Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences

Größe: px
Ab Seite anzeigen:

Download "Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences"

Transkript

1 Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten und Fertigkeiten. Das Fach leitet die Lernenden an, Problemstellungen zu analysieren, zu bearbeiten und zu lösen. Dadurch werden exaktes und folgerichtiges Denken, kritisches Urteilen sowie präziser Sprachgebrauch ebenso wie geistige Beweglichkeit, Konzentrationsfähigkeit und Ausdauer geübt. Durch die Förderung des mathematisch-logischen Denkens leistet die Mathematik einen wesentlichen Beitrag zu Bildung und Kultur. Der Unterricht macht die Lernenden mit den spezifischen Methoden der Mathematik vertraut. Die heutigen technischen Hilfsmittel (Taschenrechner, Computer) erlauben die Visualisierung der Mathematik und unterstützen die Erforschung von mathematischen Sachverhalten. Es werden Fertigkeiten erlernt, die auf andere Situationen übertragen und in anderen Wissenschaftsbereichen angewendet werden können. Mathematik im Grundlagenbereich fördert insbesondere auch Kompetenzen wie Abstrahieren, Argumentieren und experimentelles Problemlösen und schafft damit bei den Lernenden das für ein Fachhochschulstudium erforderliche mathematische Verständnis. Mathematik im Schwerpunktbereich rückt die Vorbereitung auf ein Studium an einer technischen Fachhochschule ins Zentrum, ohne die im Grundlagenbereich angestrebten Ziele zu vernachlässigen. Entsprechend verlagert sich das Lernen von elementaren Fertigkeiten (z.b. Einsetzen gegebener Zahlenwerte in bekannte Formeln oder Abarbeiten von Algorithmen) hin zur Weiterentwicklung von Kompetenzen, die schon im Grundlagenbereich angelegt worden sind: Abstrahieren, Visualisieren, Beschreiben, Verallgemeinern, logisches Argumentieren, Modellieren und experimentelles Problemlösen. Zur Festigung des Wissens und Könnens eignen sich vorzugsweise praxisnahe und vernetzte Aufgaben, bei deren Lösung die Lernenden durch elektronische Hilfsmittel unterstützt werden. Diese gestatten es, sich auf die Problematik zu konzentrieren, und entlasten von aufwändiger Rechenarbeit. Ziele sind ein differenziertes Fachverständnis und eine ausgeprägte Selbstständigkeit, die es den Lernenden ermöglichen, sich optimal auf die Fachhochschule vorzubereiten und die Verantwortung für das lebenslange Lernen wahrzunehmen. 2. Überfachliche Kompetenzen Die Lernenden werden in den folgenden überfachlichen Kompetenzen besonders gefördert: Reflexive Fähigkeiten: differenzierend und kritisch denken und urteilen; logisch argumentieren; mathematische Modelle (Formeln, Gleichungen, Funktionen, geometrische Skizzen, strukturierte Darstellungen, Ablaufpläne) in überfachlichen Anwendungen darstellen und kritisch reflektieren Sprachkompetenz: über die Mathematik als formale Sprache die allgemeine Sprachkompetenz in Wort und Schrift weiterentwickeln; umgangssprachliche Aussagen in die mathematische Fachsprache übersetzen und umgekehrt; sich in der interdisziplinären Auseinandersetzung mit Fachleuten und Laien sprachlich gewandt und verständlich ausdrücken Arbeits- und Lernverhalten: Beharrlichkeit, Sorgfalt, Konzentrationsfähigkeit, Exaktheit und Problemlöseverhalten durch mathematische Strenge weiterentwickeln und sich neues Wissen mit Neugier und Leistungsbereitschaft aneignen Version: Seite 1/44 BERUFSMATURITÄTSSCHULE

2 Die im Grundlagenbereich gepflegten überfachlichen Kompetenzen werden weiter gefördert. Darüber hinaus wird im Schwerpunktbereich auf folgende Kompetenzen Wert gelegt: Reflexive Fähigkeiten: die Wirklichkeit mit mathematischen Mitteln beschreiben (modellieren); mathematisch fassbare Probleme strukturieren und erfolgreich bearbeiten; argumentieren; über Mathematik verständlich kommunizieren; gemeinsam an mathematischen Problemen arbeiten; Gegenstandsbereiche und Theoriebildungen, die einer Mathematisierung zugänglich sind und ihrer bedürfen, mithilfe geeigneter Modelle aus unterschiedlichen mathematischen Gebieten erschliessen und darstellen sowie die entsprechenden Probleme mit geeigneten Verfahren lösen. Interessen: Neues mit Interesse und Selbstvertrauen aufnehmen; sich Geduld und Anstrengungsbereitschaft aneignen, um Erfolgserlebnisse zu haben Arbeits- und Lernverhalten: geistige Beweglichkeit durch das Erlernen von Heuristiken entwickeln (z.b. anforderungsdifferenziertes Üben, Erkennen von Abhängigkeiten, Umkehrung von Gedankengängen, Umstrukturieren von Sachverhalten, Bewusstmachung neuer Strategien, Erweiterung des Kontextes der Strategieanwendung) 3. Empfohlene Lehrmittel Fachgruppeninternes Skript Formelsammlung: Fundamentum Mathematik und Physik P. Frommenwiler, K. Studer: Mathematik für Maturitätsschulen. Algebra und Datenanalyse. Cornelsen Verlag, ISBN P. Frommenwiler, K. Studer: Mathematik für Maturitätsschulen. Geometrie. Cornelsen Verlag, ISBN Lerngebiete, Teilgebiete und fachliche Kompetenzen Im Fach Mathematik sind folgende fachlichen Grundkompetenzen zu erreichen: mathematische Gesetzmässigkeiten verstehen, formulieren, interpretieren, dokumentieren und kommunizieren numerische und symbolische Rechenverfahren unter Berücksichtigung der entsprechenden Regeln durchführen Hilfsmittel nutzbringend einsetzen interdisziplinäre Probleme mit mathematischen Methoden bearbeiten Verwendung von Hilfsmitteln: grafikfähiger Rechner mit ComputerAlgebraSystem (CAS), das unter anderem Terme symbolisch umformt, Gleichungen symbolisch löst sowie Funktionen und Diagramme plottet Formelsammlung Version: Seite 2/44 BERUFSMATURITÄTSSCHULE

3 BM1 - dreijährige Ausbildung Algebra 1./2. Semester 40/40 Arithmetik/Algebra 1 35 Grundlagen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen Terme/Formeln aus praxisnahen Sachverhalten aufstellen Zahlen und zugehörige Grundoperationen Grundoperationen mit algebraischen Termen Zehnerpotenzen und Quadratwurzeln Zahlen darstellen und umrechnen (Bruch-, Prozent- und Dezimaldarstellung), nach Typ klassieren (N,Z, Q,R) und elementare Eigenschaften erklären (Vorzeichen, Betrag, Rundung, Ordnungsrelationen) Zahlenmengen symbolisch und grafisch beschreiben, insbesondere Intervalle auf der Zahlengeraden. Grundoperationen in verschiedenen Zahlenmengen unter Einhaltung der Regeln (Vorzeichenregeln, Hierarchie der Operationen) durchführen Kennt den Begriff: Schnittmenge, Vereinigungsmenge, Differenzmenge und kann diese darstellen Resultate sinnvoll runden (signifikante Ziffern) und auf Plausibilität überprüfen Strukturen von algebraischen Ausdrücken (Summe, Differenz, Potenz, Produkt, Quotient) erkennen Kennt den Unterschied von: exaktem Wert und Näherungswert algebraische Terme unter Einhaltung der Regeln für die Grundoperationen umformen einfache algebraische Terme faktorisieren Polynomdivision (als Faktorisierungshilfe) Binomischer Lehrsatz Beherrscht die algebraischen Operationen (Faktorisieren, Ausmultiplizieren) die Wurzel- und Potenzgesetze verstehen und anwenden die Hierarchie der Operationen erkennen und anwenden wissenschaftlicher und technischer Notation Version: Seite 3/44 BERUFSMATURITÄTSSCHULE

