Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wahrscheinlichkeitsrechnung"

Transkript

1 Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder mit einer Reißzwecke würfeln zu müssen, kann man mit einer größeren Anzahl gleichzeitig würfeln. Am Besten geht dies mit einer Schachtel als Unterlage. Nach dem Versuch wird das Ergebnis ausgezählt. Beschreibe dein Ergebnis in einem kurzen Text: Zahl der Reißzwecken Kopf Spitze Rel. Häufigkeit Kopf Rel. Häufigkeit Spitze

2 Absolute und relative Häufigkeiten In der sind Würfel Zufallsgeneratoren. Wir wollen untersuchen wie wahrscheinlich es ist, eine 7 zu würfeln. Dazu wird in Schülergruppen gewürfelt und die Ergebnisse werden in der Liste unten notiert. Begriffe: Wir warten auf eine 7 beim Würfeln mit zwei Würfeln. Dies nennt man in der ein Ereignis! Nr.. Würfel Würfel Ergebnis abs. Häufigkeit rel. Häufigkeit

3 Der schnellste Weg Zu Beginn des Spieles werden von jedem Mitspieler drei Spielsteine auf jeweils drei Startzahlen zwischen und gesetzt. Anschließend wird mit zwei Würfeln gewürfelt und die Augensumme gebildet. Stimmt die Augensumme mit einer gesetzten Startzahl überein, darf man ein Feld vorrücken und nochmals würfeln. Stimmen Augensumme und Startzahl nicht überein, ist der nächste Spieler dran. Wer mit seinem Spielstein auf ein Zielfeld (Z) kommt, hat einen Gewinnpunkt gemacht und darf seinen Stein wieder auf eine neue beliebige Startzahl setzen. Gewonnene Reihen bleiben gesperrt. Gewonnen hat derjenige, der zuerst Gewinnpunkte hat.

4 Kreisel Zeichne für die beiden dargestellten Kreisel ein Baumdiagramm und untersuche folgende Ereignisse: E: E: E: E4: Man erhält einen Pasch Man erhält eine ungerade Gesamtzahl Man erhält zwei rote Zahlen Man erhält eine Zahl größer als 5 Gebe die Wahrscheinlichkeiten als Bruch und als Dezimalzahl an! Wahrscheinlich wirst du das Baumdiagramm nicht vollständig zeichnen können. Es reicht wenn du mit der Zeichnung andeutest, wie das Diagramm weiter geführt wird.

5 Lotto aus 9 Anstelle des bekannten Lottos aus 49 sollt ihr den kleinen Ableger davon aus 9 spielen. Dafür müsst ihr zunächst 9 Papierschnipsel mit den Zahlen -9 beschriften und dann in einen undurchsichtigen Behälter füllen. Jeder aus der Klasse tippt eine Dreierkombination aus der Menge {,,,4,5,,7,8,9} (z.b. --7). Es darf dabei keine Zahl doppelt vorkommen. Im Anschluss daran zieht der Lehrer drei Schnipsel aus dem Behälter. a) Nachdem an der Tafel die Ergebnisse aller Schüler notiert wurden (absolute Häufigkeit), berechne die relative Häufigkeit der einzelnen Zahlen. b) Wie groß war rein rechnerisch die Wahrscheinlichkeit, 0,, oder Richtige zu haben. c) Vergleiche das Ergebnis aus Teil b) mit dem aus a). Was könnte die Ursache für die Differenzen sein? Erstelle ein Baumdiagramm für diesen mehrstufigen Zufallsversuch und bestimme die Wahrscheinlichkeiten für die Ereignisse E => keine Kugel wird richtig gezogen E => eine Kugel wird richtig gezogen E => zwei Kugeln werden richtig gezogen E4 => drei Kugeln werden richtig gezogen.

