Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)"

Transkript

1 Beispiel: Produktionsplanung Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Produktionskapazität Ressourcenmenge bei als fest angenommenem Preis und unbegrenztem Absatz. Etwa im Beispiel 1.16: Ist beispielsweise bekannt, dass je Mengeneinheit von Produkt 1 ein Gewinn von 3 Euro und bei Produkt von 4 Euro pro Mengeneinheit, erzielt wird, so lautet der Ansatz zur Bestimmung des gewinnoptimalen Plans: Maximiere 3 a[1] + 4 a[] in (a[1], a[]) : Schreibweise 3a[1] + 4a[] über (a[1], a[]) T A, also a[1] + a[] 1 5a[1] + 1a[] 3.5a[] 15 a[1] a[] max a[1],a[] In der Tat handelt es sich um ein lineares Programm; sowohl die Zielfunktion als auch die Restriktionen sind linear in den zwei Variablen a[1] und a[]. Grundlegende Idee zur graphischen Lösung von Optimierungsproblemen: Höhenlinie, also Bereiche mit gleichem Wert der Zielfunktion suchen. Höhenlinie c 1 a[1] + c a[] = c Hyperebene mit Senkrechter λ ( c1 c ) Von oben nach unten schieben, bis sie zum ersten Mal berührt (in Ecke, oder an Kante) Maximiere 3 a[1] + 4 a[] in (a[1], a[]) : 3a[1] + 4a[] max a[1],a[] 1

2 3a[1] + a[] 1 5a[1] + 1a[] 3.5a[] 15 a[1] a[] d = 3 a[1] + 4 a[] d = a[1], a[] = ; Punkte im Verhältnis 3 : 4, z.b. (3, 4) senkrechte runterschieben: schneidet bei C = (3, 15), also lautet die Optimallösung a[1] = 3, a[] = 15. Als optimaler Wert der Zielfunktion (maximaler Gewinn) ergibt sich = 15. In der Tat ist C ein Extremalpunkt, vgl. Bsp. 1. und Bem... Man bilde das duale Problem zu dem Optimierungsproblem aus Beispiel Das duale Standard-Minimum-Problem zu dem Standard-Maximum-Problem 3a[1] + 4a[] max a

3 3a[1] + a[] 1 5a[1] + 1a[] 3 a[1] +.5 a[] 15 a[1] a[] lautet 1u[1] + 3u[] + 15u[3] min 3u[1] + 5u[] + u[3] 3 (I) u[1] + 1u[] +.5u[3] 4 (II) u[1] (III) u[] (VI) u[3] (V) Eine Möglichkeit, das Dualitätsproblem zu lösen, besteht daran, alle ( 5 3) Extremalpunkte zu bestimmen und die Zielfunktion dort auszuwerten. Man kann die Suche abkürzen, wenn man die Lösung des Primalproblems bereits kennt. Gemäß.5 ergibt sich ja für das Optimum der Zufallsfunktion des dualen Problems der selbe Wert. Die späteren Überlegungen zu Schattenpreisen und komplementärem Schlupf zeigen ferner, dass für das Optimum u [3] = gelten muss: Startet man glücklicherweise gleich mit dem Eckpunkt aus den Gleichungen (I), (II), (V ), so erhält man I : 3u [1] + 5u[] = 3 II : u [1] + 1u[] = 4 ( ) I : 6u [1] 1u[] = 6 ( ) I + II : 4u [1] = u 1 [1] = 1u [] = 4 1 u 3 [] = 1 ( ) I + II : 4u [1] = u [1] = 1 1u [] = 4 1 u [] = 3 1 Dies liefert u [1] = 1, u [] = 3, 1 u [3] =, was einen Wert der Zielfunktion von = 15 produziert. Da dies das Optimum darstellt (vgl. Primzalproblem), ist 1 3

4 u [1] = 1, u [] = 3 1, u [3] = eine Optimallösung. Im Beispiel.6 erkennt man also mit u [1] = 1, u [] = 3 1, u[3] =, dass eine weitere Maschinenstunde den Gewinn um eine halbe Einheit erhöht und eine Erhöhung der Rohstoffmenge um eine Einheit eine Gewinnerhöhung von.3 Einheiten mit sich bringt, während eine Erhöhung der Arbeitszeit ohne Effekt bliebe, da diese Nebenbedingung ohnehin die Optimallösung nicht scharf restringiert. ( klar: wird im Optimum die Arbeitskapazität ohnehin nicht ausgeschöpft, so würde man natürlich nicht bereit sein, für eine Lockerung dieser Restriktion zu bezahlen.) (Hingegen sind die anderen beiden Restriktionen in der Tat scharf, vgl. den späteren Satz vom komplementären Schlupf.) Betrachtet man wieder das Beispiel.6, so lautet das Standard-Maximum-Problem in kanonischer Form 3a[1] + a[] max u[1],u[] Für die Optimallösung ergibt sich gemäß oben: und damit 3a[1] + a[] + a s [1] = 1 5a[1] + 1a[] + a s [] = 3.5a[] + a s [3] = 15 a[1] a[] a s [1] a s [] a s [3]. a[1] = 3, a[] = 15 a s[1] = = a s[] = = a s[3] = = 5 Man erkennt also, dass die dritte Restriktion an der Optimallösung nicht ausgeschöpft wird. Die Firma könnte also die verbleibende Arbeitskraft in anderen Bereichen einsetzen. Für die Optimallösung des primalen-problems gilt: a[1] 3 a[] a s[1] a s[] = 15. a s[3] 5 4

5 Bringt man das duale Problem 1u[1] + 3u[] + 15u[3] min u[1],u[],u[3] 3u[1] + 5u[] + u[3] 3 u[1] + 1u[] +.5u[3] 4 in die kanonische Form, so ergibt u[1] u[] u[3] 1u[1] + 3u[] + 15u[3] min u[1],u[],u[3] 3u[1] + 5u[] + u[3] u s [1] = 3 u[1] + 1u[] +.5u[3] u s [] = 4. u[1] u[] u[3] u s [1] u s [] Mit den Optimallösungen u[1] = 1, u[] = 3 1 und u[3] = erhält man also u[1] u[] u[3] u s[1] u s[] = In der Tat ist damit: ( a[1] a[]. ( ) ( us [1] u s [] ) ( 3 1 u s[1] = 4 u s [1] = u s [] = 3 ) + ) + u s [] =, a s[1] a s[] a s[3] 5 u[1] u[] u[3] 1/ 3/1 = =. 5

6 w su = klar bei Interpretation über Schattenpreise. Dort wo bei der optimalen Aktion bei der Restriktion noch Spiel ist, ist der Schattenpreis. Da das duale Problem des dualen Problems wieder das primale Problem bildet, gilt die analoge Aussage für die Schattenpreise des dualen, also die Optimallösung des primalen Problems. 6

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Sattelpunkt-Interpretation

Sattelpunkt-Interpretation Sattelpunkt-Interpretation Vinzenz Lang 14. Mai 2010 Die Sattelpunkt-Interpretation befasst sich mit der Interpretation der Lagrange- Dualität. Sie wird im weiteren Verlauf des Seminars nicht noch einmal

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

LinOpt - Tool zur Visualisierung eines multikriteriellen Optimierungsproblems

LinOpt - Tool zur Visualisierung eines multikriteriellen Optimierungsproblems LinOpt Tool zur Visualisierung eines multikriteriellen Optimierungsproblems Erstellt von Michael Berklmeir, Michael Haarnagell, Stefan Kraus, Stephan Roser im Rahmen einer Seminararbeit am Lehrstuhl für

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Aufgaben zu Kapitel 23

Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor

Mehr

1 Zielfunktionen und Restriktionen. Beispiel 1 Beispiel 2 Anna Berta Cäsar Dirk Zielfunktion U A Y A U B =X B Y B X B

1 Zielfunktionen und Restriktionen. Beispiel 1 Beispiel 2 Anna Berta Cäsar Dirk Zielfunktion U A Y A U B =X B Y B X B Seite 1 Ausführliche formal-analytische Herleitungen anhand von zwei Beispielen zum Kapitel 3.2 zum Kurs 42110 Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht Inhaltsverzeichnis 1

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Lineare Optimierung Dantzig 1947

Lineare Optimierung Dantzig 1947 Lineare Optimierung Dantzig 947 Lineare Optimierungs-Aufgaben lassen sich mit Maple direkt lösen: with(simplex): g:= 4*x + x2

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

11 Grafische Lösung eines linearen Optimierungsproblems 1

11 Grafische Lösung eines linearen Optimierungsproblems 1 Grafische Lösung eines linearen Optimierungsproblems Die grafische Lösung beliebiger Probleme ist zeitaufwendig und ungenau, auch ergeben sich Beschränkungen in der Lösbarkeit solcher Probleme in Folge

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

neue Aspekte - Konsumenten achten auf die Haltbarkeit und den Wiederverkaufswert

neue Aspekte - Konsumenten achten auf die Haltbarkeit und den Wiederverkaufswert 14. Dauerhafte Konsumgüter neue Aspekte - Konsumenten achten auf die Haltbarkeit und den Wiederverkaufswert eines Gutes. - Firmen beachten die Auswirkung der Haltbarkeit auf die Produktionskosten und den

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

3.1. Existenzsatz und Struktur der Lösungsmenge

3.1. Existenzsatz und Struktur der Lösungsmenge 3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall

Mehr

Übungsbuch Beschaffung, Produktion und Logistik

Übungsbuch Beschaffung, Produktion und Logistik Vahlens Übungsbücher der Wirtschafts- und Sozialwissenschaften Übungsbuch Beschaffung, Produktion und Logistik Aufgaben, Lösungen und Implementierung in Excel von Prof. Dr. Dr. h.c. Hans-Ulrich Küpper,

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Berechnung von Eigenwerten und Eigenvektoren Mathematik 1 Bestimmung von Eigenwerten und Eigenvektoren Jedes λ, das det(a

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

Geometrische Interpretation

Geometrische Interpretation Geometrische Interpretation Stefanie Riedel 10. Mai 2010 1 Starke und schwache Dualität über Wertemengen Wir betrachten eine einfache geometrische Interpretation dualer Funktionen aus der Menge G: G =

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) das Thema der Vorlesung Die Anwendung der Methoden der Mehrkriterienoptimierung bei der Lösung der ökonomischen Entscheidungsprobleme

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Kapitel 2. Mathematik für Mikroökonomie

Kapitel 2. Mathematik für Mikroökonomie Kapitel Mathematik für Mikroökonomie 1 Mathematik der Optimierung Ökonomische Theorien basieren auf der Annahme, dass die Agenten versuchen, den optimalen Wert einer Funktion zu wählen. Konsumenten maximieren

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:

AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin: Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 14.09.2015 Prüfer: Prof. Dr. Andreas

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Einführungsbeispiel Kostenfunktion

Einführungsbeispiel Kostenfunktion Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

Vermietendes versus verkaufendes Monopol

Vermietendes versus verkaufendes Monopol Industrieökonomik I Wintersemester 2007/08 1 Vermietendes versus verkaufendes Monopol Im folgenden soll nun anhand eines einfachen Beispiels untersucht werden, wie ein Monopolist, der sich nicht selbst

Mehr

Übungsbeispiel 1: Quadratische Modellierung

Übungsbeispiel 1: Quadratische Modellierung Übungsbeispiel 1: Quadratische Modellierung Ein Uhrenhersteller möchte den Preis für sein neues Modell festlegen und führt dazu eine Marktanalyse durch. Das Ergebnis lautet: Bei einem Preis von 60 ist

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analsis WS 0/5 PD Dr. Peer Christian Kunstmann 05..0 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Phsik Lösungsvorschläge zum. Übungsblatt Aufgabe 6: a Es handelt

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

2.6 Theorie des Haushalts

2.6 Theorie des Haushalts .6 Theorie des Haushalts WS 007/08 Nutzenfunktionen und Indifferenzkurven Nutzenfunktion: Hilfsmittel, um Präferenzen zu beschreiben Eine Präferenzordnung lässt sich unter den obigen Annahmen über eine

Mehr

Mathematische Methoden der VWL

Mathematische Methoden der VWL Mathematische Methoden der VWL Kapitel 2: Maximierung mit Nebenbedingungen Till Stowasser Klaus Schmidt, 2001 / Till Stowasser, 2014 LMU, Wintersemester 2014/2015 1 / 58 Syllabus Syllabus 2.1 Das Lagrange-Verfahren

Mehr

Mathematische Planungsverfahren

Mathematische Planungsverfahren Mathematische Planungsverfahren Stefan Etschberger Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 12 April 2005 Organisatorisches Literatur Starke Orientierung an Hauke/Opitz:

Mehr

Polaren am Kreis. Helmut Frühinsfeld (aka ottogal) September x 2. , usw.) a 2. = a 1 b 1 + a 2 b 2 (1) a = 1 + a 2 2 (2) a 2 a.

Polaren am Kreis. Helmut Frühinsfeld (aka ottogal) September x 2. , usw.) a 2. = a 1 b 1 + a 2 b 2 (1) a = 1 + a 2 2 (2) a 2 a. Polaren am Kreis Helmut Frühinsfeld aka ottogal September 017 1 Vorbemerkungen Wir verwenden ein kartesisches x 1, x -Koordinatensystem. Zu jedem Punkt Xx 1 x gehört der Ortsvektor OX = Analog hat Aa 1

Mehr

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm.

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. Klausuraufgaben für das Mikro 1 Tutorium Sitzung 1 WS 03/04 Aufgabe 1 Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. WS 04/05 Aufgabe

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Mikroökonomik. Das Haushaltsoptimum. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37

Mikroökonomik. Das Haushaltsoptimum. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37 Mikroökonomik Das Haushaltsoptimum Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Modellieren mit AMPL

Modellieren mit AMPL Modellieren mit AMPL Elisabeth Gassner Mathematische Modelle in den Wirtschaftswissenschaften Prof. R. E. Burkard 27. April 2007 E. Gassner (Mathematische Modelle) AMPL 27. April 2007 1 / 21 Überblick

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Aufgabe des Monats Mai

Aufgabe des Monats Mai Aufgabe des Monats Mai 2013 1 Ein Monopolist produziere mit folgender Kostenfunktion: K(x) = x 3 12x 2 + 60x + 98 und sehe sich der Nachfragefunktion (Preis-Absatz-Funktion) p(x) = 10, 5x + 120 gegenüber.

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen Inhalt Problemstellung und Überblick Allgemeine Problemstellung und Terminologie Überblick über spezielle Klassen von Optimierungsproblemen 40: 40 [40,40] 2.1 Das Optimierungsproblem in allgemeiner Form

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Harris mit Abwandlungen. Materialwirtschaft

Harris mit Abwandlungen. Materialwirtschaft 41 4.1. - Harris mit Abwandlungen Materialwirtschaft Welche Annahmen werden im HARRIS-Modell getroffen? Zeigen Sie, dass im HARRIS-Modell im Optimum der ostenausgleich vollzogen wird, d.h. dass die Beschaffungskosten

Mehr

Kapitel 5: Die Entscheidung. moodle.tu-dortmund.de. Wirtschaftstheorie I: Mikroökonomie SoSe 2017, Lars Metzger 1 / 46

Kapitel 5: Die Entscheidung. moodle.tu-dortmund.de. Wirtschaftstheorie I: Mikroökonomie SoSe 2017, Lars Metzger 1 / 46 Wirtschaftstheorie I: Mikroökonomie SoSe 2017, Lars Metzger 1 / 46 Kapitel 5: Die Entscheidung moodle.tu-dortmund.de Wirtschaftstheorie I: Mikroökonomie SoSe 2017, Lars Metzger 2 / 46 Outline Optimale

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm.

Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. Klausuraufgaben für das Mikro 1 Tutorium Sitzung 1 WS 03/04 Aufgabe 1 Was versteht man unter Konsumenten- und Produzentenrente? Zeigen Sie diese Größen in einem Preis-Mengen-Diagramm. WS 04/05 Aufgabe

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Kapitel 2: Lineare Optimierung

Kapitel 2: Lineare Optimierung Kapitel 2: Lineare Optimierung Wir beginnen mit Definitionen und beschäftigen uns anschließend mit der graphischen Lösung von linearen Optimierungsproblemen mit zwei Variablen. Neben verschiedenen Schreibweisen

Mehr

Mathematik I für Wirtschaftsinformatiker

Mathematik I für Wirtschaftsinformatiker Zahlensysteme, Ungleichungen, Beträge 28.11.2008 Reelle Zahlen Dual-, Oktal-, Hexadezimalsystem Aufbau des Zahlensystems (I) Natürliche Zahlen N = {1, 2, 3,... } = Summe m + n und Produkt m n natürlicher

Mehr