4 Gleichungen, Ungleichungen 2 35 und Gleichungssysteme Grundlagen gegebene Sachverhalte im technischen Kontext als Gleichung, Ungleichung oder Gleichungssystem formulieren algebraische Äquivalenz erklären und anwenden den Typ einer Gleichung bestimmen und beim Lösen entsprechend beachten, Lösungs- und Umformungsmethoden zielführend einsetzen und Lösungen überprüfen Erkennen von nicht äquivalenten Umformungen und entsprechendes Berücksichtigen bei der Lösung Lineare und quadratische Gleichungen lineare und quadratische Gleichungen (mit und ohne Parameter) lösen, verschiedene Lösungsmethoden anwenden mögliche Anzahl der Lösungen diskutieren Wurzelgleichungen und rationale Gleichungen lösen, die auf lineare oder quadratische Gleichungen führen Definitionsbereiche von rationalen- und Wurzelgleichungen bestimmen Funktionen 3 50 Grundlagen Im kartesischen Koordinatensystem (zwei- und dreidimensionalen) Sachverhalte anschaulich beschreiben reelle Funktionen als Zuordnung/Abbildung zwischen dem Definitionsbereich D und dem Wertebereich W verstehen und erläutern mit Funktionen beschreiben wie sich Änderungen einer Grösse auf eine abhängige Grösse auswirken und damit auch den Zusammenhang als Ganzes erfassen reelle Funktionen verbal, tabellarisch, grafisch (in kartesischen Koordinaten) sowie analytisch lesen, schreiben und interpretieren Funktionsgleichung, Wertetabelle und Graph kontextspezifisch anwenden reelle Funktionen in verschiedenen Notationen lesen und schreiben: Zuordnungsvorschrift x ⱶ f(x) Funktionsgleichung mit f: D W mit y = f(x) Funktionsterm f(x) Gleichungen mithilfe von Funktionen visualisieren und interpretieren Schnittpunkte von Funktionsgraphen grafisch und rechnerisch bestimmen horizontale und vertikale Translationen von Funktionsgrafen Spiegeln von Funktionsgrafen an den Koordinatenachsen Version: Seite 4/44 BERUFSMATURITÄTSSCHULE

5 Grundlagen Darstellen der Funktionsgrafen in einem geeigneten Darstellungsbereich Schnittpunkte unter Funktionsgrafen oder mit den Koordinatenachsen lokale Extrema Lineare Funktionen den Graphen einer linearen Funktion als Gerade in der kartesischen Ebene darstellen die Koeffizienten der Funktionsgleichung geometrisch interpretieren (Steigung, Achsenabschnitt). Die Funktionsgleichung einer Geraden aufstellen Betragsfunktion graphisch erstellen. Version: Seite 5/44 BERUFSMATURITÄTSSCHULE

6 BM1 - dreijährige Ausbildung Geometrie 1./2. Semester 40/40 Geometrie 5 60 Grundlagen Planimetrie Aufgabenstellungen mit Skizzen visualisieren und diese zur Abschätzung der Plausibilität des berechneten Resultats verwenden Allgemeine und spezielle Dreiecke und deren Elemente (Winkel, Höhe, Seiten- und Winkelhalbierende, Mittelsenkrechte, Mittellinie) Vierecke (Quadrat, Rechteck, Parallelogramm, Rhombus, Trapez) Kreis und Kreisteile mit deren Elemente (Radius, Sehne, Sekante, Tangente, Sektor, Segment, Bogenlänge, Zentriwinkel, Peripheriewinkel) Flächen, Umfang und Abstandsberechnungen Grad und Radiant gleichwertig als Winkelmass einsetzen (5.1) Strahlensätze, Ähnlichkeit Ähnlichkeit am Kreis Satzgruppe des Pythagoras : Aufgaben, welche auf nichtlineare Gleichungen bzw. Gleichungssysteme führen Trigonometrische Berechnungen Trigonometrische Funktionen im rechtwinkligen Dreieck Visualisierung der Winkelfunktionen am Einheitskreis und grafische Darstellung in eingeschränktem Definitionsbereich Spezielle Winkel und ihre Funktionswerte Arcusfunktionen in eingeschränktem Definitionsbereich Trigonometrische Funktionen im allgemeinen Dreieck Sinussatz Cosinussatz Version: Seite 6/44 BERUFSMATURITÄTSSCHULE

7 Trigonometrische Funktionen und Gleichungen Winkelfunktionen in unbeschränktem Definitionsbereich im Grad- und Bogenmass Eigenschaften der Winkelfunktionen (Periodizität, Symmetrien..) Beziehungen zwischen den Winkelfunktionen Elementare Gleichungen in einem vorgegebenen Definitionsbereich Umformungen mit trigonometrischen Beziehungen Umformungen aufgrund algebraischer Strukturen Visualisieren der Funktionen inkl. Arkusfunktionen Darstellung der Graphen mit Skalierung im Grad- und Bogenmass Aufgaben, welche auf nichtlineare Gleichungen bzw. Gleichungssysteme führen Datenanalyse 4 20 Grundlagen 4.1 Grundbegriffe der Datenanalyse (Grundgesamtheit, Urliste, Stichprobe, Stichprobenumfang, Rang) erklären Tabellenkalkulation für die deskriptive Datenanalyse und - auswertung einsetzen Datengewinnung und -qualität diskutieren Diagramme 4.2 univariate Daten charakterisieren (kategorial, diskret, stetig), ordnen, klassieren (Rangliste, Klasseneinteilung) und visua-lisieren (Balkendiagramm, Kuchendiagramm, Histogramm, Boxplot) Diagramme charakterisieren und interpretieren (symmetrisch, schief, unimodal, multimodal) bivariate Daten charakterisieren, visualisieren und interpretieren entscheiden, wann welches Diagramm angemessen ist Masszahlen 4.3 Lagemasse (Mittelwert, Median, Modus) und Streumasse (Standardabweichung, Quartilsdifferenz) von kleinen Stichproben auch ohne Hilfsmittel und von grossen Stichproben mit Hilfsmitteln berechnen, interpretieren sowie auf ihre Plausibilität hin prüfen entscheiden, wann welche Masszahl relevant ist Version: Seite 7/44 BERUFSMATURITÄTSSCHULE