6 Das -Türen-Problem In der amerikanischen Fernsehshow Let s make a deal ist ein Auto ein Hauptpreis. Um ihn zu gewinnen, muss sich der Kandidat schließlich für die richtige von drei verschlossenen Türen entscheiden. Hinter einer befindet sich das Auto, hinter den beiden anderen jeweils eine Ziege. Wenn sich der Kandidat für eine der drei Türen entschieden hat, zum Beispiel für Tür, öffnet der Moderator, der weiß, was sich hinter den Türen befindet, mit den Worten Soll ich Ihnen mal was zeigen? eine der beiden anderen Türen, zum Beispiel Tür, und eine Zeige schaut ins Publikum, denn der Moderator öffnet niemals die Tür, hinter der das Auto steht. Der Kandidat hat nun noch die Möglichkeit, sich für die andere verschlossene Tür (hier Tür ) zu entscheiden oder bei seiner ursprünglichen Wahl zu bleiben(hier Tür ). Was soll der Kandidat machen? Diese Frage wurde der Journalistin Marilyn vos Savant, die angeblich der Mensch mit dem höchsten Intelligenzquotienten ist, von einem Leser der Zeitschrift Parade gestellt. In ihrer Kolumne Ask Marylin antwortete sie, dass der Kandidat auf jeden Fall wechseln sollte. Dieses Vorgehen würde seine Gewinnwahrscheinlichkeit verdoppeln, nämlich von / auf /. Daraufhin erhielt sie etwa zehntausend Leserbriefe, die diese Strategie für falsch hielten. Was ist deine Meinung?

7 Zufallsgerät: Unten siehst du ein Netz eines Körpers, der einem Oktaeder recht ähnlich ist. Auf den Körperflächen sollen die Zahlen von bis 8 so verteilt werden, dass der Würfel nach Möglichkeit große Zahlen erzeugt. Allerdings ist die Verteilung der Zahlen auf den Würfelflächen nicht beliebig. Die gegenüberliegenden Seiten sollen als Augensumme immer 9 ergeben. Eine Bedingung für benachbarte Zahlen gibt es nicht. Überlege dir genau, wie du die Zahlen anordnest. Dann schreibe die Zahlen vor dem Zusammenkleben auf den Körper! Nach dem Zusammenbau soll der Würfel getestet werden. Es wird 5 Mal mit dem Körper gewürfelt und die Ergebnisse werden notiert. Ist die 8 wirklich besonders häufig aufgetreten?

8 Die Würfel des Herrn Efron Die rechts abgebildeten Würfel tragen die Zahlen 0 bis 8. Auch die Verteilung der Zahlen ist nicht gleich. Sie ist durch die Netzdarstellung leicht ersichtlich. Der erste Spieler wählt einen Würfel. Danach wählt der Gegenspieler. Nun wird gewürfelt und die Ergebnisse werden in der Tabelle auf diesem Blatt notiert. Berechnet zum Schluss die Gewinn-Häufigkeit des ersten und zweiten Spielers. Spieler wählt Würfel A. Welchen Würfel sollte Spieler wählen? Spieler wählt Würfel D. Welchen Würfel sollte Spieler wählen? Spieler wählt Würfel C. Welchen Würfel sollte Spieler wählen? Zeichne ein Baudiagramm. 0 0 A B Ergebnis Spieler Ergebnis Spieler 8 8 C Gewinner Spieler D Gewinner Spieler

9 Merkwürdige Würfel: Dieses Zufallsgerät ist nicht regelmäßig. Die Fläche mit Vier und Drei ist doppelt so groß wie die übrigen Flächen. Schätze zunächst die Wahrscheinlichkeit für das Auftreten einer Vier und einer Zwei. Nun soll 5 mal mit diesem Würfel gewürfelt werden. Danach wird die relative Häufigkeit für das Auftreten Vier und einer Zwei ermittelt. Aufträge zum Baumdiagramm: Zeichne ein einfaches Baumdiagramm für das einmalige Würfeln mit diesem Zufallsgerät und schreibe die ermittelten Wahrscheinlichkeitswerte in das Diagramm Zeichne ein zweistufiges verkürztes Baumdiagramm für das Ereignis Zweimal hintereinander eine Vier würfeln. Nr. Wurf Abs Rel. abs. rel. Häufigkeit (4) Häufigkeit(4) Häufigkeit () Häufigkeit ()

