrine of Fluxions, as he is not known to have published any other mathematical works during his lifetime. Bayes died in Tunbridge Wells, Kent. He is interred in Bunhill Fields Cemetery in London where many Nonconformists are buried. Folie 3

4 2.1. Bayes Theorem revisted Task: determine best hypothesis for a space H giving the training data D Best Hypothesis: most probable hypothesis, given data and initial knowledge about prior probability of hypothesis from H Bayes Theorem: the method to calculate the probability of a hypothesis P(h) initial probability that hypothesis h holds P(D) prior probability that D is observed P(D h) conditional probability that D is observed given h holds P(h D) probability that h holds given D is observed See for in depth a/c of Bayes prob Folie 4

5 2.1. Bayes Theorem revisted Can read theorem 2 ways: simply counting cardinality of sets and applying definition of conditional probablilities Learning rule where we learn about the state of out world from fuzzy evidence ( p(h e) < 1!!) corollary can get hold of p(e h) under laboratory conditions (preparing h) or from old examples, where p(h) may have been different Only discriminating evidence counts ( p(e h1) >> p(e h2) ) Incremental learning p(h) p(h e1) p(h e1&e2) See for in depth a/c of Bayes prob Folie 5

6 2.1. Bayes Theorem revisted Given: a set of hypothesis what is the most probable one? determine best hypothesis for a space H giving the training data D maximum a posteriory (MAP) hypothesis h MAP = argmax P(h D) h H = argmax P(D) can be dropped constant h H independent of h = argmax P(D h) P(h) h H Assumption P(h i ) = P(h j ) for all h i, h j H maximum likelihood (ML) hypothesis h ML = argmax P(D h) h H Folie 6

7 2.1. Bayes Theorem revisted Example (1) Shall I take an umbrella? A piori knowledge: Without watching the forecast p(rain) =.30 rainy days were forecast correctly in 80% of those days Sunny days were forecast correctly in 60% of those days P(rain) = 0.30 P(~rain= sunny ) = 0.70 P(forecRain rain ) = 0.80 P(forecSunny rain) = 0.20 P(forecSunny sunny) = 0.60 P(forecRain sunny) = 0.40 Question: Should I take an umbrella even upon SUNNY forecast Using equation for h MAP : P(rain forecsunny) = P(forecSunny rain) * P(rain) / P(forecSunny) =.20 *.30 / (.20 * *.70) = 12.5 % Further treatment through utility functions ODDS[forecastSunny] = P(rain forecsunny) / P(sunny forecsunny) = = P(rain)/P(sunny) * P(forecastSunny rain)/p(forecastsunny sunny) = aprioriodds * conditionalodds =.30 /.70 *.20 /.60 = 1 / 7 Folie 7

8 Folie 8

9 2.1. Bayes Theorem revisted Example (1) Shall I take an umbrella? (II) Notes: (a) ODDS are easily calculated & have an intuitive interpretation (b) A fully fledged system will add a utility calculation ( OK, chances are 1:7 against rain, but the umbrella is lightweigt and my jacket will suffer from the rain ) (c) A priori plays an important part Folie 9

10 2.1. Bayes Theorem revisted Example (2) : Medical Diagnosis Problem Has a patient cancer or not? A piori knowledge: a lab test is an imperfect indicator for the cancer: correct positve result (+) in 98% in case patient has cancer, correct negative result (-) in 97% in case patient has not 0.008% of all people have this kind of cancer P(cancer) = P( cancer) = P(+ cancer ) = 0.98 P(- cancer) = 0.02 P(+ cancer) = 0.03 P(- cancer) = 0.97 Question: Should a new patient with + test be diagnosed with cancer or not? Using equation for h MAP : P(+ cancer) P(cancer) = P(+ cancer) P( cancer) = P(cancer +) =.0078 / ( ) = 2.55 % h MAP =( cancer) Folie 10

11 2.2. Basics: Naive Bayes in Operation Folie 11

12 The core ingredients Anzahl von outlook outlook Anzahl von outlook Temp play? overcas t rainy sunny Gesamtergebni s play? cold high mild Gesamtergebnis no no yes yes Gesamtergebnis Gesamtergebnis Anzahl von outlook Windy Anzahl von outlook Humid play? false true Gesamtergebnis play? high normal Gesamtergebnis no no yes yes Gesamtergebnis Gesamtergebnis Folie 12

13 2.2. Basics: Naive Bayes in Operation Shall we expect a play on a hot sunny humid calm day and a priori is somewhat like playing?? P(play hshc) n*2/9*2/9*3/9*6/9 *.60 P(NOplay hshc) n*2/5*3/5*4/5*2/5 *.40 P(play hshc) n* 72/6561 *.60 P(NOplay hshc) n*48/625 *.40 P(play hshc) 18% P(NOplay hshc) 82 % Folie 13

14 2.2. Basics: What is so naive about Naive Bayes? need Either p (class =i x) where x is a vector of variables or through Bayes`Theorem p ( x class) Problem even with categorical variables: Combinatorical explosion Exact treatment of the game example requires joint probabilities such as p(sunny hot Humid nowind play ) there are 3 *3*2*2*2 = 72 conditional probabilites to estimate in such a trivial example If we had 5 influence variables with 4 classes each and 3 outcomes to estimate 4*4*4*4*4*3 = 3072 cond. Probs Without additional assumptions on causation we cannot get an estimate from reasonably sized databases Folie 14

15 2.2. Basics BUT let us approximate (as we have already done passim) p ( x class) = p (X 1 = x 1 & X 2 = x 2 &... X n = x n class) _ p (X 1 = x 1 class) * p (X 2 = x 2 class)*... * p (X n = x n class) = j p (X j = x j class) in the example need p (outlook= sunny//overcast//rainy class) 6 Probabilities p (temperature class) 6 Probabilities p (humidity class ) 4 Probabilities p (windy class) 4 Probabilities Probabilities If we were to add a 5th variable: Boss s Dress (shorts business) 4 add l probs scales well Folie 15

16 2.2. Basics What price to pay??? independence assumption is very often badly violated Φ suppose that we had a weather radar picture on of the official forecast with accuracy p(seedepressiononradar=ra- rain) =.85 p(seeclearskiesonradar=ra+ sunny)=.70 Naïve Bayes was ODDS[forecastSunny] = P(rain forecsunny) / P(sunny forecsunny) = = P(rain)/P(sunny) * P(forecastSunny rain)/p(forecastsunny sunny) = aprioriodds * conditionalodds =.30 /.70 *.20 /.60 = 1 / 7 And now is ODDS[forecastSunny,Ra+] = P(rain forecsunny) / P(sunny forecsunny) = = P(rain)/P(sunny) * P(forecastSunny rain)/p(forecastsunny sunny) *P(Ra+ rain)/p(ra+ sunny) = aprioriodds * conditionaloddsforecast * conditionaloddsradar =.30 /.70 *.20 /.60 *.15/.70 = oldodds *.15/.70 = % chance of rain?!?? BUT: Radar is the most important ingredient in the official forcast in reality, we learn almost nothing from the Radar online learning factor for Radar should be MUCH closer to 1 than.15/.70 =.2 Folie 16