8 BM1 - dreijährige Ausbildung Algebra 3./4. Semester 40/40 Gleichungen, Ungleichungen 2 12 und Gleichungssysteme Ungleichungen lineare und quadratische Ungleichungen umformen und lösen mithilfe einer Grafik, eines Zahlenstrahl oder einer Vorzeichentabelle Quadratische Ungleichung aus Linearfaktoren lösen Bruchungleichungen lösen Lösungen als Vereinigung von Intervallen angeben Lineare Gleichungssysteme ein lineares Gleichungssystem mit maximal drei Variablen lösen und die Lösungsmenge interpretieren die Lösungsmenge eines linearen Gleichungssystems mit zwei Variablen grafisch veranschaulichen Diskussion der Sonderfälle Gleichungssysteme lösen mit und ohne Parameter Funktionen 3 28 Lineare Funktionen den Graphen einer linearen Funktion als Gerade in der kartesischen Ebene darstellen die Koeffizienten der Funktionsgleichung geometrisch interpretieren (Steigung, Achsenabschnitt). Die Funktionsgleichung einer Geraden aufstellen Betragsfunktion graphisch erstellen. Quadratische Funktionen den Unterschied zwischen den verschiedenen Darstellungsformen der Funktion (Grund-, Scheitel- und Produktform) erläutern und ineinander überführen. die verschiedenen Darstellungsformen der Funktion geometrisch interpretieren (Öffnung, Nullstellen, Scheitelpunkt, Achsenabschnitte). die Funktionsgleichung einer quadratischen Funktion aufstellen. Die Funktionsgleichung einer quadratische Parabel (3 Punkten) bestimmen. Extremwertaufgaben lösen. Eine quad. Funktion algebraisch und grafisch invertieren. Lineare Funktion als Tangente, allgemein Berührungspunkte bestimmen. Version: Seite 8/44 BERUFSMATURITÄTSSCHULE

9 Arithmetik/Algebra 1 15 Grundlagen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen. Potenzen die Potenzgesetze mit ganzzahligen und rationalen Exponenten verstehen und anwenden. die Hierarchie der Operationen erkennen und anwenden. n-te Wurzel aus positiven Radikanden Gleichungen 2 10 Grundlagen den Typ einer Gleichung bestimmen und beim Lösen entsprechend beachten. mit geeigneten Lösungsmethoden die Lösung berechnen und überprüfen. Grafisches lösen von Gleichungen Funktionen 3 10 Grundlagen aus der Gleichung einer elementaren Funktion den Graphen (min. 4 Punkte) skizzieren. aus dem Graphen einer elementaren Funktion deren Funktionsgleichung bestimmen. Schnittpunkte von Funktionsgraphen grafisch bestimmen und berechnen Gleichungen und Ungleichungen mithilfe von Funktionen visualisieren und lösen. Extremwertaufgaben lösen (inkl. Stereometrie) Elementare Funktionen grafisch darstellen und bearbeiten Darstellungsbereich auf den notwendigen Verlauf des Graphen einstellen Extremwertaufgaben graphisch und nummerisch lösen IDAF 5 Physik und Mathematik Förderung von überfachlichen Kompetenzen üfk 2 Darstellung mit Excel MS Formeleditor Wissenschaftlich/technische Darstellungsweise Version: Seite 9/44 BERUFSMATURITÄTSSCHULE

10 BM1 - dreijährige Ausbildung Geometrie 3./4. Semester 20/20 Geometrie 4 Grundlagen 4.1 Stereometrie 4.2 Zwei- und dreidimensionale Vektorgeometrie Aufgabenstellungen mit Skizzen visualisieren und diese zur Abschätzung der Plausibilität des berechneten Resultats verwenden Prisma, Pyramide, Pyramidenstumpf Krummflächig begrenzte Körper Kreiszylinder, Kreiskegel, Kreiskegelstumpf Kugel- und Kugelteile deren Elemente (Körperdiagonale, Höhen, Öffnungswinkel, Mantellinie) und Zusammenhänge (Volumen, Oberfläche) berechnen Cavalieriprinzip zur Volumenberechnung Ähnlichkeit für Berechnungen im Raum nutzen Planimetrische und trigonometrische Anwendungen bei Schnittfiguren Aufgaben, die zu komplexeren Gleichungen bzw. Gleichungssystemen führen 5 Koordinatenfreie Vektorgeometrie Vektoren definieren, skalieren, addieren, subtrahieren und normieren Lineare Abhängigkeit von Vektoren, kollineare und komplanare Vektoren Grafische Zerlegung von Vektoren in vorgeschriebene Richtungen Aufgaben mit numerisch schwierigeren Fällen und geometrisch komplizierteren Lagen Version: Seite 10/44 BERUFSMATURITÄTSSCHULE

11 BM1 - dreijährige Ausbildung Algebra 5./6. Semester 40/40 Arithmetik/Algebra 1 10 Logarithmen eine Exponentialgleichung in die entsprechende Logarithmusgleichung umschreiben und umgekehrt die Logarithmengesetze bei Berechnungen sowie bei Umformungen anwenden. Terme mit Logarithmen zu verschiedenen Basen umformen und berechnen. Beherrschen der verschiedenen Taschenrechnertypen Gleichungen 2 30 Nichtlineare Gleichungen elementare Potenz- und Wurzelgleichungen lösen. elementare Exponential- und Logarithmusgleichungen lösen. elementare Betragsgleichungen lösen. Polynomgleichungen höheren Grades lösen, wenn das Polynom als Produkt linearer und quadratischer Faktoren vorliegt. grafisches Interpretieren der Polynomgleichungen Suchen von geeigneten Methoden zum Lösen der Exponential- und Logarithmusgleichungen (Exponentenvergleich, Substitution, Logarithmieren, Exponieren) Lösungen als Schnittpunkte von Graphen verschiedener Funktionen interpretieren Funktionen 3 40 Potenz- und Wurzelfunktionen die Wurzelfunktionen als Umkehrfunktion der Potenzfunktion mit ganzzahligen Exponenten berechnen, interpretieren und grafisch darstellen die Bestimmungsgrössen der Potenz- und Wurzelfunktionen erklären und graphisch veranschaulichen Beurteilung des Graphen nach Symmetrieeigenschaften Polynomfunktionen den Zusammenhang zwischen Linearfaktoren und Nullstellen einer Polynomfunktion algebraisch und grafisch herstellen und nutzen den Verlauf des Graphen einer Polynomfunktion qualitativ charakterisieren Nullstellen, lokale und globale Extremwerte grafisch bestimmen Extrema bestimmen (global und lokal) Version: Seite 11/44 BERUFSMATURITÄTSSCHULE

12 Exponential- und Logarithmusfunktionen die Bestimmungsgrössen der Exponentialfunktion erklären und graphisch visualisieren die Logarithmusfunktion als Umkehrfunktion der Exponentialfunktion berechnen, interpretieren und grafisch darstellen Die Wachstums-, Zerfalls- und Sättigungsprozesse berechnen und visualisieren Exponential- und Logarithmusfunktionen grafisch darstellen Prüfungsvorbereitung Maturitätsprüfung Version: Seite 12/44 BERUFSMATURITÄTSSCHULE

13 BM1 - dreijährige Ausbildung Geometrie 5./6. Semester 20/20 Geometrie 4 Zwei- und dreidimensionale Vektorgeo metrie Koordinatensysteme (zweidimensional) 30 Koordinatengezogene Vektorgeometrie kartesische und polare Koordinatensysteme sowie Transformationen zwischen polaren und kartesischen Koordinaten (zweidimensional) Begriffe der koordinatenbezogenen Vektorrechnung (Richtung, Norm (Länge, Betrag), inverser Vektor (Gegenvektor), Ortsvektor, Einheitsvektor) Grundoperationen (Addition, Subtraktion, Multiplikation mit einem Skalar) Skalarprodukt Parametergleichung einer Geraden gegenseitige Lage von zwei Geraden Längen-, Winkel- und Abstandsprobleme Optional: Vektorprodukt, Spatprodukt Aufgaben mit numerisch schwierigeren Fällen und geometrisch komplizierteren Lagen 10 Prüfungsvorbereitung Maturitätsprüfung Version: Seite 13/44 BERUFSMATURITÄTSSCHULE