10 Merkwürdige Würfel: Dieses Zufallsgerät ist nicht regelmäßig. Die Fläche mit Fünf und Eins ist ein gleichseitiges Dreieck. Die anderen Flächen sind Rechteck-Flächen. Auch das Würfeln erfolgt hier ein wenig anders. Gewürfelt ist die Zahl, die unten liegt. Schätze zunächst die Wahrscheinlichkeit für das Auftreten einer Fünf und einer Drei. Nun soll 5 mal mit diesem Würfel gewürfelt werden. Danach wird die relative Häufigkeit für das Auftreten Fünf und einer Drei ermittelt. Aufträge zum Baumdiagramm: Zeichne ein einfaches Baumdiagramm für das einmalige Würfeln mit diesem Zufallsgerät und schreibe die ermittelten Wahrscheinlichkeitswerte in das Diagramm Zeichne ein zweistufiges verkürztes Baumdiagramm für das Ereignis Zweimal hintereinander eine Drei würfeln. Nr. Wurf Abs Rel. abs. rel. Häufigkeit (5) Häufigkeit(5) Häufigkeit () Häufigkeit ()

11 Du erhältst ein Gefäß mit Smarties. Bitte keine aufessen. a) Sortiere die Smarties nach Farben. b) Zeichne ein nach Farben sortiertes Baumdiagramm für ein zweimaliges Ziehen ohne Zurücklegen. c) Wie groß ist die Wahrscheinlichkeit aus einer undurchsichtigen Tüte ein rotes Smartie zu ziehen? d) Wie groß ist die Wahrscheinlichkeit zwei mal hintereinander eine rote Süßigkeit zu ziehen. Natürlich wird das erste gezogene Smartie nicht zurückgelegt. e) Wie groß ist die Wahrscheinlichkeit zweimal hintereinander die gleiche Farbe zu ziehen?

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Zwei Ziegen und ein Auto

Zwei Ziegen und ein Auto Prof. Dr. Ludwig Paditz 29.10.2002 Zwei Ziegen und ein Auto In der amerikanischen Spielshow "Let`s make a deal" ist als Hauptpreis ein Auto ausgesetzt. Hierzu sind auf der Bühne drei verschlossene Türen

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Wahrscheinlichkeit Klasse 8 7

Wahrscheinlichkeit Klasse 8 7 7 Wahrscheinlichkeit Klasse 8 Ereignisse Seite 8 a) Ω {Herz 7; Herz 8; Herz 9; Herz 0; Herz Unter; Herz Ober; Herz König; Herz Ass; Eichel 7; Eichel 8; Eichel 9; Eichel 0; Eichel Unter; Eichel Ober; Eichel

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Ü b u n g s b l a t t 4

Ü b u n g s b l a t t 4 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 30. 4. 2007 Ü b u n g s b l a t t 4 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Daten und Zufall 6BG Klasse 9 Spiel. Efronsche Würfel

Daten und Zufall 6BG Klasse 9 Spiel. Efronsche Würfel Efronsche Würfel Hinweise für die Lehrkraft Die Schülerinnen und Schüler spielen in Zweierteams. Pro Team benötigt man einen Satz der vier Efronschen Würfel und für jede Schülerin bzw. jeden Schüler ein

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

Computersimulation des Qualitätstests

Computersimulation des Qualitätstests .1 Computersimulation des Qualitätstests In diesem Kapitel erreichen wir ein erstes entscheidendes Ziel: Wir ermitteln näherungsweise die Wahrscheinlichkeiten und für die Fehler 1. und. Art und zwar ohne

Mehr

Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013

Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013 Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Übungsheft Hauptschulabschluss Mathematik Korrekturanweisung Herausgeber Ministerium für Bildung und

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Klassische Probleme der Wahrscheinlichkeitsrechnung 23. Juni 2009 Dr. Katja Krüger Universität Paderborn Inhalt Die Wetten des Chevalier de Méréé Warten auf die erste Sechs

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass

Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass a) alle Kinder Mädchen sind? b) das zweite Kind ein Junge ist? c) das älteste Kind ein Junge, das zweite Kind ein Mädchen

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Aktiv Kurs Thema Kompakt Test. Reißnägel werfen

Aktiv Kurs Thema Kompakt Test. Reißnägel werfen . Reißnägel werfen Die Klasse 7a will wissen, mit welcher Wahrscheinlichkeit beim Reißnägel fallen lassen die Nadel nach oben zeigt. Dazu lässt jeder Schüler/jede Schülerin der Klasse einen Reißnagel 00-mal

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung Zufallsexperimente Den Zufall erforschen Maximilian Gartner, Walther Unterleitner, Manfred Piok Thema Stoffzusammenhang Klassenstufe Einstieg in die Wahrscheinlichkeitsrechnung Daten und Zufall 1. Biennium

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Station Ziegenproblem. Aufgabenheft

Station Ziegenproblem. Aufgabenheft Station Ziegenproblem Aufgabenheft Mathematik-Labor Station Ziegenproblem 1 Mathematik-Labor Station Ziegenproblem Liebe Schülerinnen und Schüler! Erfolgreiche Quizshows wie Let s Make A Deal aus Amerika

Mehr

DOWNLOAD. Einfache Würfelspiele Zahlenraum bis 10. Motivierend und schnell einsetzbar. Ruth Hölken. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Einfache Würfelspiele Zahlenraum bis 10. Motivierend und schnell einsetzbar. Ruth Hölken. Downloadauszug aus dem Originaltitel: DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Würfelspiele im Zahlenraum bis Bitte der Reihe nach! Arabische

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Häufigkeit, Wahrscheinlichkeit

Häufigkeit, Wahrscheinlichkeit Häufigkeit, Wahrscheinlichkeit 1. Würfeltest Mit welchem Würfel würfelt man am häufigsten eine 6? Findet heraus, wer von euch den besten 6er Würfel hat. Dabei sollt ihr wie folgt vorgehen. (a) Jeder würfelt

Mehr

Stochastik Klasse 10 Zufallszahlen

Stochastik Klasse 10 Zufallszahlen Thema Grit Moschkau Stochastik Klasse 10 Zufallszahlen Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Urnenmodell, Histogramm, absolute und relative Häufigkeit, Zufallsexperiment, Wahrscheinlichkeit,

Mehr

Simulation von Zufallsversuchen mit dem Voyage 200

Simulation von Zufallsversuchen mit dem Voyage 200 Simulation von Zufallsversuchen mit dem Voyage 00 Guido Herweyers KHBO Campus Oostende K.U.Leuven 1. Entenjagd Zehn Jäger, alle perfekte Schützen, lauern vor einem Feld auf Enten. Bald landen dort 10 Enten.

Mehr

Spielinhalt Schildkröte, schnell! Allgemeine Spielbeschreibung und Spielziel Spielverlauf

Spielinhalt Schildkröte, schnell! Allgemeine Spielbeschreibung und Spielziel Spielverlauf Eine interessante Spielesammlung bereits für die Jüngsten. Für 2-6 Kinder ab 3 Jahre. Mit 4 verschiedenen abwechslungsreichen Farbwürfel- und Geschicklichkeitsspielen. Spielinhalt 2 Spielpläne (beidseitig

Mehr

Problemlösen Kombinationen - Wahrscheinlichkeit

Problemlösen Kombinationen - Wahrscheinlichkeit Problemlösen Kombinationen - Wahrscheinlichkeit Zusammengestellt aus dem Mathebuch der Bezirksschule Brugg Anzahl möglicher Anordnungen bei 3 Elementen Wie viele mögliche Anordnungen lassen sich aus drei

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife Mathematik (A)

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife 2010 Mathematik (A) Teil 2 Taschenrechner und Formelsammlung

Mehr

Lehrerfortbildung: Stochastik

Lehrerfortbildung: Stochastik Lehrerfortbildung: Stochastik Workshop: 3.0.06-6..06 an der Ruhr-Uni-Bochum Einführung mit Aufgaben und Lösungen Dipl.-Math. Bettina Reuther Dipl.-Math. Dirk Bachmann Einführende Beispiele Das Ziegenproblem

Mehr

11 Wahrscheinlichkeitsrechnung

11 Wahrscheinlichkeitsrechnung 1 Kap 11 Wahrscheinlichkeitsrechnung 11 Wahrscheinlichkeitsrechnung 11.1 Zufallsexperimente Beispiele 1. 2. 3.... Definition: Vorgänge bei denen man das Ergebnis noch nicht kennt, heissen Zufallsexperimente.