17 2.2. Basics What price to pay??? independence assumption is very often badly violated STILL: Works well if only used for classification need only : Class c = max arg c j p (X j = x j c) BUT j p (X j = x j c) is a poor estimate of actual probabilities If we have highly correlated variables Rough & ready approach: delete highly correlated vars Filter approach Index see below Folie 17

18 Voice Recognition recognize next phoneme p( ð ) = dictionary count or p( ð last was ə ) p(lip ð) p(waveform ð) Say Æthelwulf Folie 18

19 Voice recognition Problem With 2 Indicator Bayes rule would be p(ð lip1, waveform2) = N * p( lip1, waveform2 ð) * p(ð) p(ə lip1, waveform2) = N * p( lip1, waveform2 ə) * p(ə) BUT p(lip ð) * p(waveform ð) p(lip,waveform ð) So we are using a naive independency assumption Folie 19

20 2.2. Basics Demo: Iris and Naive Bayes Folie 20

21 2.3. Advantages easily understood & easily employed readily generalised to continuous data <student contribution> missing value treatment trivial in learning cases and class prediction integration of different data sources speed one pass through the data in basic model eager learner extremely compact representation of knowledge p ( X = x i Class = c) as results 20 numbers in play-the-game example a "glimpse" of theory Folie 21

22 2.3. Advantages Diagrammtitel when to use: moderate to large training sets available attributes are conditionally independent given class p(x=x & Y=y C=c) = p(x c) * p( y c) x, y, c X Y C Example: X = tallness Y = weight C = race typical applications diagnosis text recognition on keywords CRM X C Y conditional independence <> uncond. Indep. Pygmäen 130 Tutsi Berber 120 Linear (Berber) Linear (Tutsi) 110 Linear (Pygmäen) moreexamples Folie 22

23 2.4. Explaining Away Evidence: a phenomenon of real life lassa fever Let LF be described by very clear symptoms P(fever LF) =.9 P(runnigNose LF) =.8 (a) A standard German physician & its patients P(fever NP: normalpop ) =.05 P (runnignose NP) =.10 p(lf) =.001 P(LF fever & runningnose) =N *.9 *.8 * % P(NP fever & runningnose) = N *.05 *.10 *.999 Strongly (almost proportionally) dependent on a priori Folie 23

24 2.4. Explaining Away Evidence: a phenomenon of real life lassa fever (II) Let LF be described by very clear symptoms. (b) During a (plain) cold epidemic P(fever cold) =.7 P(runningNose cold) =.8 P(COLD) =.30 P(LF fever & runningnose) =N *.9 *.8 * % P(CO fever & runningnose) =N *.7 *.8 * % P(NP fever & runningnose) = N *.05 *.10 *.699 2% Folie 24

25 2.4. Explaining Away Evidence: a phenomenon of real life lassa fever (III) Suppose we had another symptom that does not show up reliably but is seldom shown by plain cold and almost never with healthy people P(greenEars LF) =.50 P(greenEars CO) =.10 P(greenEars NP) =.01 P(LF fever & runningnose& Gn) =N *.9 *.8 *.50 * % P(CO fever & runningnose & Gn) =N *.7 *.8 *.10 * % P(NP fever & runningnose & Gn) = N *.05 *.10 *.01 * % Still LF goes UNDIAGNOSED during the epidemic NOT because of medical stupidity: 97.7% of the patients displaying all 3 symptoms mentioned ARE INDEED suffering from a cold!!! Folie 25

26 2.4. Explaining Away Evidence: a phenomenon of real life Fever Headache Arthralgias/Myalgias Retro-sternal Pain Weakness Dizziness Sore throat/pharyngitis Cough Vomiting Abdominal Pain/Tenderness Diarrhea Conjunctivitis/Sub-conjunctival Hemorrhage Chills Deafness Lymphadenopgathy Bleeding Confusion Swollen Neck or Face Percent From From: Folie 26

27 2.5. Extensions 1. Laplace Correction p(x 1 =a Class=c) = (N(a & c) + 1) / (N(c) + m) m = Number of classes or more general: p(x 1 =a Class=c) = (N(a & c) + λ*p c apriori ) / (N(c) + λ) λ = smoothing parameter ( feign λ additional drawings with a-priori class membership of p c apriori e.g. = 1 / m ) useful if Zero counts occur in learning data P (white raven) observed = 0 because <1 Albinos P(raven white) = 0 a white bird ex post is NEVER classified as raven even if all other traits (beak, size, voice ) fit perfectly! «NBEM models converge to much more consistent results when using this arithmetic smoothing procedure.» maybe also advisable with a prioris Folie 27

28 P(E if H) P(Hapriori) P(H apres E) Laplace: additive Verknüpfung der Elemente Folie 28

29 2.5. Extensions Pierre-Simon, Marquis de Laplace (March 23, 1749 March 5, 1827) was a French mathematician and astronomer who put the final capstone on mathematical astronomy by summarizing and extending the work of his predecessors in his five volume Mécanique Céleste (Celestial Mechanics) ( ). Quotations * What we know is not much. What we do not know is immense. * "It is therefore obvious that..." (frequently used in the Celestial Mechanics when he had proved something and mislaid the proof, or found it clumsy. Notorious as a signal for something true, but hard to prove.) It does appear that Laplace was not modest about his abilities and achievements, and he probably failed to recognise the effect of his attitude on his colleagues. Lexell visited the Académie des Sciences in Paris in and reported that Laplace let it be known widely that he considered himself the best mathematician in France. The effect on his colleagues would have been only mildly eased by the fact that Laplace was right! Folie 29

30 2.5. Extensions 2. Treatment of interdependencies and better probability estimates 2.1 delete highly correlated 2.2 wrapper 2.3 index / weighted sum 2.4 Tree Augmented Networks (TAN) super parent (E. Keogh / M. Pazzani 1999) tree stump ( Zhang/Ling 2001): Folie 30

31 2.5. Extensions 3. Probability Networks in Operation Example GENIE by Univ of Pittsburg: Link P(D A, B, C, E, F) P(F A, B, C, D, E) forward use: given all p(x Y) and a prioris for root nodes: calculate a posterioris backward use: given priors and some evidence: calculate new a posterioris Folie 31