14 BM1 - vierjährige Ausbildung Algebra 1./2. Semester 40/40 Arithmetik/Algebra 1 35 Grundlagen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen Terme/Formeln aus praxisnahen Sachverhalten aufstellen Zahlen und zugehörige Grundoperationen Grundoperationen mit algebraischen Termen Zehnerpotenzen und Quadratwurzeln Zahlen darstellen und umrechnen (Bruch-, Prozent- und Dezimaldarstellung), nach Typ klassieren (N,Z, Q,R) und elementare Eigenschaften erklären (Vorzeichen, Betrag, Rundung, Ordnungsrelationen) Zahlenmengen symbolisch und grafisch beschreiben, insbesondere Intervalle auf der Zahlengeraden. Grundoperationen in verschiedenen Zahlenmengen unter Einhaltung der Regeln (Vorzeichenregeln, Hierarchie der Operationen) durchführen Kennt den Begriff: Schnittmenge, Vereinigungsmenge, Differenzmenge und kann diese darstellen Resultate sinnvoll runden (signifikante Ziffern) und auf Plausibilität überprüfen Strukturen von algebraischen Ausdrücken (Summe, Differenz, Potenz, Produkt, Quotient) erkennen Kennt den Unterschied von: exaktem Wert und Näherungswert algebraische Terme unter Einhaltung der Regeln für die Grundoperationen umformen einfache algebraische Terme faktorisieren Polynomdivision (als Faktorisierungshilfe) Binomischer Lehrsatz Beherrscht die algebraischen Operationen (Faktorisieren, Ausmultiplizieren) die Wurzel- und Potenzgesetze verstehen und anwenden die Hierarchie der Operationen erkennen und anwenden wissenschaftlicher und technischer Notation Version: Seite 14/44 BERUFSMATURITÄTSSCHULE

15 Gleichungen, Ungleichungen 2 23 und Gleichungssysteme Grundlagen gegebene Sachverhalte im technischen Kontext als Gleichung, Ungleichung oder Gleichungssystem formulieren algebraische Äquivalenz erklären und anwenden den Typ einer Gleichung bestimmen und beim Lösen entsprechend beachten, Lösungs- und Umformungsmethoden zielführend einsetzen und Lösungen überprüfen Erkennen von nicht äquivalenten Umformungen und entsprechendes Berücksichtigen bei der Lösung Lineare und quadratische Gleichungen lineare und quadratische Gleichungen (mit und ohne Parameter) lösen, verschiedene Lösungsmethoden anwenden mögliche Anzahl der Lösungen diskutieren Wurzelgleichungen und rationale Gleichungen lösen, die auf lineare oder quadratische Gleichungen führen Definitionsbereiche von rationalen- und Wurzelgleichungen bestimmen Funktionen 3 22 Grundlagen Im kartesischen Koordinatensystem (zwei- und dreidimensionalen) Sachverhalte anschaulich beschreiben reelle Funktionen als Zuordnung/Abbildung zwischen dem Definitionsbereich D und dem Wertebereich W verstehen und erläutern mit Funktionen beschreiben wie sich Änderungen einer Grösse auf eine abhängige Grösse auswirken und damit auch den Zusammenhang als Ganzes erfassen reelle Funktionen verbal, tabellarisch, grafisch (in kartesischen Koordinaten) sowie analytisch lesen, schreiben und interpretieren Funktionsgleichung, Wertetabelle und Graph kontextspezifisch anwenden reelle Funktionen in verschiedenen Notationen lesen und schreiben: Zuordnungsvorschrift x ⱶ f(x) Funktionsgleichung mit f: D W mit y = f(x) Funktionsterm f(x) Gleichungen mithilfe von Funktionen visualisieren und interpretieren Schnittpunkte von Funktionsgraphen grafisch und rechnerisch bestimmen horizontale und vertikale Translationen von Funktionsgrafen Spiegeln von Funktionsgrafen an den Koordinatenachsen Version: Seite 15/44 BERUFSMATURITÄTSSCHULE

16 Grundlagen 3.1 Darstellen der Funktionsgrafen in einem geeigneten Darstellungsbereich Schnittpunkte unter Funktionsgrafen oder mit den Koordinatenachsen lokale Extrema Lineare Funktionen den Graphen einer linearen Funktion als Gerade in der kartesischen Ebene darstellen die Koeffizienten der Funktionsgleichung geometrisch interpretieren (Steigung, Achsenabschnitt). Die Funktionsgleichung einer Geraden aufstellen Betragsfunktion graphisch erstellen. Version: Seite 16/44 BERUFSMATURITÄTSSCHULE

17 BM1 - vierjährige Ausbildung Geometrie 1./2. Semester 20/20 Geometrie 5 Grundlagen 5.1 Planimetrie 5.2 Trigonometrische Berechnungen 30 Aufgabenstellungen mit Skizzen visualisieren und diese zur Abschätzung der Plausibilität des berechneten Resultats verwenden Allgemeine und spezielle Dreiecke und deren Elemente (Winkel, Höhe, Seiten- und Winkelhalbierende, Mittelsenkrechte, Mittellinie) Vierecke (Quadrat, Rechteck, Parallelogramm, Rhombus, Trapez) Kreis und Kreisteile mit deren Elemente (Radius, Sehne, Sekante, Tangente, Sektor, Segment, Bogenlänge, Zentriwinkel, Peripheriewinkel) Flächen, Umfang und Abstandsberechnungen Grad und Radiant gleichwertig als Winkelmass einsetzen (5.1) Strahlensätze, Ähnlichkeit Ähnlichkeit am Kreis Satzgruppe des Pythagoras : Aufgaben, welche auf nichtlineare Gleichungen bzw. Gleichungssysteme führen Trigonometrische Funktionen im rechtwinkligen Dreieck Visualisierung der Winkelfunktionen am Einheitskreis und grafische Darstellung in eingeschränktem Definitionsbereich Spezielle Winkel und ihre Funktionswerte Arcusfunktionen in eingeschränktem Definitionsbereich Version: Seite 17/44 BERUFSMATURITÄTSSCHULE

18 BM1 - vierjährige Ausbildung Algebra 3./4. Semester 20/20 Gleichungen, Ungleichungen 2 12 und Gleichungssysteme Ungleichungen lineare und quadratische Ungleichungen umformen und lösen mithilfe einer Grafik, eines Zahlenstrahl oder einer Vorzeichentabelle Quadratische Ungleichung aus Linearfaktoren lösen Bruchungleichungen lösen Lösungen als Vereinigung von Intervallen angeben Lineare Gleichungssysteme ein lineares Gleichungssystem mit maximal drei Variablen lösen und die Lösungsmenge interpretieren die Lösungsmenge eines linearen Gleichungssystems mit zwei Variablen grafisch veranschaulichen Diskussion der Sonderfälle Gleichungssysteme lösen mit und ohne Parameter Funktionen 3 28 Lineare Funktionen den Graphen einer linearen Funktion als Gerade in der kartesischen Ebene darstellen die Koeffizienten der Funktionsgleichung geometrisch interpretieren (Steigung, Achsenabschnitt). Die Funktionsgleichung einer Geraden aufstellen Betragsfunktion graphisch erstellen. Quadratische Funktionen Förderung von überfachlichen Kompetenzen üfk den Unterschied zwischen den verschiedenen Darstellungsformen der Funktion (Grund-, Scheitel- und Produktform) erläutern und ineinander überführen. die verschiedenen Darstellungsformen der Funktion geometrisch interpretieren (Öffnung, Nullstellen, Scheitelpunkt, Achsenabschnitte). die Funktionsgleichung einer quadratischen Funktion aufstellen. Die Funktionsgleichung einer quadratische Parabel (3 Punkten) bestimmen. Extremwertaufgaben lösen. Eine quad. Funktion algebraisch und grafisch invertieren. Lineare Funktion als Tangente, allgemein Berührungspunkte bestimmen. 2 Darstellung mit Excel MS Formeleditor Wissenschaftlich/technische Darstellungsweise Version: Seite 18/44 BERUFSMATURITÄTSSCHULE