Mehr

Spiele mit. Spiele mit

Spiele mit. Spiele mit Einmal Eins Nimm zwei weiße und einen bunten Würfel. Würfel mit allen drei Würfeln gleichzeitig. Zähle die Augen der beiden weißen Würfel zusammen und nimm das Ergebnis mit der Augenzahl des bunten Würfels

Mehr

Die lustige Spielesammlung für 2-6 Kinder ab 3 Jahren. Mit 6 verschiedenen Farbwürfel- und Geschicklichkeitsspielen!

Die lustige Spielesammlung für 2-6 Kinder ab 3 Jahren. Mit 6 verschiedenen Farbwürfel- und Geschicklichkeitsspielen! Die lustige Spielesammlung für 2-6 Kinder ab 3 Jahren. Mit 6 verschiedenen Farbwürfel- und Geschicklichkeitsspielen! Meine6erstenSpiele_Anleitung.indd 1 29.07.10 09:39 Spieleranzahl: 2-4 Alter: ab 4 Jahre

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 20. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 20. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Lotto-Spiel (Wahrscheinlichkeiten für 6 aus 49 mit/ohne Zusatzzahl und mit/ohne Superzahl)

Lotto-Spiel (Wahrscheinlichkeiten für 6 aus 49 mit/ohne Zusatzzahl und mit/ohne Superzahl) Lotto-Spiel (Wahrscheinlichkeiten für aus mit/ohne Zusatzzahl und mit/ohne Superzahl) Jürgen Zumdick aus : Aus durchnummerierten Kugeln werden Kugeln ohne Zurücklegen und ohne Beachtung der Reihenfolge

Mehr

Vorbereitung Zunächst wird der Plan in die Mitte des Tisches gelegt und der Hase aus Holz (= Spielfigur) auf das Feld mit dem roten Punkt gestellt.

Vorbereitung Zunächst wird der Plan in die Mitte des Tisches gelegt und der Hase aus Holz (= Spielfigur) auf das Feld mit dem roten Punkt gestellt. Ravensburger Spiele* Nr. 00 448 5 Ein Spiel für 2-4 Kinder von 5-12 Jahren. Autor und Illustrator: Johann Rüttinger Inhalt: 1 achteckiger Spielplan 25 Hasenkarten (+ 2 Blankokarten) 1 Holzhase 1 Würfel

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 100. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 100. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Rechen-Craps Addition, Konzentration 2 Sechser-Würfel, 1 Spielvorlage

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Rund und eckig rot, gelb, blau. Meine Farben und Formen

Rund und eckig rot, gelb, blau. Meine Farben und Formen Rund und eckig rot, gelb, blau Ravensburger Spiele Nr. 24 725 7 Illustration: Kerstin Völker Design: DE Ravensburger, Kinetic, Miki Orange Design Redaktion: Jutta Perkert Die Reihe SPIELEND ERSTES LERNEN

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1 Seite 1 1 W ü r f e l e x p e r i m e n t 1 (Partnerarbeit) a) Würfele mehrmals mit einigen Spielwürfeln und notiere in einer Strichliste, welche Augenzahl wie oft gefallen ist. Wie oft wurde welche Augenzahl

Mehr

Wahrscheinlichkeitsrechung Gruppenauftrag 1

Wahrscheinlichkeitsrechung Gruppenauftrag 1 Wahrscheinlichkeitsrechung Gruppenauftrag 1 Durchführung der Gruppenarbeit: Dokumentieren Setze euch mit den Mitgliedern eurer Gruppe zusammen und besprecht Jeder Schüler / jede Schülerin eurer Gruppe

Mehr

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen Kompetenzen Inhalte Schnittpunkt 6 nehmen Probleme als Herausforderung an nutzen das Buch zur Informationsbeschaffung übertragen Lösungsbeispiele auf neue Aufgaben stellen das Problem anders dar ebener

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26

Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26 Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26 Dem Zufall auf der Spur ein Stationenlauf zur Einführung in die Wahrscheinlichkeitsrechnung Von Matthias Nowak, Schorndorf

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung Aufgabe : Wahrscheinlichkeitsrechnung Löse die Aufgabe auf diesem Aufgabenblatt. Trage die Lösung in die Tabelle ein. Ein Rechenweg ist hier nicht erforderlich. Hinweis: Das Casinospiel besteht aus dem

Mehr

Rechenkönig 9 7 = = 3. Spielinhalt. Das Prinzip der Karten. Wer ist der beste Rechenkünstler?