32 bermuda-online.org/shorts.htm Folie 32

33 2.5. Extensions 3. Probability Networks in Operation Key Inputs and Outputs Stochastic Node p(ownstate=j {setofallstatesofincomingnodes}) J*I 1 *I 2 Matrix Further components Utililty calculationfor Node i Ui = f (StateIncomingNodeA,B, ) Decision Node Utility Calculations will be one per state_of_the_node weather mood clothing ambience happiness p(shivering rain,shorts)=.97 p(sweating hot,shorts)=.50 p(sweating hot,oilskin)=.99 U(depressed,shivering) = 0 U(enthusisatic,sweating) = 10 a prioris & a posterioris for weather-states Network should update my beliefs Nst for clothing: I decide on state Interest is in a table of expected utilities Clothing Shorts Khakis Oilskin E(U happ ) Folie 33

34 We have added a weather mood arc This guy wearing shorts and Shivering was nevertheless enthusisatic What can we lean about the the weather But he tells us that he was enthusiatic because he made a lot of money at the Stock exchange (odr fell in love) No backpropagation of belief (genie uses the control value concept) Folie 34

35 Further Reading Mitchell, M.: Machine Learning. McGraw Hill, 1997, Chapter 6 Jensen, Finn V., An introduction to Bayesian networks, London, for very nice and gentle intro to more sophisticated methods for more in-depth theory Domingos, Pazzani: Folie 35

36 Treatment continuous Vars Under the assumption of Normality in each class p( Temp (x-ε,x+ ε ) class) ~ ε * 1/σ c *exp( -(x-μ c ) / σ c )²) Using the independence assumption again, each variable has ist own Normal distribution no yes Standardabweichung (Stichprobe) von tempnum Mittelwert von tempnum Standardabweichung (Stichprobe) von tempnum Mittelwert von tempnum Gesamt: Standardabweichung (Stichprobe) von tempnum Gesamt: Mittelwert von tempnum Folie 36

37 Treatment continuous Vars Shall we expect a play on a 73.5 F +- ε sunny humid calm day and a priori is somewhat like playing?? P(play hshc) n* ε * [ 1 / 6.16 *exp(- ( ) / 6.16 )² ] *3/9*6/9 *.60 P(NOplay hshc) n* ε * [ 1 / 7.89 *exp(- ( ) / 7.89 )² ] *3/5*4/5*2/5 *.40 P(play hshc) n* ε *.0215 P(NOplay hshc) n* ε *.0273 P(play hshc) 44% P(NOplay hshc) 56 % Note: the ε cancels on normalization (quelle fortune!) Folie 37

38 From WEKA Folie 38

39 Decision-analytic decision support systems The principles of decision-analytic decision support, implemented in GeNIe and SMILE canbeappliedin practical decision support systems (DSSs). In fact, Decision Systems Laboratory has developed and is currently developing several such probabilistic DSSs in which GeNIe plays the role of a developer's environment and SMILE plays the role of the reasoning engine. A decision support system based on SMILE can be equipped with a dedicated user interface. Probabilistic DSSs, applicable to problems involving classification, prediction, and diagnosis, are a new generation of systems that are capable of modeling any real-world decision problem using theoretically sound and practically invaluable methods of probability theory and decision theory. Based on graphical representation of the problem structure, these systems allow for combining expert opinions with frequency data, gather, manage, and process information to arrive at intelligent solutions. Probabilistic DSSs are based on a philosophically different principle than rule-based expert systems. While the latter attempt to model the reasoning of a human expert, the former use an axiomatic theory to perform computation. The soundness of probability theory provides a clear advantage over rule-based systems that usually represent uncertainty in an ad-hoc manner, such as using certainty factors, leading to underresponsiveness or over-responsiveness to evidence and possibly incorrect conclusions. Probabilistic DSSs are applicable in many domains, among others in medicine (e.g., diagnosis, therapy planning), banking (e.g., credit authorization, fraud detection), insurance (e.g., risk analysis, fraud detection), military (e.g., target detection and prioritization, battle damage assessment, campaign planning), engineering (e.g., process control, machine and process diagnosis), and business (e.g., strategic planning, risk analysis, market analysis). An example DSS developed using GeNIe and SMILE is the medical diagnostic system Hepar II (Onisko et al. 1999, 2000). The system aids physicians in diagnosis of liver disorders. The structure of the model, currently consisting of almost 100 variables, has been elicited from physician experts, while its numerical parameters have been learned from a database of patient cases. The Hepar II system is equipped with a simple dedicated user interface that allows for entering various observations such as symptoms and results of medical tests and displays the probability distribution over various possible disorders in the order of most to least likely. The system is currently used both as a diagnostic aid and a training tool. Folie 39

40 Folie 40

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena

Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena Lehrstuhl für Allgemeine BWL Strategisches und Internationales Management Prof. Dr. Mike Geppert Carl-Zeiß-Str. 3 07743 Jena http://www.im.uni-jena.de Contents I. Learning Objectives II. III. IV. Recap

Mehr

Prediction Market, 28th July 2012 Information and Instructions. Prognosemärkte Lehrstuhl für Betriebswirtschaftslehre insbes.

Prediction Market, 28th July 2012 Information and Instructions. Prognosemärkte Lehrstuhl für Betriebswirtschaftslehre insbes. Prediction Market, 28th July 2012 Information and Instructions S. 1 Welcome, and thanks for your participation Sensational prices are waiting for you 1000 Euro in amazon vouchers: The winner has the chance

Mehr

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Eine Betrachtung im Kontext der Ausgliederung von Chrysler Daniel Rheinbay Abstract Betriebliche Informationssysteme

Mehr

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich?

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich? KURZANLEITUNG Firmware-Upgrade: Wie geht das eigentlich? Die Firmware ist eine Software, die auf der IP-Kamera installiert ist und alle Funktionen des Gerätes steuert. Nach dem Firmware-Update stehen Ihnen

Mehr

p^db=`oj===pìééçêíáåñçêã~íáçå=

p^db=`oj===pìééçêíáåñçêã~íáçå= p^db=`oj===pìééçêíáåñçêã~íáçå= Error: "Could not connect to the SQL Server Instance" or "Failed to open a connection to the database." When you attempt to launch ACT! by Sage or ACT by Sage Premium for

Mehr

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Inequality Utilitarian and Capabilities Perspectives (and what they may imply for public health)

Inequality Utilitarian and Capabilities Perspectives (and what they may imply for public health) Inequality Utilitarian and Capabilities Perspectives (and what they may imply for public health) 1 Utilitarian Perspectives on Inequality 2 Inequalities matter most in terms of their impact onthelivesthatpeopleseektoliveandthethings,

Mehr

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM)

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM) Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM) Dr. Winfried Willems, IAWG Outline Classical Approach, short

Mehr

Extended Ordered Paired Comparison Models An Application to the Data from Bundesliga Season 2013/14

Extended Ordered Paired Comparison Models An Application to the Data from Bundesliga Season 2013/14 Etended Ordered Paired Comparison Models An Application to the Data from Bundesliga Season 2013/14 Gerhard Tutz & Gunther Schauberger Ludwig-Maimilians-Universität München Akademiestraße 1, 80799 München

Mehr

Role Play I: Ms Minor Role Card. Ms Minor, accountant at BIGBOSS Inc.