19 BM1 - vierjährige Ausbildung Geometrie 3./4. Semester 20/20 Trigonometrische Berechnungen Trigonometrische Funktionen und Gleichungen Trigonometrische Funktionen im allgemeinen Dreieck Sinussatz Cosinussatz Winkelfunktionen in unbeschränktem Definitionsbereich im Grad- und Bogenmass Eigenschaften der Winkelfunktionen (Periodizität, Symmetrien..) Beziehungen zwischen den Winkelfunktionen Elementare Gleichungen in einem vorgegebenen Definitionsbereich Umformungen mit trigonometrischen Beziehungen Umformungen aufgrund algebraischer Strukturen Visualisieren der Funktionen inkl. Arkusfunktionen Darstellung der Graphen mit Skalierung im Grad- und Bogenmass Aufgaben, welche auf nichtlineare Gleichungen bzw. Gleichungssysteme führen Datenanalyse 4 20 Grundlagen 4.1 Grundbegriffe der Datenanalyse (Grundgesamtheit, Urliste, Stichprobe, Stichprobenumfang, Rang) erklären Tabellenkalkulation für die deskriptive Datenanalyse und - auswertung einsetzen Datengewinnung und -qualität diskutieren Diagramme 4.2 univariate Daten charakterisieren (kategorial, diskret, stetig), ordnen, klassieren (Rangliste, Klasseneinteilung) und visua-lisieren (Balkendiagramm, Kuchendiagramm, Histogramm, Boxplot) Diagramme charakterisieren und interpretieren (symmetrisch, schief, unimodal, multimodal) bivariate Daten charakterisieren, visualisieren und interpretieren entscheiden, wann welches Diagramm angemessen ist Masszahlen 4.3 Lagemasse (Mittelwert, Median, Modus) und Streumasse (Standardabweichung, Quartilsdifferenz) von kleinen Stichproben auch ohne Hilfsmittel und von grossen Stichproben mit Hilfsmitteln berechnen, interpretieren sowie auf ihre Plausibilität hin prüfen entscheiden, wann welche Masszahl relevant ist Version: Seite 19/44 BERUFSMATURITÄTSSCHULE

20 BM1 - vierjährige Ausbildung Algebra 5./6. Semester 20/20 Arithmetik/Algebra 1 15 Grundlagen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen. Potenzen die Potenzgesetze mit ganzzahligen und rationalen Exponenten verstehen und anwenden. die Hierarchie der Operationen erkennen und anwenden. n-te Wurzel aus positiven Radikanden Gleichungen 2 10 Grundlagen den Typ einer Gleichung bestimmen und beim Lösen entsprechend beachten. mit geeigneten Lösungsmethoden die Lösung berechnen und überprüfen. Grafisches lösen von Gleichungen Funktionen 3 10 Grundlagen aus der Gleichung einer elementaren Funktion den Graphen (min. 4 Punkte) skizzieren. aus dem Graphen einer elementaren Funktion deren Funktionsgleichung bestimmen. Schnittpunkte von Funktionsgraphen grafisch bestimmen und berechnen Gleichungen und Ungleichungen mithilfe von Funktionen visualisieren und lösen. Extremwertaufgaben lösen (inkl. Stereometrie) Elementare Funktionen grafisch darstellen und bearbeiten Darstellungsbereich auf den notwendigen Verlauf des Graphen einstellen Extremwertaufgaben graphisch und nummerisch lösen IDAF 2 Physik und Mathematik Version: Seite 20/44 BERUFSMATURITÄTSSCHULE

21 BM1 - vierjährige Ausbildung Geometrie 5./6. Semester 20/20 Geometrie 4 Grundlagen 4.1 Stereometrie 4.2 Zwei- und dreidimensionale Vektorgeometrie Koordinatensysteme (zweidimensional) Aufgabenstellungen mit Skizzen visualisieren und diese zur Abschätzung der Plausibilität des berechneten Resultats verwenden Prisma, Pyramide, Pyramidenstumpf Krummflächig begrenzte Körper Kreiszylinder, Kreiskegel, Kreiskegelstumpf Kugel- und Kugelteile deren Elemente (Körperdiagonale, Höhen, Öffnungswinkel, Mantellinie) und Zusammenhänge (Volumen, Oberfläche) berechnen Cavalieriprinzip zur Volumenberechnung Ähnlichkeit für Berechnungen im Raum nutzen Planimetrische und trigonometrische Anwendungen bei Schnittfiguren Aufgaben, die zu komplexeren Gleichungen bzw. Gleichungssystemen führen 5 Koordinatenfreie Vektorgeometrie Vektoren definieren, skalieren, addieren, subtrahieren und normieren Lineare Abhängigkeit von Vektoren, kollineare und komplanare Vektoren Grafische Zerlegung von Vektoren in vorgeschriebene Richtungen Version: Seite 21/44 BERUFSMATURITÄTSSCHULE

Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel

Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten

Mehr

WD-D Grundlagenfach Mathematik

WD-D Grundlagenfach Mathematik BERUFSMATURITÄTSSCHULE GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN Schullehrplan Berufsmaturität WD-D Grundlagenfach Mathematik SLP_WD-D_Mathematik_G_V1.0 / 2015 1. Allgemeine Bildungsziele Mathematik im

Mehr

1. Sem. 2. Sem. Total

1. Sem. 2. Sem. Total Fachspezifischer Schullehrplan WSKV Chur Fach Mathematik BM 2 BM 2 1. Sem. 2. Sem. Total 120 120 240 Lehrmittel: Mathematik für die kaufmännische Berufsmaturität; Aeberhart und Martin; 6. Auflage; liberabbaci

Mehr

Mathematik. Bündner Kantonsschule Scola chantunala grischuna Scuola cantonale grigione. 1. Stundendotation. 4 H 5 H 6 H Grundlagenbereich 3 3

Mathematik. Bündner Kantonsschule Scola chantunala grischuna Scuola cantonale grigione. 1. Stundendotation. 4 H 5 H 6 H Grundlagenbereich 3 3 Mathematik 1. Stundendotation 4 H 5 H 6 H Grundlagenbereich 3 3 2. Didaktische Hinweise und Allgemeine Bildungsziele nach RLP BM 12 Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Die Komplexität der Aufgaben ist in einem Kompendium festgelegt. Lerngebiete und Teilgebiete 1. Arithmetik/Algebra. (50 Lektionen)

Die Komplexität der Aufgaben ist in einem Kompendium festgelegt. Lerngebiete und Teilgebiete 1. Arithmetik/Algebra. (50 Lektionen) Gruppe 3 Mit dem Beruf (EFZ) verwandter FH-Fachbereich: Wirtschaft und Dienstleistungen Verwendung von Hilfsmitteln im Typ Wirtschaft: Taschenrechner mit elementaren Finanzfunktionen, ohne ComputerAlgebraSystem

Mehr

Schullehrplan Mathematik Profil M/BM1 Typ Wirtschaft Ab 2015

Schullehrplan Mathematik Profil M/BM1 Typ Wirtschaft Ab 2015 1 20 Zahlen und zugehörige Grundoperationen mit algebraischen Termen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen den Aufbau der Zahlen

Mehr

Fachlehrplan Mathematik M-Profil, Typ Wirtschaft ab August 2015

Fachlehrplan Mathematik M-Profil, Typ Wirtschaft ab August 2015 1 20 Zahlen und zugehörige Grundoperationen mit algebraischen Termen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen den Aufbau der Zahlen

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Interner Lehrplan. Datum Dezember 2014

Interner Lehrplan. Datum Dezember 2014 Interner Lehrplan Fach Berufsmaturität Mathematik Typ Wirtschaft BM 2 berufsbegleitend Fachverantwortlicher Abteilung Reto Moser Berufsmaturität Datum Dezember 2014 1. Lektionen 240 Lektionen 2. Allgemeine

Mehr

Schullehrplan Mathematik BM II Wirtschaft. 1. Allgemeines. 2. Allgemeine Bildungsziele. 3. Überfachliche Kompetenzen

Schullehrplan Mathematik BM II Wirtschaft. 1. Allgemeines. 2. Allgemeine Bildungsziele. 3. Überfachliche Kompetenzen Allgemeines Grundlagen - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Kant. Verordnung zum Einführungsgesetz

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

TALS Grundlagen- und Schwerpunktfach Mathematik

TALS Grundlagen- und Schwerpunktfach Mathematik BERUFSMATURITÄTSSCHULE GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN Schullehrplan Berufsmaturität TALS Grundlagen- und Schwerpunktfach Mathematik SLP_TALS_Mathematik_GuS_V1.0 / 2015 1. Allgemeine Bildungsziele

Mehr

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten.

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten. Kepler-Gymnasium Freudenstadt Mathematikcurriculum Klasse 9/10 Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt und (geklammert) Die grau geschriebenen

Mehr

Schulcurriculum DSW Mathematik Klasse 9

Schulcurriculum DSW Mathematik Klasse 9 Schulcurriculum DSW Mathematik Klasse 9 Das Schulcurriculum orientiert sich an den Lehrplänen für Mathematik des Landes Thüringen. Hierbei sind die Anforderungen, die für den Realschulabschluss relevant

Mehr

Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1)

Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1) Mathematik Stoffplan Wirtschaftsschule Thun Kaufleute M-Profil (BM 1) Der römische Schriftsteller Stobäus berichtet, dass Euklid (er lebte im 4./3. Jahrhundert v.chr.) von einem jungen Zuhörer gefragt

Mehr

Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege

Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen / Schwerpunkte Arithmetik/Algebra mit Zahlen und Symbolen umgehen Termumformungen Lineare Gleichungen mit zwei Variablen - Systeme linearer Gleichungen

Mehr

delta 7 Hessen neu und delta 8 Hessen neu

delta 7 Hessen neu und delta 8 Hessen neu delta 7 Hessen neu und delta 8 Hessen neu Synopse für Klasse 7/8 : Inhaltsfelder, Kompetenzerwerb Lernzeitbezogene Kompetenzerwartungen und Inhaltsfelder am Ende der Jahrgangsstufe 8 (aus: Hessisches Kultusministerium,

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) Niveau Leitdeen/Richtziele Stundentafeln Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) [Druckversion] Sprache Anwendungen der Geometrisches Zeichnen Mensch und Umwelt Gestalten

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr.

Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. 85478) Viele der im Kernlehrplan aufgeführten Kompetenzbereiche

Mehr

Mathematik Grundlagenfach

Mathematik Grundlagenfach Grundlagenfach UNTERRICHTSORGANISATION Anzahl Lektionen pro Semester Vorkurs 1. Semester 2. Semester 3. Semester 4. Semester 5. Semester 6. Semester Grundlagenfach 2 1 2 2 2 2 2 Schwerpunktfach Ergänzungsfach

Mehr

Hausinternes Curriculum Alfred-Krupp-Schule

Hausinternes Curriculum Alfred-Krupp-Schule Hausinternes Curriculum Alfred-Krupp-Schule Jahrgangsstufe 5 Fach: Mathematik Version vom 12.11.2008 (Jan, Hö) Natürliche Zahlen Symmetrie Schätzen Rechnen Überschlagen Flächen Körper Ganze Zahlen - natürliche

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen

1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen Stoffverteilungsplan EdM 8RhPf Abfolge in EdM 8 Bleib fit im Umgang mit rationalen Zahlen Kompetenzen und Inhalte Umgang mit rationalen Zahlenim Zusammenhang 1. Terme und Gleichungen mit Klammern Leitidee

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) KK/Werkjahr mit Mindeststandards [Druckversion] Leitdeen/Richtziele Stundentafeln Sprache Geometrisches Zeichnen Mensch und Umwelt Gestalten und Musik Sport Individuum und Gemeinschaft Niveaus E P Links

Mehr

Mathematik kaufmännischer Typ (K) hauswirtschaftlicher Typ (H) landwirtschaftlicher Typ (L) Berufsoberschule Mittelstufe (Berufsaufbauschule)

Mathematik kaufmännischer Typ (K) hauswirtschaftlicher Typ (H) landwirtschaftlicher Typ (L) Berufsoberschule Mittelstufe (Berufsaufbauschule) Mathematik (K, H, L) 43 Berufsoberschule Mittelstufe (Berufsaufbauschule) Mathematik kaufmännischer Typ (K) hauswirtschaftlicher Typ (H) landwirtschaftlicher Typ (L) Schuljahr 1 44 Mathematik (K, H, L)

Mehr

HKV BS BM1. Mathematik. Aeschengraben Basell. Fachlehrplan Vorlage Mathematik für HKV beider Basel. Grundlagenbereich

HKV BS BM1. Mathematik. Aeschengraben Basell. Fachlehrplan Vorlage Mathematik für HKV beider Basel. Grundlagenbereich HKV BS Aeschengraben 15 4002 Basell BM1 Fachlehrplan Vorlage Mathematik für HKV beider Basel Grundlagenbereich Mathematik HKV beider Basel FLP Vorlage - Mathematik für KVBZ Liestal 1 Mathematik 1.1 Allgemeine

Mehr

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Symbolschreib- symbolische und

Mehr

Kompetenzerwartungen am Ende der Jahrgangsstufe 5

Kompetenzerwartungen am Ende der Jahrgangsstufe 5 Kompetenzerwartungen am Ende der Jahrgangsstufe 5 Arithmetik/Algebra mit Zahlen und Symbolen umgehen Zahlen Runden und Schätzen Große Zahlen Zahlen in Bildern Größen Längen Zeit Gewichte Rechnen Addition

Mehr

Schulinternes Curriculum Mathematik

Schulinternes Curriculum Mathematik Schulinternes Curriculum Mathematik Klasse Inhaltsbezogene Prozessorientierte 1. Natürliche Zahlen Große Zahlen; Römische Zahlzeichen; Anordnung auf dem Zahlenstrahl; Graphische Darstellung Vermehrt soll

Mehr

Lehrplan Mathematik. genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015

Lehrplan Mathematik. genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015 Lehrplan Mathematik genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015 Wirtschaftsmittelschule Zug Lüssiweg 24, 6302 Zug T 041 728 12 12 www.wms-zug.ch info@wms-zug.ch

Mehr

Schulcurriculum idsb (Stand 10. September 2012)

Schulcurriculum idsb (Stand 10. September 2012) lnternationale DEUTSCHE SCHULE BRÜSSEL Zertifiziert als Exzellente Deutsche Auslandsschule Schulcurriculum idsb (Stand 10. September 2012) Jahrgangstufe 5... 2 Jahrgangstufe 6... 5 Jahrgangstufe 7... 7

Mehr

Schulcurriculum für das Fach Mathematik Jahrgangsstufen 9/10

Schulcurriculum für das Fach Mathematik Jahrgangsstufen 9/10 Schulcurriculum für das Fach Mathematik Jahrgangsstufen 9/10 [Text eingeben] Seite 1 2 Operatoren Es gilt die vom BLASchA genehmigte Operatorenliste für die Sekundarstufe I für das Fach Deutsch Operatoren

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Materialien/ Anregungen. Jahrgangsstufe 9: Thema Bezug zum Lehrbuch Ähnlichkeit Lernfeld: Gleiche Form andere Größe (Kapitel 1)

Materialien/ Anregungen. Jahrgangsstufe 9: Thema Bezug zum Lehrbuch Ähnlichkeit Lernfeld: Gleiche Form andere Größe (Kapitel 1) HARDTBERG GYMNASIUM DER STADT BONN Stand: Oktober 2014 Schulinternes Curriculum Mathematik Das schulinterne Curriculum folgt dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen

Mehr

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken Brüche Schuleigener Lehrplan Mathematik Klasse 7 auf der Basis der Kernlehrpläne Stand August 2009 Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Schnittpunkt 7 5 Doppelstunden Kommunizieren

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Arithmetik/Algebra mit Zahlen und Symbolen umgehen

Arithmetik/Algebra mit Zahlen und Symbolen umgehen UNTERRICHTSVORHABEN 1 Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Thema: Umfang: 8 Wochen Jahrgangsstufe 9 Zehnerpotenzen/ Potenzschreibweise mit ganzzahligen

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7 1. Rationale Zahlen Vernetzen Geben Ober- und Unterbegriffe an und führen Beispiele und Gegenbeispiele als Beleg an (z.b. Proportionalität, Viereck) Überprüfen bei einem Problem die Möglichkeit mehrerer

Mehr

Schullehrplan Mathematik BM 2 Teilzeit (TZ)

Schullehrplan Mathematik BM 2 Teilzeit (TZ) Schullehrplan Mathematik BM 2 Teilzeit (TZ) 1. Semester 1. Arithmetik/Algebra 1.1. Grundlagen - Summe, Differenz, Produkt, Quotient, Potenz - Einschlägige Terminologie anwenden - Hierarchie der Operationen

Mehr

Kurzlehrplan 5. Thema Inhaltlicher Schwerpunkt Schwerpunkt Prozessbezogene Kompetenzen I Natürliche Zahlen und Größen 1) Zählen und darstellen

Kurzlehrplan 5. Thema Inhaltlicher Schwerpunkt Schwerpunkt Prozessbezogene Kompetenzen I Natürliche Zahlen und Größen 1) Zählen und darstellen Kurzlehrplan 5 Thema Inhaltlicher Schwerpunkt Schwerpunkt I Natürliche Zahlen und Größen 1) Zählen und darstellen Strichlisten / Balken- und Kreisdiagramme Maßstab 2) Große Zahlen Große Zahlen / Zifferndarstellung

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen

inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen Arithmetik/Algebra 1. Rechnen mit Brüchen Vergleichen und bewerten Lösungswege Argumentationen und Darstellungen Erkunden Untersuchen Muster und Beziehungen bei Zahlen und Figuren und stellen Vermutungen

Mehr

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG HAUPTSCHULE Fachcurriculum Klasse 7H Mathematik Schwerpunkte Kompetenzen Inhalte Mathematische

Mehr

Schulcurriculum Mathematik, Klasse 05-06

Schulcurriculum Mathematik, Klasse 05-06 Schulcurriculum Mathematik, Klasse 05-06 Themen/Inhalte: Die Nummerierung schreibt keine verbindliche Abfolge vor. Fakultative/schulinterne Inhalte sind grau hinterlegt. Kompetenzen Leitideen (= inhaltsbezogene

Mehr

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln. Kernlernplan Jahrgangsstufe 8 8 Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Funktionen Interpretieren

Mehr

Fach Mathematik. Stundentafel. Bildungsziel

Fach Mathematik. Stundentafel. Bildungsziel Fach Mathematik Stundentafel Jahr 1. 2. 3. 4. Grundlagen 4 4 4 5 Bildungsziel Der Mathematikunterricht schult das exakte Denken, das folgerichtige Schliessen und Deduzieren, einen präzisen Sprachgebrauch

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Mathematik 9 Version 09/10

Mathematik 9 Version 09/10 Verbalisieren Erläutern mathematischer Zusammenhänge und Kommunizieren Überprüfung und Bewertung von Problembearbeitungen Vergleichen und Bewerten von Lösungswegen und Problemlösungsstrategien (Funktionsplotter)

Mehr

Zeit Inhalte des zentralen Lehrplans Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen/Methoden

Zeit Inhalte des zentralen Lehrplans Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen/Methoden Mathematik Klasse 5 Zeit Inhalte des zentralen Lehrplans Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen/Methoden 25 Stunden 70 Stunden 1. Natürliche Zahlen - Große Zahlen, Zahlenstrahl - Runden

Mehr

1. Funktionale Zusammenhänge & Sachsituationen Aufgabenbeispiele für Lernende in separater Beilage

1. Funktionale Zusammenhänge & Sachsituationen Aufgabenbeispiele für Lernende in separater Beilage Funktionale Zusammenhänge & Sachsituationen Aufgabenbeispiele für Lernende in separater Beilage Tabellen und Funktionsgraphen interpretieren und darstellen Wertetabellen lesen und beschreiben. Daten in

Mehr

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen...

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen... ASK Hochschule Konstanz HTWG www.ask.htwg-konstanz.de INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK Inhalt 1 Anforderungen... 2 2 Aufgaben... 9 3 Lösungen... 11 4 Ausführliche Lösungen... 15 5 Musterprüfungen...

