Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes"

Transkript

1 Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la $a0,msg li $v0,4 syscall jr $ra 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 1

2 Inhalt 1. Literatur 2. Kodierung 3. Komprimierende Codes 4. Fehlererkennung 5. Zusammenfassung und Ausblick 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 2

3 Literatur [Bor97] Borgmeyer, Johannes: Grundlagen der Digitaltechnik. Hanser, Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 3

4 Kodierung von Informationen wird ständig verwendet. Zeichenkodierung (ASCII, UTF-8,...) Shannon: Das grundlegende Problem der Kommunikation besteht darin, an einer Stelle genau oder angenähert eine Nachricht wiederzugeben, die an einer anderen Stelle ausgewählt worden ist. Ziel: sinnvolle Darstellung zu übertragender (speichernder) Information Kodierungsarten: Quellkodierung: ASCII-Code (Text), TIFF (Bilder), PCM (Sprache), MPEG (Videos),... Leitungskodierung/Kanalkodierung: Sicherung gegen Übertragungsfehler durch fehlererkennende bzw. -korrigierende Codes 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 4

5 PCM I Pulscodemodulation (PCM) Umwandlung analoge in digitale Signale (Sprach-Übertragung) gleichmäßige Abtastung des Analogsignals Abtasttheorem (Nyquist): Abtastrate: mindestens 2 x Grenzfrequenz des Ursprungssignals Grenzfrequenz des Telefons: 3,4 khz Abtastrate 8000 Hz Jeder Abtastwert mit 8 Bit quantisiert (digital dargestellt) Sprachdatenstrom hat Datenrate von 8 Bit x 8000/s = 64 kbit/s 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 5

6 PCM II Beispiel (Vereinfachung: Quantisierung mit 3 Bit) 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 6

7 PCM III Bei zu geringer Abtastfrequenz wird das Signal nicht korrekt ausgenommen. Der Fehler wird als Aliasing bezeichnet. In der Praxis ist es (ggf.) gar nicht bekannt, wie hoch die höchste Frequenz ist. Ein sogenannter Tiefpassfilter (Antialiasing-Filter) dämpft hohe Signalanteile. 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 7

8 Hintergrund der Kodierung Geeignete Darstellung für die (technische) Verarbeitung: Erfassung und Aufbereitung Übertragung Bearbeitung Ausgabe Weitere Anforderungen an die Kodierung Übertragungsgeschwindigkeit Aufwand für Bearbeitung Speicherplatzbedarf (Energieaufwand) Außerdem: Sicherung der Information gegen Verfälschung Übertragungsfehler Verarbeitungsfehler Schutz der Informationen (Verschlüsselung, Kryptologie) 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 8

9 Anforderungen an Codes Anforderungen bzw. Eigenschaften an Codes umkehrbar eindeutig Codierung leicht realisierbar (Verarbeitungsgeschwindigkeit) geringe Wortlänge Ordnungsrelation (für Sortierung) einfache Realisierung arithmetischer Operationen Erkennen und Korrektur von Übertragungsfehlern Unterscheidung von Zahlen größer/kleiner 5 (Rundung) Unterscheidung gerader/ungerader Zahlen Ggf. sind nicht alle Anforderungen mit dem gleichen Code zu erfüllen Entwicklung von zahlreichen Codes 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 9

10 BCD Binärdarstellung der 10 Dezimalziffern (z. B. Tastatur-Eingabe) Zur Kodierung der 10 Ziffern werden log 2 10 = 4 Bit benötigt, d. h. Tetrade Tetradenkodierung 6 der 16 möglichen Kodierungen stellen keine gültigen Dezimalziffern dar (Pseudotetraden), BCD-Code nicht dicht Kodierung der Dezimalziffern durch Dual-Äquivalent: BCD (Binary Coded Decimal)-Kodierung [Bor97, S. 95] Beispiel: Dezimalzahl als BCD-Zahl: BCD als Dualzahl: Vorteil: Zahlen leicht zu lesen Nachteile: nicht optimale Speicherplatz-Nutzung Probleme bei Ausführung arithmetischer Operationen 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 10

11 Codebaum Jeder Binär-Code kann graphisch durch einen binären Codebaum dargestellt werden, indem jeder Stelle im Codewort eine Schicht im Baum und jedem Binärwert ein linker und ein rechter Unterbaum zugeordnet werden Beispiel (Codebaum des BCD-Codes) 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 11