Rechenkönig 9 7 = = 3. Spielinhalt. Das Prinzip der Karten. Wer ist der beste Rechenkünstler? Copyright - Spiele Bad Rodach 2013 Rechenkönig Wer ist der beste Rechenkünstler? Eine Lernspiele-Sammlung rund um das Rechnen im Zahlenraum von 1 bis 20. Enthalten sind sieben Spielideen in unterschiedlichen

Mehr

Schatz erobern (2-6 Spieler)

Schatz erobern (2-6 Spieler) Schatz erobern (2-6 Spieler) Material: Kiste mit Holzwürfeln, 1 Spielwürfel, Schatz (1 Muggelstein) In der Mitte liegt ein Muggelstein als Schatz. Drumherum ist eine Mauer aus Holzwürfeln aufgebaut. Es

Mehr

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen:

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: http://www.serlo.org/ 1. In einer Schulklasse ergaben sich bei einer Mathematikschulaufgabe folgende Noten: Note 1

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich

Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich Lösungen zu den Beispielaufgaben für die Klasse zum Themenbereich Statistik und Wahrscheinlichkeitsrechnung erstellt von den Kolleginnen und Kollegen der Aufgabenentwicklergruppe für Vergleichsarbeiten

Mehr

AUFGABEN ZUR KOMBINATORIK (1)

AUFGABEN ZUR KOMBINATORIK (1) --- --- AUFGABEN ZUR KOMBINATORIK (). Zum Würfeln wird ein Tetraeder benutzt, das auf seinen vier Seiten mit,, und beschriftet ist. Als Ergebnis zählt diejenige Augenzahl, die auf der Grundfläche steht.

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung a.: Du bearbeitest die Aufgabe in Einzelarbeit. Lies dir die Aufgabe genau durch und überlege dir einen Lösungsansatz. Danach versuche eine Lösung zu erarbeiten. Für diese Phase hast du 10 Minuten Zeit.

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

Spielesammlung für große Würfel aus Kork

Spielesammlung für große Würfel aus Kork Spielesammlung für große Würfel aus Kork Würfelturm groß Für 2-6 Spieler, ab 5 Jahre Ein Würfel- und Geschicklichkeitsspiel, bei dem zuerst gewürfelt und dann gestapelt wird. Die 18 Würfel werden gleichmäßig

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Wahlteil Geometrie/Stochastik B 1

Wahlteil Geometrie/Stochastik B 1 Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

Gemeinsame Wahrscheinlichkeitsverteilungen

Gemeinsame Wahrscheinlichkeitsverteilungen Gemeinsame Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Gemeinsame Wahrscheinlichkeits-Funktion zweier Zufallsvariablen Randverteilungen Bedingte Verteilungen Unabhängigkeit von Zufallsvariablen

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Das Wahrscheinlichkeitsrechnen

Das Wahrscheinlichkeitsrechnen Das Wahrscheinlichkeitsrechnen Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Grundbegriffe zur Wahrscheinlichkeitstheorie Aufgabe:

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Aufgabe 1: Schwarzfahrer

Aufgabe 1: Schwarzfahrer Aufgabe 1: Schwarzfahrer In 6 von 15 Wagen eines Zuges befindet sich jeweils ein Schwarzfahrer. Es werden nacheinander zwei zufällig ausgewählte Wagen kontrolliert. Wie groß ist die Wahrscheinlichkeit,

Mehr

VORSCHAU. zur Vollversion. Inhalt. Muster und Strukturen. Zahl und Operation. Raum und Form. Größen. Daten und Zufall

VORSCHAU. zur Vollversion. Inhalt. Muster und Strukturen. Zahl und Operation. Raum und Form. Größen. Daten und Zufall Inhalt Vorwort................................................................... 4 Hinweise und Lösungen..................................................... 5 Muster und Strukturen Geometrische Muster............................................

Mehr