Mehr

Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz

Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz Monat Training Eignungstest - Vorbereitung auf Eignungstests bei Vorstellungsgesprächen - Beispielaufgaben zum Trainieren 6-9 K2: Geeignete

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

MATHEMATIK - LEHRPLAN UNTERSTUFE

MATHEMATIK - LEHRPLAN UNTERSTUFE INSTITUTO AUSTRIACO GUATEMALTECO MATHEMATIK - LEHRPLAN UNTERSTUFE Der Lehrplan für Mathematik wurde in Anlehnung an den österreichischen Lehrplan ( 11. Mai 2000 ) erstellt. Durch die Verwendung von österreichischen

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Zahlen. Bruchrechnung. Natürliche Zahlen

Zahlen. Bruchrechnung. Natürliche Zahlen Themenübersicht 1/5 Alle aktuell verfügbaren Themen (Klasse 4 10) Dieses Dokument bildet alle derzeit verfügbaren Themen ab. Die jeweils aktuellste Version des Dokuments können Sie auf der Startseite in

Mehr

Schulinterner Lehrplan Mathematik Stufe EF

Schulinterner Lehrplan Mathematik Stufe EF Schulinterner Lehrplan Mathematik Stufe EF Thema Funktionstypen Inhaltsbezogene Kompetenzen: Die Schülerinnen und Schüler Funktionen und Analysis beschreiben die Eigenschaften einer Funktion und berechnen

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum Fach Mathematik und der Jahrgangsstufe 5 am Gymnasium Natürliche Zahlen und Größen Rechnen mit natürlichen Zahlen Körper und Figuren Flächen- und Rauminhalte Anteile - Brüche Stellentafel; Zweiersystem;

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Geometrie Stereometrie

Geometrie Stereometrie TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.7 Geometrie Stereometrie Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Juni 2009

Mehr

inhaltsbezogene Kompetenzbereiche/Kompetenzen Überprüfung der Term Äquivalenz durch Einsetzen

inhaltsbezogene Kompetenzbereiche/Kompetenzen Überprüfung der Term Äquivalenz durch Einsetzen 7 8 Wochen Begründen der Lösungsschritte Bewerten alternativer Lösungswege Untersuchen von Texten auf Äquivalenz von Termen in den Formulierungen so groß wie. Verstehen von Termen als Rechenvorschrift

Mehr

Lehrplan Mathematik Informatikmittelschule 2015

Lehrplan Mathematik Informatikmittelschule 2015 1. Allgemeines Grundlagen Lektionenverteilung - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Verordnung SBFI

Mehr

Kompetenzen. Mit dem Zinsfaktor rechnen. Vernetzen: Aktien Lernkontrolle. Schülerinnen und Schüler beschreiben geometrische Sachverhalte

Kompetenzen. Mit dem Zinsfaktor rechnen. Vernetzen: Aktien Lernkontrolle. Schülerinnen und Schüler beschreiben geometrische Sachverhalte 1. Zinsrechnung Sparen - früher und heute Geld sparen und leihen 5 Wochen Grundaufgaben der Zinsrechnung Tageszinsen Grundwissen: Zinsrechnung Üben und Vertiefen Kommunizieren und Präsentieren: Gruppenpuzzle

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen 2 Anforderungen und Arbeitsaufträge in den Abiturprüfungen Durch die in den Abituraufgaben verwendeten Arbeitsaufträge und Handlungsanweisungen oder auch genannt wie z. B. begründen, herleiten oder skizzieren

Mehr

IGS Robert-Schuman-Schule Frankenthal

IGS Robert-Schuman-Schule Frankenthal Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für

Mehr

Lehrplan Grundlagenfach Mathematik

Lehrplan Grundlagenfach Mathematik toto corde, tota anima, tota virtute Von ganzem Herzen, mit ganzer Seele und mit ganzer Kraft Lehrplan Grundlagenfach Mathematik A. Stundendotation Klasse 1. 2. 3. 4. 5. 6. Wochenstunden 5 4.5 4 4 3 4

Mehr

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise. 4. Klasse. 1. Klasse. 3. Klasse. 5. Klasse. 2. Klasse

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise. 4. Klasse. 1. Klasse. 3. Klasse. 5. Klasse. 2. Klasse MATHEMATIK 1 Stundendotation 1. 2. 3. 4. 5. 6. Arithmetik und Algebra 4 3 Geometrie 2 3 Grundlagenfach 4 4 4 4 Schwerpunktfach Ergänzungsfach Weiteres Fach 2 Didaktische Hinweise Der Unterricht im Grundlagenfach

Mehr

Mathematik. 2-jährige zur Prüfung der FSR führende Berufsfachschule. Schuljahr 1 und 2. Mathematik 1

Mathematik. 2-jährige zur Prüfung der FSR führende Berufsfachschule. Schuljahr 1 und 2. Mathematik 1 Mathematik 1 Zweijährige zur Prüfung der Fachschulreife führende Berufsfachschule Mathematik Schuljahr 1 und 2 2 Mathematik Vorbemerkungen Der Mathematikunterricht der zweijährigen zur Prüfung der Fachschulreife

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5 Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

Mathematik 9 westermann Stoffverteilungsplan für den Mathematik-Erweiterungskurs 9 (122839)

Mathematik 9 westermann Stoffverteilungsplan für den Mathematik-Erweiterungskurs 9 (122839) Mathematik 9 westermann Stoffverteilungsplan für den Mathematik-Erweiterungskurs 9 (122839) 1 Ähnlichkeit Bauzeichnungen 8 Maßstäbliches Vergrößern und Verkleinern 10 Ähnliche Figuren 12 Zentrische Streckung

Mehr

Mathematik Akzentfach

Mathematik Akzentfach Mathematik Akzentfach 1. Stundendotation Klasse 1. Klasse 2. Klasse 3. Klasse 4. Klasse Wochenlektionen 3 3 2. Didaktische Konzeption Überfachliche Kompetenzen Das Akzentfach Mathematik fördert besonders...

Mehr

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben 1. Wiederholung aus Jg 8 und Vorbereitung auf den Einstellungstest 3 Wochen Seiten 206-228 2. Potenzen und Wurzeln Seiten 32-45 3. Kreisumfang und Kreisfläche Brüche und Dezimalzahlen Brüche und Dezimalzahlen:

Mehr

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung 1 Zentrische Streckung Bauzeichnungen 8 vergrößern und verkleinern einfache nutzen Geometriesoftware zum Erkunden Maßstäbliches Vergrößern und Verkleinern 10 Figuren maßstabsgetreu inner- und außer- Ähnliche

Mehr

Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA. Operationen, Gleichungen, Funktionen + DATENANALYSE

Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA. Operationen, Gleichungen, Funktionen + DATENANALYSE Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA + DATENANALYSE Operationen, Gleichungen, Funktionen y x VORWORT Mathematik ist ein wichtiges Hilfsmittel und Werkzeug, um naturwissenschaftliche und technische

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

STUDIENBEREICH MATHEMATIK MATHEMATIK LEHRPLAN DER GYMNASIALSTUDIEN. 1. Stundendotation pro Woche

STUDIENBEREICH MATHEMATIK MATHEMATIK LEHRPLAN DER GYMNASIALSTUDIEN. 1. Stundendotation pro Woche Direction de l'instruction publique, de la culture et du sport Direktion für Erziehung, Kultur und Sport Service de l enseignement secondaire du deuxième degré Amt für Unterricht der Sekundarstufe 2 CANTON

Mehr

Curriculum Mathematik. Bereich Schulabschluss

Curriculum Mathematik. Bereich Schulabschluss Curriculum Mathematik Bereich Schulabschluss Im Folgenden finden Sie eine Übersicht über alle Lerneinheiten im Fach Mathematik. Das Fach Mathematik ist in Lernstufen, Kapitel, Lerneinheiten und Übungen

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT UND KULTUS. Lehrplan für Berufsschule Plus

BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT UND KULTUS. Lehrplan für Berufsschule Plus BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT UND KULTUS Lehrplan für Berufsschule Plus Unterrichtsfach: MATHEMATIK Fachprofil: Die ist heute eine wichtige wissenschaftliche Disziplin, die umfangreiches

Mehr

Mathematik 8 Version 09/10

Mathematik 8 Version 09/10 Mathematik 8 Version 09/10 Informationen aus authentischen Texten mehrschrittige Argumentationen Spezialfälle finden Verallgemeinern Untersuchung von Zahlen und Figuren Überprüfen von Ergebnissen und Lösungswegen

Mehr