Role Play I: Ms Minor Role Card. Ms Minor, accountant at BIGBOSS Inc. Role Play I: Ms Minor Role Card Conversation between Ms Boss, CEO of BIGBOSS Inc. and Ms Minor, accountant at BIGBOSS Inc. Ms Boss: Guten Morgen, Frau Minor! Guten Morgen, Herr Boss! Frau Minor, bald steht

Mehr

Wie agil kann Business Analyse sein?

Wie agil kann Business Analyse sein? Wie agil kann Business Analyse sein? Chapter Meeting Michael Leber 2012-01-24 ANECON Software Design und Beratung G.m.b.H. Alser Str. 4/Hof 1 A-1090 Wien Tel.: +43 1 409 58 90 www.anecon.com office@anecon.com

Mehr

ISO 15504 Reference Model

ISO 15504 Reference Model Prozess Dimension von SPICE/ISO 15504 Process flow Remarks Role Documents, data, tools input, output Start Define purpose and scope Define process overview Define process details Define roles no Define

Mehr

AS Path-Prepending in the Internet And Its Impact on Routing Decisions

AS Path-Prepending in the Internet And Its Impact on Routing Decisions (SEP) Its Impact on Routing Decisions Zhi Qi ytqz@mytum.de Advisor: Wolfgang Mühlbauer Lehrstuhl für Netzwerkarchitekturen Background Motivation BGP -> core routing protocol BGP relies on policy routing

Mehr

Algorithms for graph visualization

Algorithms for graph visualization Algorithms for graph visualization Project - Orthogonal Grid Layout with Small Area W INTER SEMESTER 2013/2014 Martin No llenburg KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

eurex rundschreiben 094/10

eurex rundschreiben 094/10 eurex rundschreiben 094/10 Datum: Frankfurt, 21. Mai 2010 Empfänger: Alle Handelsteilnehmer der Eurex Deutschland und Eurex Zürich sowie Vendoren Autorisiert von: Jürg Spillmann Weitere Informationen zur

Mehr

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler Decision Support for Learners in Mash-Up Personal Learning Environments Dr. Hendrik Drachsler Personal Nowadays Environments Blog Reader More Information Providers Social Bookmarking Various Communities

Mehr

Customer-specific software for autonomous driving and driver assistance (ADAS)

Customer-specific software for autonomous driving and driver assistance (ADAS) This press release is approved for publication. Press Release Chemnitz, February 6 th, 2014 Customer-specific software for autonomous driving and driver assistance (ADAS) With the new product line Baselabs

Mehr

Application Form ABOUT YOU INFORMATION ABOUT YOUR SCHOOL. - Please affix a photo of yourself here (with your name written on the back) -

Application Form ABOUT YOU INFORMATION ABOUT YOUR SCHOOL. - Please affix a photo of yourself here (with your name written on the back) - Application Form ABOUT YOU First name(s): Surname: Date of birth : Gender : M F Address : Street: Postcode / Town: Telephone number: Email: - Please affix a photo of yourself here (with your name written

Mehr

A central repository for gridded data in the MeteoSwiss Data Warehouse

A central repository for gridded data in the MeteoSwiss Data Warehouse A central repository for gridded data in the MeteoSwiss Data Warehouse, Zürich M2: Data Rescue management, quality and homogenization September 16th, 2010 Data Coordination, MeteoSwiss 1 Agenda Short introduction

Mehr

SAP PPM Enhanced Field and Tab Control

SAP PPM Enhanced Field and Tab Control SAP PPM Enhanced Field and Tab Control A PPM Consulting Solution Public Enhanced Field and Tab Control Enhanced Field and Tab Control gives you the opportunity to control your fields of items and decision

Mehr

Labour law and Consumer protection principles usage in non-state pension system

Labour law and Consumer protection principles usage in non-state pension system Labour law and Consumer protection principles usage in non-state pension system by Prof. Dr. Heinz-Dietrich Steinmeyer General Remarks In private non state pensions systems usually three actors Employer

Mehr

Disclaimer & Legal Notice. Haftungsausschluss & Impressum

Disclaimer & Legal Notice. Haftungsausschluss & Impressum Disclaimer & Legal Notice Haftungsausschluss & Impressum 1. Disclaimer Limitation of liability for internal content The content of our website has been compiled with meticulous care and to the best of

Mehr

-Which word (lines 47-52) does tell us that Renia s host brother is a pleasant person?

-Which word (lines 47-52) does tell us that Renia s host brother is a pleasant person? Reading tasks passend zu: Open World 1 Unit 4 (student s book) Through a telescope (p. 26/27): -Renia s exchange trip: richtig falsch unkar? richtig falsch unklar: Renia hat sprachliche Verständnisprobleme.

Mehr

The poetry of school.

The poetry of school. International Week 2015 The poetry of school. The pedagogy of transfers and transitions at the Lower Austrian University College of Teacher Education(PH NÖ) Andreas Bieringer In M. Bernard s class, school

Mehr

Challenges in Systems Engineering and a Pragmatic Solution Approach

Challenges in Systems Engineering and a Pragmatic Solution Approach Pure Passion. Systems Engineering and a Pragmatic Solution Approach HELVETING Dr. Thomas Stöckli Director Business Unit Systems Engineering Dr. Daniel Hösli Member of the Executive Board 1 Agenda Different

Mehr

Der Wetterbericht für Deutschland. Read the weather reports and draw the correct weather symbols for each town.

Der Wetterbericht für Deutschland. Read the weather reports and draw the correct weather symbols for each town. Der Wetterbericht für Deutschland Read the weather reports and draw the correct weather symbols for each town. Es ist sehr heiß in Berlin und es donnert und blitzt in Frankfurt. Es ist ziemlich neblig

Mehr

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part XI) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

1. General information... 2 2. Login... 2 3. Home... 3 4. Current applications... 3

1. General information... 2 2. Login... 2 3. Home... 3 4. Current applications... 3 User Manual for Marketing Authorisation and Lifecycle Management of Medicines Inhalt: User Manual for Marketing Authorisation and Lifecycle Management of Medicines... 1 1. General information... 2 2. Login...

Mehr

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web.

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web. Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web.de Damages caused by Diprion pini Endangered Pine Regions in Germany

Mehr

Parameter-Updatesoftware PF-12 Plus

Parameter-Updatesoftware PF-12 Plus Parameter-Updatesoftware PF-12 Plus Mai / May 2015 Inhalt 1. Durchführung des Parameter-Updates... 2 2. Kontakt... 6 Content 1. Performance of the parameter-update... 4 2. Contact... 6 1. Durchführung

Mehr

Hochschule Esslingen. Modulbeschreibung TBB Internationale Technische Betriebswirtschaft. Inhaltsverzeichnis. Kanalstr. 33 73728 Esslingen

Hochschule Esslingen. Modulbeschreibung TBB Internationale Technische Betriebswirtschaft. Inhaltsverzeichnis. Kanalstr. 33 73728 Esslingen Kanalstr. 33 73728 Esslingen Inhaltsverzeichnis Seite 1 von 6 TBB602 MD International Business 2 Int.Marketing/-Finance & Case Studies Int.Business 3 International Conmmercial Law 5 Erläuterungen 6 Modul

Mehr

Top Tipp. Ref. 08.05.23 DE. Verwenden externer Dateiinhalte in Disclaimern. (sowie: Verwenden von Images in RTF Disclaimern)

Top Tipp. Ref. 08.05.23 DE. Verwenden externer Dateiinhalte in Disclaimern. (sowie: Verwenden von Images in RTF Disclaimern) in Disclaimern (sowie: Verwenden von Images in RTF Disclaimern) Ref. 08.05.23 DE Exclaimer UK +44 (0) 845 050 2300 DE +49 2421 5919572 sales@exclaimer.de Das Problem Wir möchten in unseren Emails Werbung

Mehr

A Practical Approach for Reliable Pre-Project Effort Estimation

A Practical Approach for Reliable Pre-Project Effort Estimation A Practical Approach for Reliable Pre-Project Effort Estimation Carl Friedrich Kreß 1, Oliver Hummel 2, Mahmudul Huq 1 1 Cost Xpert AG, Augsburg, Germany {Carl.Friedrich.Kress,Mahmudul.Huq}@CostXpert.de

Mehr

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt Organisatorisches Datenorientierte Systemanalyse Unit1: Intro and Basics Gerhard Wohlgenannt Inhalt: Datenorientierte Systemanalyse Umfang: 5 units XX.10.2013 XX.11.2013 09:00-13:30 Uhr Room XXX Infos,

Mehr

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken Support Technologies based on Bi-Modal Network Analysis H. Agenda 1. Network analysis short introduction 2. Supporting the development of virtual organizations 3. Supporting the development of compentences

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

German English Firmware translation for T-Sinus 154 Access Point

German English Firmware translation for T-Sinus 154 Access Point German English Firmware translation for T-Sinus 154 Access Point Konfigurationsprogramm Configuration program (english translation italic type) Dieses Programm ermöglicht Ihnen Einstellungen in Ihrem Wireless

Mehr

Field Librarianship in den USA

Field Librarianship in den USA Field Librarianship in den USA Bestandsaufnahme und Zukunftsperspektiven Vorschau subject librarians field librarians in den USA embedded librarians das amerikanische Hochschulwesen Zukunftsperspektiven

Mehr

Chemical heat storage using Na-leach

Chemical heat storage using Na-leach Hilfe2 Materials Science & Technology Chemical heat storage using Na-leach Robert Weber Empa, Material Science and Technology Building Technologies Laboratory CH 8600 Dübendorf Folie 1 Hilfe2 Diese Folie

Mehr

Possible Solutions for Development of Multilevel Pension System in the Republic of Azerbaijan

Possible Solutions for Development of Multilevel Pension System in the Republic of Azerbaijan Possible Solutions for Development of Multilevel Pension System in the Republic of Azerbaijan by Prof. Dr. Heinz-Dietrich Steinmeyer Introduction Multi-level pension systems Different approaches Different

Mehr

Ingenics Project Portal

Ingenics Project Portal Version: 00; Status: E Seite: 1/6 This document is drawn to show the functions of the project portal developed by Ingenics AG. To use the portal enter the following URL in your Browser: https://projectportal.ingenics.de

Mehr

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds 3rd JUQUEEN Porting and Tuning Workshop Jülich, 2-4 February 2015 Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds Tobias Schruff, Roy M. Frings,

Mehr

ReadMe zur Installation der BRICKware for Windows, Version 6.1.2. ReadMe on Installing BRICKware for Windows, Version 6.1.2

ReadMe zur Installation der BRICKware for Windows, Version 6.1.2. ReadMe on Installing BRICKware for Windows, Version 6.1.2 ReadMe zur Installation der BRICKware for Windows, Version 6.1.2 Seiten 2-4 ReadMe on Installing BRICKware for Windows, Version 6.1.2 Pages 5/6 BRICKware for Windows ReadMe 1 1 BRICKware for Windows, Version

Mehr

Instruktionen Mozilla Thunderbird Seite 1

Instruktionen Mozilla Thunderbird Seite 1 Instruktionen Mozilla Thunderbird Seite 1 Instruktionen Mozilla Thunderbird Dieses Handbuch wird für Benutzer geschrieben, die bereits ein E-Mail-Konto zusammenbauen lassen im Mozilla Thunderbird und wird

Mehr

Technical Thermodynamics

Technical Thermodynamics Technical Thermodynamics Chapter 1: Introduction, some nomenclature, table of contents Prof. Dr.-Ing. habil. Egon Hassel University of Rostock, Germany Faculty of Mechanical Engineering and Ship Building

Mehr

Lesen Sie die Bedienungs-, Wartungs- und Sicherheitsanleitungen des mit REMUC zu steuernden Gerätes

Lesen Sie die Bedienungs-, Wartungs- und Sicherheitsanleitungen des mit REMUC zu steuernden Gerätes KURZANLEITUNG VORAUSSETZUNGEN Lesen Sie die Bedienungs-, Wartungs- und Sicherheitsanleitungen des mit REMUC zu steuernden Gerätes Überprüfen Sie, dass eine funktionsfähige SIM-Karte mit Datenpaket im REMUC-

Mehr

Frequently asked Questions for Kaercher Citrix (apps.kaercher.com)

Frequently asked Questions for Kaercher Citrix (apps.kaercher.com) Frequently asked Questions for Kaercher Citrix (apps.kaercher.com) Inhalt Content Citrix-Anmeldung Login to Citrix Was bedeutet PIN und Token (bei Anmeldungen aus dem Internet)? What does PIN and Token

Mehr

Wie bekommt man zusätzliche TOEFL-Zertifikate? Wie kann man weitere Empfänger von TOEFL- Zertifikaten angeben?

Wie bekommt man zusätzliche TOEFL-Zertifikate? Wie kann man weitere Empfänger von TOEFL- Zertifikaten angeben? Wie bekommt man zusätzliche TOEFL-Zertifikate? Wie kann man weitere Empfänger von TOEFL- Zertifikaten angeben? How do I get additional TOEFL certificates? How can I add further recipients for TOEFL certificates?

Mehr

An Introduction to Monetary Theory. Rudolf Peto

An Introduction to Monetary Theory. Rudolf Peto An Introduction to Monetary Theory Rudolf Peto 0 Copyright 2013 by Prof. Rudolf Peto, Bielefeld (Germany), www.peto-online.net 1 2 Preface This book is mainly a translation of the theoretical part of my

Mehr

Titelbild1 ANSYS. Customer Portal LogIn

Titelbild1 ANSYS. Customer Portal LogIn Titelbild1 ANSYS Customer Portal LogIn 1 Neuanmeldung Neuanmeldung: Bitte Not yet a member anklicken Adressen-Check Adressdaten eintragen Customer No. ist hier bereits erforderlich HERE - Button Hier nochmal

Mehr

Algorithms & Datastructures Midterm Test 1

Algorithms & Datastructures Midterm Test 1 Algorithms & Datastructures Midterm Test 1 Wolfgang Pausch Heiko Studt René Thiemann Tomas Vitvar

Mehr

MindestanforderungenanDokumentationvon Lieferanten

MindestanforderungenanDokumentationvon Lieferanten andokumentationvon Lieferanten X.0010 3.02de_en/2014-11-07 Erstellt:J.Wesseloh/EN-M6 Standardvorgabe TK SY Standort Bremen Standard requirements TK SY Location Bremen 07.11.14 DieInformationenindieserUnterlagewurdenmitgrößterSorgfalterarbeitet.DennochkönnenFehlernichtimmervollständig

Mehr

Modellfreie numerische Prognosemethoden zur Tragwerksanalyse

Modellfreie numerische Prognosemethoden zur Tragwerksanalyse Modellfreie numerische Prognosemethoden zur Tragwerksanalyse Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) an der Fakultät Bauingenieurwesen der Technischen Universität Dresden eingereichte

Mehr

Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com. z/os Explorer. 2014 IBM Corporation

Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com. z/os Explorer. 2014 IBM Corporation Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com z/os Explorer Agenda Introduction and Background Why do you want z/os Explorer? What does z/os Explorer do? z/os Resource Management

Mehr

Software development with continuous integration

Software development with continuous integration Software development with continuous integration (FESG/MPIfR) ettl@fs.wettzell.de (FESG) neidhardt@fs.wettzell.de 1 A critical view on scientific software Tendency to become complex and unstructured Highly

Mehr

Abteilung Internationales CampusCenter

Abteilung Internationales CampusCenter Abteilung Internationales CampusCenter Instructions for the STiNE Online Enrollment Application for Exchange Students 1. Please go to www.uni-hamburg.de/online-bewerbung and click on Bewerberaccount anlegen

Mehr

XML Template Transfer Transfer project templates easily between systems

XML Template Transfer Transfer project templates easily between systems Transfer project templates easily between systems A PLM Consulting Solution Public The consulting solution XML Template Transfer enables you to easily reuse existing project templates in different PPM

Mehr

XV1100K(C)/XV1100SK(C)

XV1100K(C)/XV1100SK(C) Lexware Financial Office Premium Handwerk XV1100K(C)/XV1100SK(C) All rights reserverd. Any reprinting or unauthorized use wihout the written permission of Lexware Financial Office Premium Handwerk Corporation,

Mehr

TomTom WEBFLEET Tachograph

TomTom WEBFLEET Tachograph TomTom WEBFLEET Tachograph Installation TG, 17.06.2013 Terms & Conditions Customers can sign-up for WEBFLEET Tachograph Management using the additional services form. Remote download Price: NAT: 9,90.-/EU:

Mehr

Total Security Intelligence. Die nächste Generation von Log Management and SIEM. Markus Auer Sales Director Q1 Labs.

Total Security Intelligence. Die nächste Generation von Log Management and SIEM. Markus Auer Sales Director Q1 Labs. Total Security Intelligence Die nächste Generation von Log Management and SIEM Markus Auer Sales Director Q1 Labs IBM Deutschland 1 2012 IBM Corporation Gezielte Angriffe auf Unternehmen und Regierungen

Mehr

Beschwerdemanagement / Complaint Management

Beschwerdemanagement / Complaint Management Beschwerdemanagement / Complaint Management Structure: 1. Basics 2. Requirements for the implementation 3. Strategic possibilities 4. Direct Complaint Management processes 5. Indirect Complaint Management

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Data Mining Approaches for Instrusion Detection Espen Jervidalo WS05/06 KI - WS05/06 - Espen Jervidalo 1 Overview Motivation Ziel IDS (Intrusion Detection System) HIDS NIDS Data

Mehr

Life-Annuity Insurance versus Self-Annuitization: An Analysis from the Perspective of Potential Heirs

Life-Annuity Insurance versus Self-Annuitization: An Analysis from the Perspective of Potential Heirs Life-Annuity Insurance versus Self-Annuitization: An Analysis from the Perspective of Potential Heirs Thomas Post Hato Schmeiser Humboldt-Universität zu Berlin, Germany Humboldt-Universität zu Berlin -1-1

Mehr

IDS Lizenzierung für IDS und HDR. Primärserver IDS Lizenz HDR Lizenz

IDS Lizenzierung für IDS und HDR. Primärserver IDS Lizenz HDR Lizenz IDS Lizenzierung für IDS und HDR Primärserver IDS Lizenz HDR Lizenz Workgroup V7.3x oder V9.x Required Not Available Primärserver Express V10.0 Workgroup V10.0 Enterprise V7.3x, V9.x or V10.0 IDS Lizenz

Mehr

Extract of the Annotations used for Econ 5080 at the University of Utah, with study questions, akmk.pdf.

Extract of the Annotations used for Econ 5080 at the University of Utah, with study questions, akmk.pdf. 1 The zip archives available at http://www.econ.utah.edu/ ~ ehrbar/l2co.zip or http: //marx.econ.utah.edu/das-kapital/ec5080.zip compiled August 26, 2010 have the following content. (they differ in their

Mehr

Aufnahmeuntersuchung für Koi

Aufnahmeuntersuchung für Koi Aufnahmeuntersuchung für Koi Datum des Untersuchs: Date of examination: 1. Angaben zur Praxis / Tierarzt Vet details Name des Tierarztes Name of Vet Name der Praxis Name of practice Adresse Address Beruf

Mehr

Prof. Dr. Margit Scholl, Mr. RD Guldner Mr. Coskun, Mr. Yigitbas. Mr. Niemczik, Mr. Koppatz (SuDiLe GbR)

Prof. Dr. Margit Scholl, Mr. RD Guldner Mr. Coskun, Mr. Yigitbas. Mr. Niemczik, Mr. Koppatz (SuDiLe GbR) Prof. Dr. Margit Scholl, Mr. RD Guldner Mr. Coskun, Mr. Yigitbas in cooperation with Mr. Niemczik, Mr. Koppatz (SuDiLe GbR) Our idea: Fachbereich Wirtschaft, Verwaltung und Recht Simple strategies of lifelong

Mehr

Scrum @FH Biel. Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012. Folie 1 12. Januar 2012. Frank Buchli

Scrum @FH Biel. Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012. Folie 1 12. Januar 2012. Frank Buchli Scrum @FH Biel Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012 Folie 1 12. Januar 2012 Frank Buchli Zu meiner Person Frank Buchli MS in Computer Science, Uni Bern 2003 3 Jahre IT

Mehr

Robotino View Kommunikation mit OPC. Communication with OPC DE/EN 04/08

Robotino View Kommunikation mit OPC. Communication with OPC DE/EN 04/08 Robotino View Kommunikation mit OPC Robotino View Communication with OPC 1 DE/EN 04/08 Stand/Status: 04/2008 Autor/Author: Markus Bellenberg Festo Didactic GmbH & Co. KG, 73770 Denkendorf, Germany, 2008

Mehr

Semantic Web Technologies II SS 2009. 25.05.2009 Übung: Ontologiemodellierung in OWL

Semantic Web Technologies II SS 2009. 25.05.2009 Übung: Ontologiemodellierung in OWL Semantic Web Technologies II SS 2009 25.05.2009 Übung: Ontologiemodellierung in OWL Dr. Sudhir Agarwal Dr. Stephan Grimm Dr. Peter Haase PD Dr. Pascal Hitzler Denny Vrandecic 1 Übersicht Einführung in

Mehr

Klausur Verteilte Systeme

Klausur Verteilte Systeme Klausur Verteilte Systeme SS 2005 by Prof. Walter Kriha Klausur Verteilte Systeme: SS 2005 by Prof. Walter Kriha Note Bitte ausfüllen (Fill in please): Vorname: Nachname: Matrikelnummer: Studiengang: Table

Mehr

Praktikum Entwicklung von Mediensystemen mit ios

Praktikum Entwicklung von Mediensystemen mit ios Praktikum Entwicklung von Mediensystemen mit ios WS 2011 Prof. Dr. Michael Rohs michael.rohs@ifi.lmu.de MHCI Lab, LMU München Today Heuristische Evaluation vorstellen Aktuellen Stand Software Prototyp

Mehr

DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS

DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS Master Seminar Empirical Software Engineering Anuradha Ganapathi Rathnachalam Institut für Informatik Software & Systems Engineering Agenda Introduction

Mehr

PCIe, DDR4, VNAND Effizienz beginnt im Server

PCIe, DDR4, VNAND Effizienz beginnt im Server PCIe, DDR4, VNAND Effizienz beginnt im Server Future Thinking 2015 /, Director Marcom + SBD EMEA Legal Disclaimer This presentation is intended to provide information concerning computer and memory industries.

Mehr

IoT Scopes and Criticisms

IoT Scopes and Criticisms IoT Scopes and Criticisms Rajkumar K Kulandaivelu S 1 What is IoT? Interconnection of multiple devices over internet medium 2 IoT Scope IoT brings lots of scope for development of applications that are

Mehr

Kybernetik Intelligent Agents- Decision Making

Kybernetik Intelligent Agents- Decision Making Kybernetik Intelligent Agents- Decision Making Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 03. 07. 2012 Intelligent Agents Environment Agent Intelligent

Mehr

USBASIC SAFETY IN NUMBERS

USBASIC SAFETY IN NUMBERS USBASIC SAFETY IN NUMBERS #1.Current Normalisation Ropes Courses and Ropes Course Elements can conform to one or more of the following European Norms: -EN 362 Carabiner Norm -EN 795B Connector Norm -EN

Mehr

RailMaster New Version 7.00.p26.01 / 01.08.2014

RailMaster New Version 7.00.p26.01 / 01.08.2014 RailMaster New Version 7.00.p26.01 / 01.08.2014 English Version Bahnbuchungen so einfach und effizient wie noch nie! Copyright Copyright 2014 Travelport und/oder Tochtergesellschaften. Alle Rechte vorbehalten.

Mehr

IBM Security Lab Services für QRadar

IBM Security Lab Services für QRadar IBM Security Lab Services für QRadar Serviceangebote für ein QRadar SIEM Deployment in 10 bzw. 15 Tagen 28.01.2015 12015 IBM Corporation Agenda 1 Inhalt der angebotenen Leistungen Allgemeines Erbrachte

Mehr

DIGICOMP OPEN TUESDAY AKTUELLE STANDARDS UND TRENDS IN DER AGILEN SOFTWARE ENTWICKLUNG. Michael Palotas 7. April 2015 1 GRIDFUSION

DIGICOMP OPEN TUESDAY AKTUELLE STANDARDS UND TRENDS IN DER AGILEN SOFTWARE ENTWICKLUNG. Michael Palotas 7. April 2015 1 GRIDFUSION DIGICOMP OPEN TUESDAY AKTUELLE STANDARDS UND TRENDS IN DER AGILEN SOFTWARE ENTWICKLUNG Michael Palotas 7. April 2015 1 GRIDFUSION IHR REFERENT Gridfusion Software Solutions Kontakt: Michael Palotas Gerbiweg

Mehr

Cooperation Project Sao Paulo - Bavaria. Licensing of Waste to Energy Plants (WEP/URE)

Cooperation Project Sao Paulo - Bavaria. Licensing of Waste to Energy Plants (WEP/URE) Cooperation Project Sao Paulo - Bavaria Licensing of Waste to Energy Plants (WEP/URE) SMA 15.10.2007 W. Scholz Legal framework Bayerisches Staatsministerium für European Directive on Waste incineration

Mehr

Distributed testing. Demo Video

Distributed testing. Demo Video distributed testing Das intunify Team An der Entwicklung der Testsystem-Software arbeiten wir als Team von Software-Spezialisten und Designern der soft2tec GmbH in Kooperation mit der Universität Osnabrück.

Mehr

(Prüfungs-)Aufgaben zum Thema Scheduling

(Prüfungs-)Aufgaben zum Thema Scheduling (Prüfungs-)Aufgaben zum Thema Scheduling 1) Geben Sie die beiden wichtigsten Kriterien bei der Wahl der Größe des Quantums beim Round-Robin-Scheduling an. 2) In welchen Situationen und von welchen (Betriebssystem-)Routinen

Mehr

Praktikum Entwicklung Mediensysteme (für Master)

Praktikum Entwicklung Mediensysteme (für Master) Praktikum Entwicklung Mediensysteme (für Master) Organisatorisches Today Schedule Organizational Stuff Introduction to Android Exercise 1 2 Schedule Phase 1 Individual Phase: Introduction to basics about

Mehr

PART 3: MODELLING BUSINESS PROCESSES EVENT-DRIVEN PROCESS CHAINS (EPC)

PART 3: MODELLING BUSINESS PROCESSES EVENT-DRIVEN PROCESS CHAINS (EPC) Information Management II / ERP: Microsoft Dynamics NAV 2009 Page 1 of 5 PART 3: MODELLING BUSINESS PROCESSES EVENT-DRIVEN PROCESS CHAINS (EPC) Event-driven Process Chains are, in simple terms, some kind

Mehr

Delivering services in a user-focussed way - The new DFN-CERT Portal -

Delivering services in a user-focussed way - The new DFN-CERT Portal - Delivering services in a user-focussed way - The new DFN-CERT Portal - 29th TF-CSIRT Meeting in Hamburg 25. January 2010 Marcus Pattloch (cert@dfn.de) How do we deal with the ever growing workload? 29th

Mehr

1.9 Dynamic loading: τ ty : torsion yield stress (torsion) τ sy : shear yield stress (shear) In the last lectures only static loadings are considered

1.9 Dynamic loading: τ ty : torsion yield stress (torsion) τ sy : shear yield stress (shear) In the last lectures only static loadings are considered 1.9 Dynaic loading: In the last lectures only static loadings are considered A static loading is: or the load does not change the load change per tie N Unit is 10 /sec 2 Load case Ι: static load (case

Mehr

3. BvD Transfer Pricing Day BEPS und die Auswirkungen auf das operationale Verrechnungspreis-Management

3. BvD Transfer Pricing Day BEPS und die Auswirkungen auf das operationale Verrechnungspreis-Management 3. BvD Transfer Pricing Day BEPS und die Auswirkungen auf das operationale Verrechnungspreis-Management Agenda Einführung Operationales Verrechnungspreis- Management Was bedeutet BEPS für Unternehmen?

Mehr

Erfolgreiche Unternehmen bauen ihre SharePoint-Dashboards mit Visio Sehen heißt verstehen! Claus Quast SSP Visio Microsoft Deutschland GmbH

Erfolgreiche Unternehmen bauen ihre SharePoint-Dashboards mit Visio Sehen heißt verstehen! Claus Quast SSP Visio Microsoft Deutschland GmbH Erfolgreiche Unternehmen bauen ihre SharePoint-Dashboards mit Visio Sehen heißt verstehen! Claus Quast SSP Visio Microsoft Deutschland GmbH 2 Inhalt Was sind Dashboards? Die Bausteine Visio Services, der

Mehr

Lab Class Model-Based Robotics Software Development

Lab Class Model-Based Robotics Software Development Lab Class Model-Based Robotics Software Development Dipl.-Inform. Jan Oliver Ringert Dipl.-Inform. Andreas Wortmann http://www.se-rwth.de/ Next: Input Presentations Thursday 1. MontiCore: AST Generation

Mehr

Ways and methods to secure customer satisfaction at the example of a building subcontractor

Ways and methods to secure customer satisfaction at the example of a building subcontractor Abstract The thesis on hand deals with customer satisfaction at the example of a building subcontractor. Due to the problems in the building branch, it is nowadays necessary to act customer oriented. Customer

Mehr

Bayerisches Landesamt für Statistik und Datenverarbeitung Rechenzentrum Süd. z/os Requirements 95. z/os Guide in Lahnstein 13.

Bayerisches Landesamt für Statistik und Datenverarbeitung Rechenzentrum Süd. z/os Requirements 95. z/os Guide in Lahnstein 13. z/os Requirements 95. z/os Guide in Lahnstein 13. März 2009 0 1) LOGROTATE in z/os USS 2) KERBEROS (KRB5) in DFS/SMB 3) GSE Requirements System 1 Requirement Details Description Benefit Time Limit Impact

Mehr

Anforderung an Mobile Broadcast aus Sicht des Kunden

Anforderung an Mobile Broadcast aus Sicht des Kunden Anforderung an Mobile Broadcast aus Sicht des Kunden Medientage München 2006 Panel 6.8. University of St. Gallen, Switzerland Page 2 Anforderung an Mobile Broadcast aus Sicht des Kunden. Executive Summary

Mehr

Introduction to the diploma and master seminar in FSS 2010. Prof. Dr. Armin Heinzl. Sven Scheibmayr

Introduction to the diploma and master seminar in FSS 2010. Prof. Dr. Armin Heinzl. Sven Scheibmayr Contemporary Aspects in Information Systems Introduction to the diploma and master seminar in FSS 2010 Chair of Business Administration and Information Systems Prof. Dr. Armin Heinzl Sven Scheibmayr Objective

Mehr

ColdFusion 8 PDF-Integration

ColdFusion 8 PDF-Integration ColdFusion 8 PDF-Integration Sven Ramuschkat SRamuschkat@herrlich-ramuschkat.de München & Zürich, März 2009 PDF Funktionalitäten 1. Auslesen und Befüllen von PDF-Formularen 2. Umwandlung von HTML-Seiten

Mehr

Mul$media im Netz (Online Mul$media) Wintersemester 2014/15. Übung 02 (Nebenfach)

Mul$media im Netz (Online Mul$media) Wintersemester 2014/15. Übung 02 (Nebenfach) Mul$media im Netz (Online Mul$media) Wintersemester 2014/15 Übung 02 (Nebenfach) Mul=media im Netz WS 2014/15 - Übung 2-1 Organiza$on: Language Mul=ple requests for English Slides Tutorial s=ll held in

Mehr

Teil 4,9 Ich habe mein Handy, aber wo sind meine Schlüssel?

Teil 4,9 Ich habe mein Handy, aber wo sind meine Schlüssel? Teil 4,9 Ich habe mein Handy, aber wo sind meine Schlüssel? Üben wir! Vokabular (I) Fill in each blank with an appropriate word from the new vocabulary: 1. Ich lese jetzt Post von zu Hause. Ich schreibe

Mehr

Cloud for Customer Learning Resources. Customer

Cloud for Customer Learning Resources. Customer Cloud for Customer Learning Resources Customer Business Center Logon to Business Center for Cloud Solutions from SAP & choose Cloud for Customer https://www.sme.sap.com/irj/sme/ 2013 SAP AG or an SAP affiliate

Mehr

Einkommensaufbau mit FFI:

Einkommensaufbau mit FFI: For English Explanation, go to page 4. Einkommensaufbau mit FFI: 1) Binäre Cycle: Eine Position ist wie ein Business-Center. Ihr Business-Center hat zwei Teams. Jedes mal, wenn eines der Teams 300 Punkte

Mehr

Softwareprojekt Mobilkommunikation Abschlusspräsentation. SP Mobilkommunikation (SS09) - Abschlusspräsentation 16.7.2009 1

Softwareprojekt Mobilkommunikation Abschlusspräsentation. SP Mobilkommunikation (SS09) - Abschlusspräsentation 16.7.2009 1 Softwareprojekt Mobilkommunikation Abschlusspräsentation SP Mobilkommunikation (SS09) - Abschlusspräsentation 16.7.2009 1 Overview Introduction / Background (by L. AiQuan) Mobile Phones, Android, Use Cases,...

Mehr