12 Gewichtete Codes Gewichtete Codes 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 12

13 Eigenschaften gewichteter Codes Eigenschaften gewichteter Codes Aiken-Code Rundungserkennung (> 5, < 5) am vordersten Bit monoton wachsend 2-aus-5-Code bis auf 0 monoton wachsend fehlererkennend 1-aus-10-Ring-Code monoton wachsend sehr übersichtlich großer Aufwand 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 13

14 Gray-Kodierung Aufeinanderfolgende Zahlen so durch Bits codiert, dass sich stets nur ein Bit ändert (sogenannte einschrittige Kodierung) Vorteile für A/D-Wandlung und fehleranfällige mechanische Abtaster Stellen besitzen keine feste Stellenwertigkeit (ungewichtet) Ausführung arithmetischer Operationen schwierig 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 14

15 Anwendung Gray-Kodierung Kodierungsscheibe zur Aufnahme der Windrichtung Der Sensor besteht aus einer durchsichtigen Kodierungsscheibe. Die Achse der Scheibe ist mit der Windfahne verbunden. Die Scheibe ist in Ringe unterteilt und jeder Ring in Sektoren. 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 15

16 Anwendung Gray-Kodierung Kodierungsscheibe bei binärer Kodierung Kodierungsscheibe bei Gray-Kodierung 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 16

17 Anwendung Gray-Kodierung Messunsicherheit der Kodierungsscheibe Die Messunsicherheit beim Positionswechsel ist also beim Gray-Kode nur 1 Bit (statt 3 Bit beim binären Kode). 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 17

18 Fano-Bedingung Wichtig: sofort decodierbare Codes, d. h. Zeichenfolgen aus Codeworten können von vorne beginnend eindeutig Wort für Wort decodiert werden, ohne nachfolgende Zeichen zu beachten Codes sind sofort dekodierbar, wenn Fano-Bedingung erfüllt: Kein Codewort ist Präfix (Anfangsstück) eines anderen Codeworts bedeutet: zu codierende Zeichen treten im Codebaum nur als Blätter auf Codes mit erfüllter Fano-Bedingung heißen auch präfixfrei Beispiel: C = 0, 10, 011, ist eindeutiger Code, aber nicht sofort decodierbar Jeder Blockcode der Länge n erfüllt Fano-Bedingung automatisch: Zur Dekodierung werden jeweils Blöcke von n Codezeichen gebildet und dekodiert BCD-Kodierung 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 18

19 Komprimierende Codes Ziele komprimierender Codes Längenreduktion der kodierten Information durch Kompression Kostenersparnis Anwendung: Speicherung und Übertragung von Informationen (Anfangsstück) eines anderen Codeworts hier behandelt: Verlustfreie Kodierungen, die vollständige korrekte Dekodierung ermöglichen (z. B. für Text, Programme, Daten,...) Varianten Lauflängenkodierung (Run Length Encoding) Wörterbuch-Kompression Huffman-Codierung Arithmetische Kodierung Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 19

20 Lauflängenkodierung Lauflängenkodierung (engl.: Run Length Encoding, RLE) Viele Daten enthalten Läufe, d. h. Folgen identischer Zeichen Idee: Folge identischer Zeichen durch (Anzahl, Zeichen) kodieren Problem: Unterscheidung der Anzahlangabe von Daten gleicher Repräsentierung RLE kodiert Läufe beliebiger Zeichen typischerweise durch: (Zeichen, Marker (Start), Anzahl, Marker (Ende)) sinnvoll nur bei Anzahl > 3 Marker in Daten kodiert durch (Marker, Marker) Beispiel: Marker: # (Start),! (Ende) Daten AAABBBBBBBCDDEEEEEEEEEEEF# kodiert: AAAB#7!CDDE#11!F##347#6! (komprimiert) 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 20

21 Fehlererkennung Zur Fehlererkennung bei Übertragung oder Speicherung Sender := Schreiboperation Empfänger := Leseoperation Z. B. 7 Bit-Kodierung auf eine redundante 8 Bit-Kodierung erweitert 8-tes Bit durch XOR-Schaltung erzeugt: Paritätsbit [Bor97, S. 99] genau dann = 1, wenn an Eingängen (7 Bit) ungerade Zahl von Einsen erzeugte Kodierung hat immer gerade Zahl von Einsen (even parity) Bei Verfälschung in nur einem Bit Zahl der Einsen nicht mehr gerade Fehler gerader Anzahl von Bits: Fehler nicht erkennbar Alternativ: auch Paritätsbit für ungerade Zahl von Einsen (odd parity) 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 21

22 Fehlererkennung Parity Bit: Zählt Anzahl der 1en, z. B. Sender: PB: 1 Empfänger: PB: 0 Empfänger(2): PB: 1 1-Bit Fehler erkennbar, 2-Bit Fehler nicht erkennbar Korrekturen nicht möglich Wiederholte Übertragung des Datums Variante: Längs- und Querparität Verbesserung Parity Bit-Verfahren durch weitere Prüfbits. 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 22

23 Fehlererkennung Dazu mehrere Blöcke gruppiert und gemeinsam behandelt Beispiel: Sender: Empfänger: Ein fehlerhaftes Bit identifizier- und korrigierbar 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 23

24 Fehlererkennung mit zyklischen Codes Problem: Erkennung von Mehrbitfehlern einfache Prüfbits i. a. nicht geeignet Gerade Mehrbitfehler häufig in der Datenkommunikation (Modem, Telefonleitung, Fehlersicherung von Dateien) CRC: Cyclic Redundancy Checksum Verfahren 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 24

25 Fehlererkennung mit zyklischen Codes Idee: n-bit-folge (c n 1, c n 2,..., c 1, c 0 ) mit c i 0, 1 als Koeffizienten eines Polynoms der Form n 1 P(x) = c i x i x 0, 1 Beispiel: entspricht Polynom P(x) = x 6 + x 5 + x Sender und Empfänger vereinbaren Generatorpolynom 0 k 1 G k (x) = x k + c i x i Sender interpretiert einen Datenblock als Polynom und ergänzt ihn mit Hilfe von G k (x) um k redundante Bits (z. B. k = 16 oder 32) Redundanz = Rest bei Division der Datenblock-Bitfolge, die durch k angehängte Nullen erweitert wurde, durch G k (x) Empfänger erhält bei korrekter Übertragung nach der Division durch G k (x) den Rest Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 25 0

26 Rechenregeln Wahrheitstafel: a, b 0, 1 a±b Exklusiv Oder (XOR) a b Und a b a ± b a b a b Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 26

27 Fehlererkennung mit zyklischen Codes Beispiel Zu übertragene Information: Generatorpolynom: G(x) = x 4 + x Berechnung CRC vom Sender : CRC Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 27

28 Fehlererkennung mit zyklischen Codes Beispiel Empfangene Bitfolge: Generatorpolynom: G(x) = x 4 + x Berechnung, ob Übertragung korrekt : Rest 0 Übertragung korrekt 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 28

29 Fehlererkennung mit zyklischen Codes Gebräuchliche 16-Bit/32-Bit-Generatorpolynome: CRC-16 CRC-CCITT CRC Bit-Generatorpolynom Artikel im SVN Variante von CRC-32: Adler32 (Mark Adler) Sehr schnell, erkennt auch Mehrbitfehler alle Einzelbitfehler, Doppelbitfehler, Dreibitfehler alle Fehlermuster mit ungerader Bitfehleranzahl Restfehlerrate < 0, der ursprünglichen Blockfehlerrate 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 29

30 Fehlerkorrigierende Codes Fehlerkorrektur Generell: Einbau von Redundanzen Länge der Übertragung: n Bit (2 n mögliche Binärfolgen) Nachrichtenlänge m Bit (2 m zulässige Codewörter) k Prüfbits (k = n - m) Hammingabstand (Hammingdistanz) d: Anzahl der Bitpositionen, an denen sich zwei Wörter eines Alphabets mindestens unterscheiden d Einzelbit-Fehler, um ein Wort in ein anderes zu überführen Berechnung: Bilde Exclusives Oder, Zähle Einsen in Resultat Beispiel: XOR = d = Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 30

31 Fehlerkorrigierende Codes Für Code mit Hammingabstand d zwischen je zwei Codewörtern gilt d t + 1 Code erkennt t-bit-fehler ( t Bitfehler können kein Codewort in anderes überführen) d 2 t + 1 Code korrigiert t-bit-fehler (legale Codewörter so weit voneinander entfernt, dass selbst bei t Bitfehlern Original-Codewort immer noch näher als jedes andere eindeutig erkennbar) Beispiel: Code mit nur 4 Codewörtern 1) ) ) ) Hamming-Distanz 5 korrigiert Doppelbitfehler Wenn durch 2-Bit-Fehler ankommendes Codewort = muss Wort 2) gewesen sein Aber: wenn 3-Bit-Fehler ( könnte aus Wort 2) entstanden sein) Codewort nicht eindeutig identifizierbar ECC (Error Checking and Correction), im praktischen Einsatz z. B. BCH Code 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 31

32 Ursachen für Störungen Rauschen Kurzzeitstörungen Elektrische Funken kosmische Strahlung Signalverformung Dämpfungs- und Phasengang eines Übertragungskanal Nebensprechen Unerwünschter Einfluss benachbarter Leitungen über Kopplung Untersuchungen von Google haben ergeben, dass es häufiger zu Speicherfehlern kommt Heise 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 32

33 Zusammenfassung und Ausblick Kodierung Nächste Vorlesung behandelt Assembler, Binder, Lader 15. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. Wolfgang Heenes 33

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1 9 Codes 9.1 Charakterisierung und Klassifizierung Definition: Das Ergebnis einer eindeutigen Zuordnung zweier Zeichen- bzw. Zahlenmengen wird Code genannt. Die Zuordnung erfolgt über eine arithmetische

Mehr

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung 60 3 Codierung 3 Codierung... 3.3 Code-Sicherung Oft wählt man absichtlich eine redundante Codierung, so dass sich die Code-Wörter zweier Zeichen (Nutzwörter) durch möglichst viele binäre Stellen von allen

Mehr

BinärCode. Codealphabet: 0 ; 1 Codeworte : Dualzahlen

BinärCode. Codealphabet: 0 ; 1 Codeworte : Dualzahlen Codes Vorschrift für die eindeutige Zuordnung (= Codierung) der Zeichen eine Zeichenvorrats (Objektmenge) zu den Zeichen eines anderen Zeichenvorrats (Bildmenge). Zweck der Codierung: Anpassung der Nachricht

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Weiterführende Literatur zum Thema Informationstheorie:

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 5. Vorlesung Inhalt Interpretation hexadezimal dargestellter Integer-Zahlen Little Endian / Big Endian Umrechnung in eine binäre Darstellung Ausführung von Additionen Optimierte

Mehr

(Prüfungs-)Aufgaben zu Schaltnetzen

(Prüfungs-)Aufgaben zu Schaltnetzen (Prüfungs-)Aufgaben zu Schaltnetzen 1) Gegeben sei die binäre Funktion f(a,b,c,d) durch folgende Wertetabelle: a b c d f(a,b,c,d) 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 a) Geben Sie die disjunktive Normalform

Mehr

Codierungstheorie. Code-Arten und Code-Sicherung

Codierungstheorie. Code-Arten und Code-Sicherung Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Digitalisierung. analoges Signal PAM. Quantisierung

Digitalisierung. analoges Signal PAM. Quantisierung Digitalisierung U analoges Signal t U PAM t U Quantisierung t Datenreduktion Redundanzreduktion (verlustfrei): mehrfach vorhandene Informationen werden nur einmal übertragen, das Signal ist ohne Verluste

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Elektrotechnik II: Kolloquium 4

Elektrotechnik II: Kolloquium 4 Elektrotechnik II: Kolloquium 4 Digitalschaltungen Hubert Abgottspon: abgottspon@eeh.ee.ethz.ch Markus Imhof: imhof@eeh.ee.ethz.ch Inhalt des Kolloquium: Digitale Messkette Sensor 1) Filter S&H- Versträker

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Kapitel 3 Kanalcodierung

Kapitel 3 Kanalcodierung Kapitel 3 Kanalcodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes:

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes: Codes () Beispiele für die Bedeutung eines n-bit-wortes: Befehl (instruction) Zahl (number) Zeichen (character) Bildelement (pixel) Vorlesung Rechnerarchitektur und Rechnertechnik SS 24 Codes (2) ASCII

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Fehlererkennung und Fehlerkorrektur in Codes

Fehlererkennung und Fehlerkorrektur in Codes Fehlererkennung und Fehlerkorrektur in Codes Blockcodes und Hamming Abstand Untersuchungen zu Codierungen von Informationen, die über einen Nachrichtenkanal übertragen werden sollen, konzentrieren sich

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Informatikgrundlagen I Grundlagen der Informatik I

Informatikgrundlagen I Grundlagen der Informatik I Informatikgrundlagen I Grundlagen der Informatik I Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 Fachbereich Automatisierung

Mehr

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg Vortrag am 25. Januar 200 Werner von Siemens Gymnasium Magdeburg Zeitansatz: 5h (inklusive Programmieraufgaben) Datenkompression Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

Informationstheorie und Codierung

Informationstheorie und Codierung Informationstheorie und Codierung 3. Codierung diskreter Quellen Gleichmäßiger Code Ungleichmäßiger Code Fano-, Huffman-Codierung Optimalcodierung von Markoff-Quellen Lauflängencodes nach Golomb und Rice

Mehr

Grundlagen der Datenverarbeitung

Grundlagen der Datenverarbeitung Grundlagen der Datenverarbeitung Zeichendarstellung Christian Gürtler MultiAugustinum 9. November 2014 Christian Gürtler (MultiAugustinum) Grundlagen der Datenverarbeitung 9. November 2014 1 / 16 Inhaltsverzeichnis

Mehr

2.1 Einführung... 1. 2.2 Grundlegende Begriffe und Definitionen... 4. 2.3 Numerische Codes... 12. 2.4 ASCII - Code... 21

2.1 Einführung... 1. 2.2 Grundlegende Begriffe und Definitionen... 4. 2.3 Numerische Codes... 12. 2.4 ASCII - Code... 21 2 Codierung 2.1 Einführung... 1 2.2 Grundlegende Begriffe und Definitionen... 4 2.3 Numerische Codes... 12 2.4 ASCII - Code... 21 2.5 Fehlererkennung, Fehlerkorrektur, Übertragungssicherung.. 23 2.6 Informationstheorie

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.1.1 Abtasttheorem 2.1.2Stochastische Nachrichtenquelle, Entropie, Redundanz 2.2 Verlustfreie universelle Kompression Medieninformatik-Buch:

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Organisatorisches Vorlesung 2 SWS ( 2,5 LP) - Dienstags. 12:00-13:30 Uhr, Raum L122 Unterlagen - Vorlesungsfolien - Übungsaufgaben

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Information und Codierung

Information und Codierung Richard W. Hamming Information und Codierung Technische Universität Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK Invantar-Nr.: Sachgebiete:. Standort: VCH Inhalt Vorwort zur 1. Auflage der Originalausgabe

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Winteremeter 2010/2011 Wolfgang Heene, Patrik Schmittat 8. Aufgabenblatt mit Löungvorchlag 10.01.2011 Hinwei: Der Schnelltet und die Aufgaben ollen in den Übunggruppen bearbeitet

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Allgemeine Beschreibung (1)

Allgemeine Beschreibung (1) Allgemeine Beschreibung (1) Zunächst soll erklärt werden, wozu ein ISDN Primärmultiplexanschluss gebraucht wird. Dieser wird nur als Anlagenanschluss (Punkt zu Punkt) angeboten. Diese Anschlussart besagt,

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Vorkurs Informatik WiSe 16/17

Vorkurs Informatik WiSe 16/17 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 13.10.2016 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Codierung Aspekte der Binär-Codierung Binärcode Codetabellen

Mehr

Seminar über Algorithmen, SS2004. Textkompression. von Christian Grümme und Robert Hartmann

Seminar über Algorithmen, SS2004. Textkompression. von Christian Grümme und Robert Hartmann Seminar über Algorithmen, SS2004 Textkompression von Christian Grümme und Robert Hartmann 1. Einleitung Textkompression wird zur Verringerung des Speicherbedarfs und der Übertragungskapazität von allgemeinen

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Komprimierung 6. Komprimierung (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Platz brauchen Motivation: beschleunigt Plattenzugriffe oder Datenübertragungen Voraussetzung:

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

Datenkommunikation II

Datenkommunikation II Datenkommunikation II Teil 2: Das OSI-Referenzmodell Die OSI-Schichten 1 - Bitübertragungsschicht Aktivierung und Deaktivierung einer physikalischen Verbindung Übertragung der Rohdaten über einen Kommunikationskanal

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 1 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.1.1 Abtasttheorem 2.1.2 Stochastische Nachrichtenquelle, Entropie, Redundanz 2.2 Verlustfreie universelle Kompression Siehe

Mehr

Einführung in die Medieninformatik 1

Einführung in die Medieninformatik 1 Einführung in die Medieninformatik 1 Wintersemester 2007/08 Prof. Dr. Rainer Malaka, Digitale Medien Medieninformatik 1 1 Plan (vorläufig) 31.10. Einführung 7.11. Menschen: Wahrnehmung 14.11. Menschen:

Mehr

Rechnerorganisation. IHS 2015/2016 H.-D. Wuttke, K. Henke

Rechnerorganisation. IHS 2015/2016 H.-D. Wuttke, K. Henke Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Übung zu Drahtlose Kommunikation. 7. Übung

Übung zu Drahtlose Kommunikation. 7. Übung Übung zu Drahtlose Kommunikation 7. Übung 03.12.2012 Aufgabe 1 (Cyclic Redundancy Check) Gegeben ist das Generator-Polynom C(x) = x 4 + x 3 + 1 a) Zeichnen Sie die Hardware-Implementation zum obigen Generator-Polynom

Mehr

Binär-Codes. Informationen zu Grundlagen digitaler Systeme (GDS) 1 Codes. 2 Binärcodes 2.1 1-Bit-Codes. 2.2 4-Bit-Codes (Tetradencodes)

Binär-Codes. Informationen zu Grundlagen digitaler Systeme (GDS) 1 Codes. 2 Binärcodes 2.1 1-Bit-Codes. 2.2 4-Bit-Codes (Tetradencodes) (GDS) Lothar Müller Beuth Hochschule Berlin Codes Als Code bezeichnet man allgemein die Zuordnung der Zeichen eines Zeichenvorrats zu Werten eines Wertebereichs oder -vorrats. Beispiele für Codes sind

Mehr

Die Begriffe analog und digital stammen aus der Rechentechnik:

Die Begriffe analog und digital stammen aus der Rechentechnik: November 968 I. Einführung in die Digitalelektronik Grundbegriffe, Wahrheitstabellen: Die Begriffe analog und digital stammen aus der Rechentechnik: Analog-Rechner benötigt zur Darstellung von Zahlenwerten

Mehr

Konzepte der Informatik

Konzepte der Informatik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Konzepte der Informatik Vorkurs Informatik zum WS 2013/2014 16.09. - 27.09.2013 Dr. Werner Struckmann / Hendrik Freytag 1. April 2010

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

2 Informationstheorie

2 Informationstheorie 2 Informationstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundbegriffe Informatik (IT: Information

Mehr

Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen)

Übungsaufgaben für Grundlagen der Informationsverarbeitung (mit Lösungen) Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen). Erläutern Sie die Begriffe Bit, Byte und Wort bezogen auf einen 6 Bit Digitalrechner. Bit: Ein Bit ist die kleinste, atomare,

Mehr

Codierung von Text. PC in Betrieb nehmen. Der ASCII-Code (American Standard Code for Information Interchange) ASCII

Codierung von Text. PC in Betrieb nehmen. Der ASCII-Code (American Standard Code for Information Interchange) ASCII Codierung von Text Der ASCII-Code (American Standard Code for Information Interchange) ASCII Zeichenvorrat 1: A,B,C,D...Z,a,b,c z,0,1..9, usw. Zeichenvorrat 2: 0,1 Codetabelle ASCII: (Auszug) A 0100 0001

Mehr

1 Das Kommunikationsmodell

1 Das Kommunikationsmodell 1 Das Kommunikationsmodell Das Sender-Empfänger-Modell der Kommunikation (nach Shannon und Weaver, 1949) definiert Kommunikation als Übertragung einer Nachricht von einem Sender zu einem Empfänger. Dabei

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Binär Codierte Dezimalzahlen (BCD-Code)

Binär Codierte Dezimalzahlen (BCD-Code) http://www.reiner-tolksdorf.de/tab/bcd_code.html Hier geht es zur Startseite der Homepage Binär Codierte Dezimalzahlen (BCD-) zum 8-4-2-1- zum Aiken- zum Exeß-3- zum Gray- zum 2-4-2-1- 57 zum 2-4-2-1-

Mehr

CRC Einführung. Version: Datum: Autor: Werner Dichler

CRC Einführung. Version: Datum: Autor: Werner Dichler CRC Einführung Version: 0.0.1 Datum: 04.03.2013 Autor: Werner Dichler Inhalt Inhalt... 2 Polynom-Division... 3 Allgemein... 3 Beispiel... 3 CRC Grundlagen... 4 Allgemein... 4 Dyadische Polynom-Division...

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 4. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Fehlerschutz durch Hamming-Codierung

Fehlerschutz durch Hamming-Codierung Versuch.. Grundlagen und Begriffe Wesentliche Eigenschaften der Hamming-Codes für die Anwendung sind: der gleichmäßige Fehlerschutz für alle Stellen des Codewortes und die einfache Bildung des Codewortes

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Huffman-Kodierung. Fachbereich Medieninformatik. Hochschule Harz. Huffman-Kodierung. Referat. Henner Wöhler. Abgabe:

Huffman-Kodierung. Fachbereich Medieninformatik. Hochschule Harz. Huffman-Kodierung. Referat. Henner Wöhler. Abgabe: Fachbereich Medieninformatik Hochschule Harz Huffman-Kodierung Referat Henner Wöhler 11459 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung...I 1. Entropiekodierung...1 1.1 Morse Code...2 1.2 Shannon-Fano-Kodierung...3

Mehr

Hauptdiplomklausur Informatik Juni 2008: Computer Networks

Hauptdiplomklausur Informatik Juni 2008: Computer Networks Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Juni 2008: Computer Networks Name: Matrikel-Nr.:

Mehr

Chapter 1 Einführung. CCNA 1 version 3.0 Wolfgang Riggert, FH Flensburg auf der Grundlage von

Chapter 1 Einführung. CCNA 1 version 3.0 Wolfgang Riggert, FH Flensburg auf der Grundlage von Chapter 1 Einführung CCNA 1 version 3.0 Wolfgang Riggert, FH Flensburg auf der Grundlage von Rick Graziani Cabrillo College Vorbemerkung Die englische Originalversion finden Sie unter : http://www.cabrillo.cc.ca.us/~rgraziani/

Mehr

FH Darmstadt FB Informatik Klausurensammlung Rechnergrundlagen Prof. Komar

FH Darmstadt FB Informatik Klausurensammlung Rechnergrundlagen Prof. Komar Matr.Nr.: Name: Leistungsnachweis Rechnergrundlagen SS 2006 Skripte, Umdrucke, Kopien, handschriftliche Aufzeichnungen und Taschenrechner sind zugelassen. Die Lösungs-Ergebnisse sind ausschließlich auf

Mehr

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen 1 Grundlagen 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen Die Überlegungen dieses Kapitels basieren auf der Informationstheorie von Shannon. Er beschäftigte

Mehr

Pulse Code Modulation

Pulse Code Modulation Fachbereich Medieninformatik Hochschule Harz Pulse Code Modulation Referat Johannes Bastian 11038 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort...1 1 Analoge Signale als Grundlage von PCM...1

Mehr

, 2015S Übungstermin: Mi.,

, 2015S Übungstermin: Mi., VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

Sinneswahrnehmungen des Menschen

Sinneswahrnehmungen des Menschen Sinneswahrnehmungen des Menschen Tastsinn Gleichgewicht Geruch Sehen Gehör Sprache Aktion Multimedia - Kanäle des Menschen Techniken für Medien im Wandel Multimediale Kommunikation Text : Bücher, Zeitschriften

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München, Medieninformatik

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof.

Mehr

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC)

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC) Übungen zu Architektur Eingebetteter Systeme Blatt 4 22.05.2009 Teil 1: Grundlagen 1.1: Grundlagen des Cyclic redundancy code (CRC) Im Gegensatz zum Parity-Check, der nur einfache Bit-Fehler erkennen kann,

Mehr

Run Length Coding und Variable Length Coding

Run Length Coding und Variable Length Coding Fachbereich Medieninformatik Hochschule Harz Run Length Coding und Variable Length Coding Referat Matthias Zittlau 11034 Abgabe: 15.01.2007 Inhaltsverzeichnis 1. RLC...1 2.1 Einführung...1 2.2 Prinzip...1

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr