Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D.

Größe: px
Ab Seite anzeigen:

Download "Seite 2. Anatomische, physikalische und funktionelle. Modelle des menschlichen Körpers. Delaunay Algorithmus 2D/3D."

Transkript

1 Anatomsche, physkalsche und funktonelle Modelle des menschlchen Köpes Gundlagen de Modelleung Vsualseung Venetzung Vsualseung Was soll dagestellt weden? Medznsche Blddaten (CT, MT, Photogaphe,...) Anatome (Gewebestuktuen und -oenteung,...) Physkalsche Feldgößen (kalae und vektoelle Felde,...) Technken n Abhänggket von epäsentatonsat nenbaset vektoelle Gößen Feldlnen und -vektoen Oenteung von Gewebe skalae Gößen sopotentalkuven... Flächenbaset Obefläche von Gewebestuktuen Ebenen n Volumendaten sopotentalflächen... Volumenbaset emtanspaente astellung von Blddaten, Anatome und skalaen Feldgößen ete 3 Gledeung Wedeholung Aktve Kontuen Mathematsche Gundlagen n 2 sketseung Eweteung auf 3 Vsualseung Gundlagen Volumenbasete Vefahen Obeflächenbasete Vefahen nenbasete Vefahen Venetzung Gundlagen elaunay Algothmus 2/3 Zusammenfassung ete 2 Modelle fü cht elektomagnetsche Wellen (Maxwell) Photonen (Ensten) Physkalsche Gundlagen Physkalsche Gundlagen ffuse eflexon Ausbetung von cht eflexon dffus spegelnd (Eukld (?)) a = a o Bechung dffus gechtet (nellus, escates) sn sn a a = n n ffuse Beechung n a a o pegelnde eflexon n t a t Tansmsson mt Bechung ete 4 t t

2 Gößen und Enheten Gößen und Enheten tahlungsfluß f e [ W ] tahlstäke Bestahlungsstäke tahldchte e E e e È Î Í È Î Í W s W m W s m È Í Î 2 2 A k s A = Ê k 2 teadant A k Flächennhalt enes Elementes auf Kugelobefläche Kugeladus Modelle fü chtquellen Modelle fü chtquellen At Paamete Ambentes cht (Hntegundlcht) E a ( l ) Bestahlungsstäke ektonales cht Paallele tahlen ene Quelle m Unendlchen d q ( l ) chtung de chtstahlen tahlstäke Punktstahle sotop anstop P q q ( l ) Poston de chtquelle tahlstäke Flächenstahle homogen (ambet sche chtquelle) nhomogen A N q q q ( l ) Fläche de chtquelle Obeflächennomale tahldchte l Wellenlänge ete 5 ete 7 Modelleung de Vsualseung Modelleung de Vsualseung chtquelle (At, Fabantele) 3 zene Geomete Mateal Geometsche Tansfomaton (Kamea, Pojekton) (Fabe, eflexonsvehalten) Abbldung 2-Bld teeobld Betachte Beleuchtungsmodell nach Phong Beleuchtungsmodell nach Phong Benhaltet ambente Beleuchtung, sowe spegelnde und dffuse eflexon Bld entsteht duch Emsson von chtstahlen auf Objektobefläche Empsches Modell. Venachlässgung physkalsche Gundlagen! chtquelle N V Obeflächennomale Nomale n chtung de chtquelle Nomale n chtung des Betachtes Nomale n chtung de eflexon Objekt N V Betachte ete 6 ete 8

3 Beleuchtungsmodell nach Phong Fomel Beleuchtungsmodell nach Phong Fomel ( ) - n Ê k E k N k V k = a a + d + s( ) z z z p max E p k, k, k, k a d s z N V n z z a max Von Obeflächenpunkt abgestahlte tahldchte Bestahlungsstäke de ambenten Beleuchtung tahlstäke des Punktstahles Gewchtungen ambent, dffus, spegelnd, Abstand Obeflächennomale Nomale n chtung de chtquelle Nomale n chtung des Betachtes Nomale n chtung de eflexon Matealabhängge Wet fü spegelnde eflexon Abstand maxmale Abstand Kameamodelle Zweck Abbldung von 3-zene auf 2-Bld Wchtge Paamete und Egenschaften Pojektonsat - othogaphsch - pespektvsch Poston Blckchtung Oenteung Öffnungswnkel Nah-/Fendstanz Vehältns Bete/Höhe ( aspect ato ) Pojektonsmatx homogene Tansfomaton elekton von Objekten (boundng box) ete 9 ete Fabmodell GB-Modell Fabe egbt sch aus ot-, Gün- und Blauweten Gün G Gelb Ê Ê Anwendungsbeeche Computegafk ucktechnk Ncht alle wahnehmbaen Faben weden abgebldet! Cyan Ê chwaz Wess Ê Ê ot Ê Wetee Modelle CMYK, HV, CE uvm. Ê Blau Ê Magenta B Othogaphsche Kamea Othogaphsche Kamea Quelle OpenG efeence ete ete 2

4 Pespektvsche Kamea Pespektvsche Kamea Quelle OpenG efeence ete 3 ay Tacng und Volume lcng fü tanspaente Objekte ay Tacng und Volume lcng fü tanspaente Objekte ay Tacng Geneee ehstahl fü jedes Pxel n Bldebene ntegee ntenstäten übe ehstahl unte Beückschtgung von Tanspaenz Volume lcng Geneee paallele Ebenen zu Bldebene Pojzee ntenstätsvetelung n Ebene auf Pxel unte Beückschtgung von Tanspaenz ete 5 Volumenbasete Vsualseung Volumenbasete Vsualseung tahlvefolgung ay Tacng. Odnung Umgekehtes Pnzp ehstahlen staten ausgehend vom Betachte! Geneee ehstahl fü alle Pxel auf Bldebene ausgehend vom Aufpunkt Bestmme chnttpunkt mt Objekt n zene Bestmme tahldchte fü chnttpunkt Objekt wd opak dagestellt zene Betachte (Aufpunkt) Bldebene ehstahlen Volume lcng Volume lcng Ezeugen von chchtblden paallel zu Bldebene (Hadwae untestützt) chchtblde benhalten Fab-/Gauwete und Tanspaenz (alpha) ete 4 ete 6

5 Bespele fü Volumenvsualseung Bespele fü Volumenvsualseung Hez mt Tansmembanspannung be ventkuläe Eegung CT Vsble Female Obeflächenoentete Vsualseung Obeflächenoentete Vsualseung Extakton von Obeflächenelementen Geomete, Tanspaenz und Fabe Bestmmung de tahldchten von Elementen Beückschtgung von Elementegenschaften und chtquellen (z. B. mt Phong) Pojekton de tahldchten auf Bldpxel Geometsche Tansfomaton (z. B. homogene Tansfomaton) Beückschtgung von stanz des Elements zu Bldfläche Übelageungen von Elementen Abbldungsegenschaften (pespektvsch, othogaphsch) Votel effzent, ealtätsnah fü Velzahl von zenen Nachtel Mangelnde physkalsche Gundlagen ete 7 ete 9 Volumenvsualseung semtanspaent/opak Volumenvsualseung semtanspaent/opak Übelageung von Elementen Z-Puffe Übelageung von Elementen Z-Puffe Benhaltet Tefennfomaton fü Pxel (stanz zu Bldfläche) Fabwete enes Pxels weden nu dann geändet, wenn zugeodnetes Element nähe Zustand Bldpuffe Z-Puffe ntal Pojekton E Pojekton E2 ete 8 ete 2 E E2 Pojekton Bldpuffe (Osca-Velehung 2 Vsual Effects)

6 Blendng Blendngfunkton = (, B,, B ) f Ê Ê Ê W G = G = WG B = B B B WB A A WA Ê = W WG WB WA B,B Fabwet mt alpha (Quelle) aus Bldpuffe, abzubldendem Element o ä. Fabwet mt alpha (Zel). Allg. Bldpuffe Gewchtung fü Quelle und Zel aus Bldpuffe, abzubldendem Element, Z - Puffe o. ä. nenbasete Vsualseung nenbasete Vsualseung ete 2 ete 23 Blendng zum Hnzufügen von Potentalweten Blendng zum Hnzufügen von Potentalweten ntale Fabbestmmung aus tomogaphschen Blddaten Blendng Gewchtung und Fabe abhängg von Potental Wetee Anwendung Tanspaenz Nebel Antalasng ete 22 Venetzung Zel Ändeung de Modellepäsentaton efnton Geneeung von Obeflächen-/Volumenelementen ausgehend von Punktemengen (engl. Meshng) Motvaton Votel fü nachfolgende Veabetung (Numesche Feldbeechnung, Vsualseung etc.) Bespele Venetzung mt eecken n Ebenen (2) 2-elaunay-Tangulaton mt Umkesbedngung n Obeflächen (3) 2-elaunay-Tangulaton mt Umkugelbedngung Machng Cube Algothmus (sehe Volesung ) Venetzung mt Tetaeden m Volumen (3) 2.5-elaunay-Tangulaton 3-elaunay-Tangulaton ete 24

7 Gundlagen lve-wet Gundlagen lve-wet lvewet s = o o adus des eecknkeses adus des eeckumkeses o lve-wet n 3 Beückschtgung von n- und Umkes von Tetaeden teueung des Meshng-Pozesses (Punktewahl) unte Beückschtgung des lve-wets 2-elaunay-Tangulaton mt Umkesbedngung 2-elaunay-Tangulaton mt Umkesbedngung Zelegung de konvexen Hülle H von n gegebenen Punkten p...p n aus 2 n m eecke t..t m mt " t «t =, jœ{ K m}, π j j U Œ{ K m} t = H Punkte de eecke efüllen Umkesbedngung Umkesbedngung Telmenge T von H genügt Umkesbedngung bzgl. ene Menge von Punkten P, wenn ken Punkt von P n Umkes von T legt ete 25 ete 27 2-elaunay-Tangulaton Opeatoen 2-elaunay-Tangulaton Opeatoen p p Vetauschen von Kanten p 4 t t 2 p 2 swap p 4 t t 2 p 2 p 3 p 3 Umkese von eecken 2-elaunay-Tangulaton Algothmus 2-elaunay-Tangulaton Algothmus ukzessves Hnzufügen von Punkten Ausgangsbass Tangulete Punktemenge Wahl enes Punktes x Falls Punkt nnehalb von eeck Konstueen von 3 neuen eecken Konstueen von Umkesen Falls Umkesbedngung veletzt Vetauschen von Kanten onst Konstueen von neuem eeck ekuson Aufwand O(n log n) mt n Anzahl de Punkte ete 26 ete 28

8 Bespel 2 Tangulaton Bespel 2 Tangulaton Gundgebet 2. chtt Hülle H de Punkte P P2 P3 P4 Hnzufügen des Punktes P chtt 3. chtt Hnzufügen des Punktes P5.4.4 Hnzufügen des Punktes P7.. 3-elaunay-Tangulaton Zelegung de konvexen Hülle H von n gegebenen Punkten p...p n aus 3 n m Tetaede t..t m mt " t «t =, jœ{ K m}, π j j U Œ{ K m} t = H Eckpunkte p de Tetaede efüllen Umkugelbedngung Umkugelbedngung Telmenge T von H genügt Umkugelbedngung bzgl. ene Menge von Punkten P, wenn ken Punkt von P n Umkugel von T legt Aufwand O(n 2 ) mt n Anzahl de Punkte ete 29 ete 3 Bespel 2 Tangulaton Bespel 2 Tangulaton Gundgebet. chtt 2. chtt 3. chtt 4. chtt Hülle H de Punkte P P2 P3 P4 Hnzufügen des Punktes P Hnzufügen des Punktes P Hnzufügen des Punktes P Hnzufügen des Punktes P elaunay-tangulaton Pobleme elaunay-tangulaton Pobleme Ncht endeutg be kozyklschen (2)/kozentschen (3) Punkten Numesche Pobleme be nachfolgende Veabetung duch eecke mt seh sptzen/stumpfen Wnkeln (genge lve-wet!) bspw. be Fnte Elemente Beechnungen Hohe echnesche Aufwand de Tangulaton (uchschnttlch. ekunden auf un 3/5 po Punkt be 3-Tangulaton mt Punktanzahl von ca. 4 ) Numesche Pobleme duch Näheung eelle Zahlen mt Gletkommazahlen Ktsche Wahl von Punkten bspw. be Venetzung von volumenoenteten aten ete 3 ete 32

9 Zusammenfassung Wedeholung Aktve Kontuen Mathematsche Gundlagen n 2 sketseung Eweteung auf 3 Vsualseung Gundlagen Volumenbasete Vefahen Obeflächenbasete Vefahen nenbasete Vefahen Venetzung Gundlagen elaunay Algothmus 2/3 ete 33

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

4. Krummlinige orthogonale Koordinaten

4. Krummlinige orthogonale Koordinaten 4 Kummlnge othogonale Koodnaten ückblck Zu uanttatven Efassung äumlche (und etlche) Beüge denen Koodnatensysteme Bshe haben w Katessche Koodnaten betachtet: { } { } { } Bass: e,,, Koodnaten:,,,, y, Vektoen:

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wtschaftswssenschaften Desdne Betäge zu Quanttatven Vefahen N. 58/1 Rato calculand pecul - en analytsche Ansatz zu Bestmmung de Velustvetelung enes Kedtpotfolos

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

Physikalische Grundlagen der Biomechanik

Physikalische Grundlagen der Biomechanik Physkalsche Gundlagen de Bomechank Dplomabet zu Elangung des Magstegades an de Natuwssenschaftlchen Fakultät de Leopold-Fanzens-Unvestät Innsbuck engeecht be Hen A. Unv.-Pof. D. Chstoph LEUBNER Insttut

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium ISBN: Weitere Informationen oder Bestellungen unter

Leseprobe. Jürgen Koch, Martin Stämpfle. Mathematik für das Ingenieurstudium ISBN: Weitere Informationen oder Bestellungen unter Lesepobe Jügen Koch, Matn Stämpfle Mathematk fü das Ingeneustudum ISBN: 978-3-446-46- Wetee Infomatonen ode Bestellungen unte http://www.hanse.de/978-3-446-46- sowe m Buchhandel. Cal Hanse Velag, München

Mehr

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen:

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen: Zu nneung tchwote aus de 9. Volesung: ntelung von tößen: kn, kn kn,, kn, Q Q = 0 elastsche töße de umme de nneen nege de Telchen (chwngung und Rotaton) blebt unveändet, Q > 0 unelastsche töße knetsche

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Gundlagen de Elektotechnk I Pof. D. Suchaneck WS 5/6 Inhaltsvezechns Sete. llgeenes... 7. SI-Enhetensyste... 7. Schebwese von Gößen (DIN 33)... 8.3 Glechungsaten... 9.4 Gafsche Dastellungen, Dagae... 9.

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Orientierungsgenauigkeit eines Multi-Kamerasystems bei Roboterbewegungen in einer Fahrzeugkarosserie

Orientierungsgenauigkeit eines Multi-Kamerasystems bei Roboterbewegungen in einer Fahrzeugkarosserie DGPF Tagungsband 22 / 213 Deländetagung DGPF OVG SGPF Oenteungsgenaugket enes Mult-Kameasystems be Robotebewegungen n ene Fahzeugkaossee ALEANDER HANEL 1 CARSTEN GÖT 1 SEBASTIAN TUTTAS 1 TOBIAS BECKER

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

4. Energie, Arbeit, Leistung

4. Energie, Arbeit, Leistung 4 43 4. Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Supply Chain Management

Supply Chain Management 1 Supply Chan Management Supply Chan Metcs - The key to mpovement - Lay Lapde: What About Measung Supply Chan Pefomance? (Potal ode http://www.ascet.com/) http://www.supply-chan.og/ (SCOR Model) Supply

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Nichtlineare Optik Vorlesung - Zusammenfassung

Nichtlineare Optik Vorlesung - Zusammenfassung Nchtlneae Opt Volesung - Zusammenfassung Inhalt Pof. Menes SS 998. GRUNDLAGN (DR LINARN KRISTALLOPTIK). Wellenausbetung n ansotopen Meden.... Indexellpsod (Indatx)... 5.3 Optsche Kstalllassen... 6.4 Doppelbechung

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

Lineare Gleichungssysteme und ihre Lösung

Lineare Gleichungssysteme und ihre Lösung III Lnee Glechungssysteme und he Lösung In den Kpteln II. und II. wude de Bedeutung von Lneen Glechungssysteme (LGS) fü Poleme de Anlytschen Geomete deutlch. eshl stellt sch de Fge nch systemtschen Lösungsvefhen.

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A Fomelsammlung EM. Allgemenes De Enhet de Stomstäke st das Ampee [A]. De Enhet de adung Q st das oulomb [][As]. Q bzw. t dq dt De Enhet de Spannung st das Volt [V]. W st das Enegegefälle zwschen zwe Punkten

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

Zero-sum Games. Vitali Migal

Zero-sum Games. Vitali Migal Sena Gaphentheoe und Kobnatok Wnteseeste 007/08 Zeo-su Gaes Vtal Mgal 1 Inhaltsvezehns 1. Enletung... 3. Dastellung von Spelen... 3 3. Stategen... 4 4. Spele t unvollständge Infoaton... 9 1. Enletung Als

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS 200 22. Juni 200 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung.

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung. De Kaftstoß Efahng: Geschwndgketsändeng de Kge st popotona z de Kaft nd de Zetdae t he Enwkng. Kaftstoß: t Enhet: s a t t t p t. Zwetes ewtonsches Ao: p t Wenn af enen Köpe t de Masse de Kaft wkt, so bewkt

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Kapitel 8: Graph-Strukturierte Daten

Kapitel 8: Graph-Strukturierte Daten Ludwg Maxmlans Unerstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscoery n Dtb Databases II m Wntersemester 2011/2012 Kaptel 8: Graph-Strukturerte

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

MULTI ASSET TREND III INDEX

MULTI ASSET TREND III INDEX MULTI ASSET TREND III INDEX De Mult Asset Tend III Index (de "Index") (ISIN: DE000A11RDD4; WKN: A11RDD4) st en von de UnCedt Bank AG ode hem Rechtsnachfolge (de "Indexsponso") entwckelte und gestaltete

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Web-Mining mit Methoden des Information Retrievals - Individualisierung von Web-Sites auf Basis von Webtracking Daten

Web-Mining mit Methoden des Information Retrievals - Individualisierung von Web-Sites auf Basis von Webtracking Daten Unvestät Augsbug Pof. D. Hans Ulch Buhl enkompetenzzentum Fnanz- & Infomatonsmanagement Lehstuhl fü BWL, Wtschaftsnfomatk, Infomatons- & Fnanzmanagement Dskussonspape WI-96 Web-Mnng mt Methoden des Infomaton

Mehr

Messtechnik und Modellierung in der Kardiologie

Messtechnik und Modellierung in der Kardiologie Messtechnik und Modellieung in de Kadiologie Digitale Bildveabeitung Segmentation Gliedeung Wiedeholung Filteung Tansfomation von Otskoodinaten Matching Mekmalsextaktion Segmentation Punktoientiete Vefahen

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Entwicklung eines Simulationstools zur Prozessauslegung und -führung biotechnologischer Aufgabenstellungen im Festbettreaktor Abschlussbericht

Entwicklung eines Simulationstools zur Prozessauslegung und -führung biotechnologischer Aufgabenstellungen im Festbettreaktor Abschlussbericht Max-Buhne-Foshungsstftung ennffe: 88 Entwlung enes Smulatonstools u Poessauslegung und -fühung botehnologshe Aufgabenstellungen m Festbetteato Abshlussbeht Stpendat: Dpl.-Ing. Matthas epold Tehnshe Unvestät

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission Kompaktwssen fü den Außenhandel Ausgabe 4/2013 LISTENREGELN ZUM NPU? De Pläne de EU-Kommsson 6 DOS & DON TS Ogansaton ene Zoll- und Außenwtschaftsabtelung ES KÖNNTE BESSER SEIN! Felx Neugat (DIHK) zu Lage

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Netzwerkanalyse. Stephan Senn -1-22.12.02. geschlossene Oberfläche

Netzwerkanalyse. Stephan Senn -1-22.12.02. geschlossene Oberfläche Netzwerkanalyse Entelung der Netzwerke lneare resstve Netzwerke (lnear tme-nvarant crcuts): Das Netzwerk hängt ncht von der betrachteten Zet ab. Se st zetunabhängg. Das Strom-Spannungsverhältns st lnear:

Mehr

7. Systeme von Massenpunkten; Stöße

7. Systeme von Massenpunkten; Stöße Mechank Sytee von Maenpunkten; Stöße 7. Sytee von Maenpunkten; Stöße 7.. De Schwepunkt W defneen den Schwepunkt ene Syte: t: M M... Geatae () Veanchaulchung: ( + ) 3 au () folgt: M M d dt p p () De Geatpul

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare Skalerung von Organsatonen und Innovatonen gestalten phl omondo Se stehen vor dem nächsten Wachstumsschrtt hrer Organsaton oder haben berets begonnen desen aktv zu gestalten? In desem Workshop-Semnar erarbeten

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Signaltransport in Koaxialkabeln

Signaltransport in Koaxialkabeln Sgnaltanspot n Koaxalkabeln Inhaltsvezechns SIGNALTRANSPORT IN KOAXIALKABELN... 1 SKRIPT... 1 1. VERWENDUNGSZWECK UND AUFBAU DES KOAXIALKABELS...1. ERSATZSCHALTBILD DES KOAXIALKABELS....1 Beechnung des

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Empfehlungs-Systeme. Recommender-Systeme. Buch-Recommender. Personalisierung. Kollaboratives Filtern & inhaltsbasierte Empfehlungen

Empfehlungs-Systeme. Recommender-Systeme. Buch-Recommender. Personalisierung. Kollaboratives Filtern & inhaltsbasierte Empfehlungen Epfehlngs-Systee Recoender-Systee Kollaboratves Fltern & nhaltsbaserte Epfehlngen Systee, Ntzern Dnge z epfehlen (z.b. Bücher, Fle, Ds, Webseten, Nesgrop Nachrchten, de af hren vorgen Präferenzen baseren.

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

R S T R S T R S T. 1 Lineare, affine und konvexe Kombinationen. Definition: X. Definition: Sei X. U. BREHM: Konvexgeometrie 1-1

R S T R S T R S T. 1 Lineare, affine und konvexe Kombinationen. Definition: X. Definition: Sei X. U. BREHM: Konvexgeometrie 1-1 U. BEHM: Konvexgeoete - Lneae, affne un konvexe Kobnatonen W abeten -enonalen euklchen au I un cheben x = ( x,, x ) ( ξ I, =,, ) fü enen Punkt (Vekto) von I. Da nnee Poukt auf I von Vektoen x un y = (

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Physik A VL12 ( )

Physik A VL12 ( ) Physk A VL1 (06.11.01) Dynak de otatonsbewegung II Wedeholung/Zusaenfassung: Beschebung von Dehbewegungen ollbewegungen Enege de otatons- und ollbewegung Dehpuls Dehpulsehaltung Wedeholung/Zusaenfassung:

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Vektoranalysis Teil III

Vektoranalysis Teil III Vektoanalyss Tel III Segfed Pety Fassung vom 5 Janua 13 I n h a l t De Dvegen enes Feldvektos 1 Vobeetende Betachtungen: Fluss, Schüttung, Quelldchte De Dvegen enes Feldvektos 4 3 echengesete fü Dvegenen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Lichttechnische Grössen

Lichttechnische Grössen Lichttechnische Gössen Modul 931 Optik Lichttechnische Gössen und Fabe 1. De Raumwinkel De Lichtstahl z.b. eine Taschenlampe entspicht einem Lichtkegel. Zeichnen wi diesen Lichtstahl, so geben wi den Winkel

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr