Die Entwicklung des Erde-Mond-Systems

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die Entwicklung des Erde-Mond-Systems"

Transkript

1 THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem speziellen Spiegel auf der Mondoberfläche reflektieren, den Astronauten 1969 dort zurückgelassen haben. Es wird dann die Zeit gemessen, die das Licht für den Weg von der Erde zum Mond und zurück benötigt. Abbildung 1: Ein Laserstrahl, der von einem Observatorium ausgestrahlt wird, wird benutzt, um den Abstand zwischen Erde und Mond genau zu messen. Mit dieser Messmethode wurde direkt nachgewiesen, dass sich der Mond langsam von der Erde entfernt, der Abstand Erde-Mond also mit der Zeit größer wird. Dies passiert, weil die Erde durch die bei den Gezeiten auftretenden Drehmomente Drehimpuls auf den Mond überträgt (siehe Abbildung 2). In dieser Aufgabe werden Sie dieses Phänomen untersuchen. Ozean Erdrotation Gezeiten- beulen Mond Abbildung 2: Die Schwerkraft des Mondes erzeugt Gezeiten oder Beulen auf der Erde. Aufgrund der Rotation der Erde stimmt die Linie durch die Beulen nicht mit der Verbindungslinie zwischen Erde und Mond überein. Aufgrund des dadurch auftretenden Drehmoments kommt es zu einem Übertrag von Drehimpuls von der Erde auf den Mond. Die Abbildung ist nicht maßstabsgerecht.

2 Machen Sie für die Aufgaben folgende Annahmen: I) Die Umlaufbahn des Mondes ist kreisförmig und der Mond kann als punktförmig angenommen werden. II) Die Rotationsachse der Erde und die Achse, um die der Mond umläuft, sind parallel. III) Um die Rechnungen zu vereinfachen, wird angenommen, dass der Mittelpunkt der Erde und nicht der Schwerpunkt des Systems den Mittelpunkt sämtlicher Rotationsbewegungen darstellt. IV) Alle Trägheitsmomente werden bezüglich einer Drehung um die Rotationsachse der Erde betrachtet. Drehmomente und Drehimpulse werden bezüglich des Erdmittelpunktes definiert. V) Vernachlässigen Sie den Einfluss der Sonne. 1. Drehimpulserhaltung Sei L 1 der gegenwärtige Gesamtdrehimpuls des Erde-Mond-Systems. Nehmen Sie an, dass sich L 1 ausschließlich aus der Rotation der Erde und der Translation des Mondes auf seiner Umlaufbahn um die Erde ergibt. 1a Schreiben Sie die Gleichung für den gegenwärtigen Gesamtdrehimpuls des Erde-Mond-Systems auf. Drücken Sie diese Gleichung durch das Trägheitsmoment I E der Erde, die gegenwärtige Kreisfrequenz ω E1 der Erdrotation, das gegenwärtige Trägheitsmoment I M1 des Mondes und die gegenwärtige Kreisfrequenz ω M1 der Mondumlaufbahn aus. Dieser Prozess der Drehimpulsübertragung wird zu Ende sein, sobald die Rotationsdauer der Erde und die Umlaufzeit des Mondes um die Erde gleich sind. Zu diesem Zeitpunkt befinden sich die Gezeiten beulen auf der Verbindungslinie von Erde und Mond, und das Drehmoment verschwindet. 1b Schreiben Sie die Gleichung für den endgültigen Gesamtdrehimpuls L 2 des Erde-Mond-Systems auf. Machen Sie dazu dieselben Annahmen wie in Aufgabe 1a. Drücken Sie diese Gleichung durch das Trägheitsmoment I E der Erde, der endgültigen Kreisfrequenz der Erdrotation und des Umlaufes des Mondes ω 2, sowie dem endgültigen Trägheitsmoment des Mondes I M2 aus. 1c Schreiben Sie die Gleichung auf, die die Drehimpulserhaltung zu dieser Situation ausdrückt. Vernachlässigen Sie dabei den Beitrag der Erdrotation zum endgültigen Gesamtdrehimpuls.

3 2. Endgültiger Abstand und endgültige Kreisfrequenz des Erde-Mond-Systems Nehmen Sie an, dass es sich aufgrund der Gravitationswechselwirkung stets um eine kreisförmige Umlaufbahn (des Mondes um die Erde) handelt. Vernachlässigen Sie dabei den Beitrag der Erdrotation zum endgültigen Gesamtdrehimpuls. 2a Geben Sie die Kraftbilanz für die Kreisbahn des Mondes um die Erde im Endzustand des Systems an. Drücken Sie diese Bilanz durch die Größen M E, ω 2, G und der endgültigen Distanz D 2 zwischen Erde und Mond aus. M E ist die Masse der Erde und G die Gravitationskonstante. 2b Schreiben Sie einen Ausdruck für die endgültige Distanz D 2 zwischen Erde und Mond in Abhängigkeit vom Gesamtdrehimpuls des Systems L 1, den Massen M E und M M von Erde und Mond, sowie G auf. 2c Geben Sie einen Ausdruck für die endgültige Kreisfrequenz ω 2 des Erde- Mond-Systems in Abhängigkeit der bekannten Parameter L 1, M E, M M und G an. Im Folgenden sollen Sie numerische Werte für D 2 und ω 2 bestimmen. Dazu müssen Sie das Trägheitsmoment der Erde kennen. 2d Schreiben Sie einen Ausdruck für das Trägheitsmoment I E der Erde auf. Nehmen Sie dazu an, dass die Erde eine Kugel ist, dessen Dichte vom Mittelpunkt bis zum Radius r i den Wert ρ i und vom Radius r i bis zur Oberfläche der Erde beim Radius r o den Wert ρ o hat (siehe Abbildung 3). Abbildung 3: Die Erde als Kugel mit zwei Dichten ρ i und ρ o.

4 Bestimmen Sie die numerischen Werte in dieser Aufgabe immer auf zwei signifikante Stellen genau. 2e Berechnen Sie das Trägheitsmoment der Erde I E unter Verwendung von 4 ρ = kg m , r = m, ρ = kg m -3 6 und r = m. i i o o 24 Die Massen der Erde und des Mondes sind M E = kg beziehungsweise 22 M M = kg. Der gegenwärtige Abstand zwischen Erde und Mond beträgt 8 D 1 = m. Die gegenwärtige Kreisfrequenz der Erdrotation beträgt 5 ω E1 = s -1. Die gegenwärtige Kreisfrequenz des Umlaufs des Mondes um die Erde ist 6 ω M 1 = s und die Gravitationskonstante ist G = m 3 kg -1 s -2. 2f Berechnen Sie den numerischen Wert des Gesamtdrehimpulses des Systems L 1. 2g Bestimmen Sie die endgültige Distanz D 2 in Metern und als Vielfaches der gegenwärtigen Distanz D 1. 2h Bestimmen Sie die endgültige Kreisfrequenz ω 2 in s -1 und die endgültige Dauer eines Tages als Vielfaches eines gegenwärtigen Tages. Prüfen Sie nach, dass die Annahme eines vernachlässigbar kleinen Beitrags der Erdrotation zum endgültigen Gesamtdrehimpuls gerechtfertigt ist, indem Sie das Verhältnis des endgültigen Drehimpulses der Erde zu dem des Mondes bestimmen. Dies sollte ein kleine Zahl sein. 2i Bestimmen Sie das Verhältnis des endgültigen Drehimpulses der Erde zu dem des Mondes.

5 3. Um welche Distanz entfernt sich der Mond von der Erde pro Jahr? In dieser Aufgabe sollen Sie bestimmen, um welche Distanz sich der Mond von der Erde pro Jahr entfernt. Dazu benötigen Sie eine Gleichung für das Drehmoment, welches gegenwärtig auf den Mond wirkt. Nehmen Sie dazu an, dass die Gezeiten beulen durch zwei Punktmassen angenähert werden können. Jede dieser Punktmassen hat eine Masse m, die sich auf der Oberfläche der Erde befindet (siehe Abbildung 4). Mit θ sei der Winkel zwischen der Linie durch die Beulen und der Verbindungslinie durch die Mittelpunkte von Erde und Mond bezeichnet. Bewegung des Mondes Erdrotation Abbildung 4: Schematische Darstellung zur Bestimmung des Drehmoments, welches auf den Mond aufgrund der Gezeiten beulen der Erde wirkt. Die Abbildung ist nicht maßstabsgerecht. 3a Bestimmen Sie F c, den Betrag der Kraft, die auf den Mond aufgrund der am nächsten liegenden Punktmasse wirkt. 3b Bestimmen Sie F f, den Betrag der Kraft, die auf den Mond aufgrund der am weitesten entfernt liegenden Punktmasse wirkt. Sie können nun das Drehmoment aufgrund der Punktmassen bestimmen. 3c Bestimmen Sie einen Ausdruck für τ c, das Drehmoment aufgrund der am nächsten liegenden Punktmasse. 3d Bestimmen Sie einen Ausdruck für τ f, das Drehmoment aufgrund der am weitesten entfernt liegenden Punktmasse.

6 3e Bestimmen Sie einen Ausdruck für τ, das Gesamtdrehmoment aufgrund der beiden Punktmassen. Da r 0 <<D 1 gilt, nähern Sie Ihren Ausdruck in niedrigster nichtverschwindender Ordnung in / D1. Sie können dazu die Näherung ( 1 + x) a 1 + ax für x << 1 verwenden. r o 1.0 3f Berechnen Sie den numerischen Wert für das Gesamtdrehmoment τ unter Verwendung von θ = 3 und m = 3.6 x kg (Beachten Sie, dass die Masse von der Größenordnung von 10-8 kleiner ist als die Masse der Erde.) Da das Drehmoment die zeitliche Änderung des Drehimpulses ist, können Sie die gegenwärtige Zunahme der Distanz Erde-Mond pro Jahr bestimmen. Drücken Sie dazu den Drehimpuls des Mondes nur in Abhängigkeit von den Größen M M, M E, D 1 und G aus. 3g Bestimmen Sie die gegenwärtige Zunahme der Distanz Erde-Mond pro Jahr. 1.0 Schätzen Sie schließlich ab, um wie viel die Dauer eines Tages pro Jahr zunimmt. 3h Bestimmen Sie die Abnahme von ω E1 innerhalb eines Jahres und um wie viel die Dauer eines Tages innerhalb eines Jahres gegenwärtig zunimmt. 1.0

7 4. Wo geht die Energie hin? Im Gegensatz zum Drehimpuls, der erhalten bleibt, bleibt die Summe aus Rotations- und Gravitationsenergie des Erde-Mond-Systems nicht erhalten. Wir werden dies in diesem letzten Abschnitt betrachten. 4a Schreiben Sie einen Ausdruck für die Gesamtenergie E (Rotations- und Gravitationsenergie) des gegenwärtigen Erde-Mond-Systems auf. Stellen Sie E als Funktion der Größen I E, ω E1, M M, M E, D 1 und G dar. 4b Schreiben Sie einen Ausdruck für die Änderung Δ E der Gesamtenergie E als Funktion der Änderungen in D l und ω E1 auf. Berechnen Sie den numerischen Wert der Änderung Δ E pro Jahr unter Verwendung der numerischen Werte der Änderungen in D l und ω E1, die Sie in den Teilaufgaben 3h und 3g bestimmt haben. Überprüfen Sie anhand einer Abschätzung, dass dieser Energieverlust mit der aufgrund der durch den Mond verursachten Gezeiten dissipierten Energie übereinstimmt. Nehmen Sie dazu an, dass während der Gezeiten das Wasser im Mittel um eine Höhe h= m auf der gesamten Erdoberfläche ansteigt. (Der Einfachheit halber kann angenommen werden, dass die gesamte Oberfläche der Erde mit Wasser bedeckt ist.) Dieser Anstieg findet zweimal innerhalb eines Tages statt. Nehmen Sie weiterhin an, dass 10% dieser Gravitationsenergie aufgrund der Viskosität des sich bewegenden Wassers dissipiert wird. Verwenden Sie als Dichte des 3 Wassers ρ water = 10 kg m -3 und für die Gravitationsbeschleunigung auf der Oberfläche der Erde g = 9.8 m s -2. 4c Wie groß ist die Masse der angehobenen Wasserschicht? 4d Berechnen Sie, wie viel Energie pro Jahr dissipiert wird. In welchem Verhältnis steht diese Energie zum gegenwärtigen Energieverlust des Erde-Mond-Systems pro Jahr?

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Versuch 4 - Trägheitsmoment und Drehimpuls

Versuch 4 - Trägheitsmoment und Drehimpuls UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.

Mehr

Aufgabe 1: (6 Punkte)

Aufgabe 1: (6 Punkte) Aufgabe 1: (6 Punkte) Aus einer Kanone (Masse 5 t) wird eine Kugel abgeschossen. Die Kugel habe eine Masse von 50 kg und eine Geschwindigkeit von 200 m/s direkt nach dem Abschuss. Der Abschusswinkel betrage

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

1. Probe - Klausur zur Vorlesung E1: Mechanik

1. Probe - Klausur zur Vorlesung E1: Mechanik Fakultät für Physik der LMU 27.12.2011 1. Probe - Klausur zur Vorlesung E1: Mechanik Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr. Frank Jäckel Name:... Vorname:... Matrikelnummer:...

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Kraft = Impulsstrom F = d p dt = dm dt v = dn

Mehr

Einführung in die Astronomie

Einführung in die Astronomie Einführung in die Astronomie Teil 2 Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg part2.tex Einführung in die Astronomie Peter H. Hauschildt 30/10/2014

Mehr

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen 1 Einleitung Die Mondentfernung (mit Lösungen) Als Aristarch versuchte, die Sonnenentfernung

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

2.5 Dynamik der Drehbewegung

2.5 Dynamik der Drehbewegung - 58-2.5 Dynamik der Drehbewegung 2.5.1 Drehimpuls Genau so wie ein Körper sich ohne die Einwirkung äußerer Kräfte geradlinig mit konstanter Geschwindigkeit bewegt, so behält er seine Orientierung gegenüber

Mehr

Satellitennavigation-SS 2011

Satellitennavigation-SS 2011 Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at office@lyk.at Satellitennavigation GPS,

Mehr

Messung der Astronomischen Einheit nach Ole Römer

Messung der Astronomischen Einheit nach Ole Römer Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Ole Römer Einleitung Misst man um die Zeit der Jupiteropposition

Mehr

Doppler-Effekt und Bahngeschwindigkeit der Erde

Doppler-Effekt und Bahngeschwindigkeit der Erde Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Doppler-Effekt und Bahngeschwindigkeit der Erde 1 Einleitung Nimmt man im Laufe eines Jahres

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen!

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen! ÜBUNGEN ZUR KLASSISCHEN / EINFÜHRUNG IN DIE PHYSIK I WS 2010/11 PROBEKLAUSUR 22.01.2011 Kennwort... Kennzahl Übungsgruppe (Tag/Uhrzeit) nur für die Korrektoren: Studienfach (bitte ankreuzen): Aufgabe Punkte

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt.

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Distanzen und Grössen im Planetenweg Arbeitsblatt 1 Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Anders gesagt: Der Massstab

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

4 Die Rotation starrer Körper

4 Die Rotation starrer Körper 4 Die Rotation starrer Körper Die Bewegung eines realen Körpers ist erst dann vollständig beschrieben, wenn nicht nur seine als Translation bezeichnete geradlinige Bewegung, sondern auch seine als Rotation

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Aufgabe 11.1 (Fragen zu Kreisbewegungen und Drehungen)

Aufgabe 11.1 (Fragen zu Kreisbewegungen und Drehungen) Physik VNT Aufgabenblätter und 2 7. Übung 4. KW) Aufgabe. Fragen zu Kreisbewegungen und Drehungen) a) Beurteilen Sie, welche der folgenden Aussagen jeweils wahr oder falsch ist: Wenn sich ein Körper gleichförmig

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 5 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische Zeitrechnung Sonnensystem

Mehr

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005 PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

ARBEITSBLATT STUDIUM EINFACHER BEWEGUNGEN

ARBEITSBLATT STUDIUM EINFACHER BEWEGUNGEN ARBEITSBLATT STUDIUM EINFACHER BEWEGUNGEN FREIER FALL NAME:.. KLASSE:.. DATUM:. Verwendete die Simulation: http://www.walter-fendt.de/ph14d/wurf.htm Wir untersuchen zum freien Fall folgende Fragestellungen:

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Drehbewegungen. Lerninhalte

Drehbewegungen. Lerninhalte Physik Lerninhalte man informiere sich über: Winkelgeschwindigkeit, Winkelbeschleunigung Drehmoment, Drehimpuls, Drehimpulserhaltung Trägheitsmoment, Steiner scher Satz gleichmäßig beschleunigte Drehbewegung

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

6. Orbits und die Runge-Lenz Vektor

6. Orbits und die Runge-Lenz Vektor Übungen zur T: Theoretische Mechani, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physi.uni-muenchen.de 6. Orbits und die Runge-Lenz Vetor Übung 6.: Die Rücehr der Kanonenugel

Mehr

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz Kepler sche Gesetze 1. 3. Keplersche Gesetz (a) Wie kann man das 3. Keplersche Gesetz aus physikalischen Gesetzen ableiten? Welche vereinfachenden Annahmen werden dazu gemacht? (b) Welche Verfeinerung

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

Raumgeometrie WORTSCHATZ 1

Raumgeometrie WORTSCHATZ 1 Raumgeometrie WORTSCHATZ 1 Video zur Raumgeometrie : http://www.youtube.com/watch?v=qbqbd0b3vzu VOKABEL : eine Angabe ; angeben ; was angegeben ist : ce qui est donné (les données) eine Annahme ; annehmen

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Physikalische Grundlagen

Physikalische Grundlagen Physikalische Grundlagen Inhalt: - Bahn und Bahngeschwindigkeit eines Satelliten - Die Energie eines Satelliten - Kosmische Geschwindigkeiten Es wird empfohlen diese Abschnitte der Reihe nach zu bearbeiten.

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

Äquatoraufgabe. Der Äquator

Äquatoraufgabe. Der Äquator Humboldt Universität zu Berlin Datum: 06.01.09 Institut für Mathematik SE: Ausgewählte Kapitel der Didaktik der Mathematik (Computerunterstützter Mathematikunterricht) Dozent: I. Lehmann Autor: A. Gielsdorf

Mehr

Messung der Astronomischen Einheit durch Spektroskopie der Sonne

Messung der Astronomischen Einheit durch Spektroskopie der Sonne Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Spektroskopie der Sonne (mit Lösungen) 1 Einleitung

Mehr

1) Fluss und Zusammensetzung kosmischer Strahlung

1) Fluss und Zusammensetzung kosmischer Strahlung 1) Fluss und Zusammensetzung kosmischer Strahlung Der Fluss ist eine Größe, die beschreibt, wie viele Teilchen in einem Energieintervall auf einer Fläche in einem Raumwinkelintervall und einem Zeitintervall

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

IM3. Modul Mechanik. Maxwell sches Rad

IM3. Modul Mechanik. Maxwell sches Rad IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Versuch M7 für Nebenfächler Rotations- und Translationsbewegung

Versuch M7 für Nebenfächler Rotations- und Translationsbewegung Versuch M7 für Nebenfächler Rotations- und Translationsbewegung I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner

Mehr

Astronomische Beobachtungen und Weltbilder

Astronomische Beobachtungen und Weltbilder Astronomische Beobachtungen und Weltbilder Beobachtet man den Himmel (der Nordhalbkugel) über einen längeren Zeitraum, so lassen sich folgende Veränderungen feststellen: 1. Die Fixsterne drehen sich einmal

Mehr

5 Kreisbewegung und Rotation (rotación, la)

5 Kreisbewegung und Rotation (rotación, la) 5 Kreisbewegung und Rotation Hofer 1 5 Kreisbewegung und Rotation (rotación, la) A1: Nenne Beispiele für kreisförmige Bewegungen und Drehungen aus dem Alltag! A2: Nenne die grundlegenden Bewegungsformen

Mehr

Die Gravitationswaage

Die Gravitationswaage Physikalisches Praktikum für das Hauptfach Physik Versuch 02 Die Gravitationswaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Die Gezeiten I. Gezeitenkräfte und Gezeitenbeschleunigungen

Die Gezeiten I. Gezeitenkräfte und Gezeitenbeschleunigungen Andromeda 1/08 Die Gezeiten I Norbert Bertels Wir alle kennen die Erscheinungen von Ebbe und Flut, die Gezeiten. Wir haben sie kennengelernt bei Ferien oder anderen Aufenthalten an den Küsten Deutschlands,

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Messung der Astronomischen Einheit nach Aristarch (mit Lösung)

Messung der Astronomischen Einheit nach Aristarch (mit Lösung) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch (mit Lösung) 1 Einleitung Bis ins 17. Jahrhundert

Mehr

Theory Austrian German (Austria) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag.

Theory Austrian German (Austria) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 points) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag. Einleitung Bistabile nichtlineare halbleitende

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

Impulserhaltung in zwei Dimensionen (M5)

Impulserhaltung in zwei Dimensionen (M5) Impulserhaltung in zwei Dimensionen (M5) Ziel des Versuches Der elastische Stoß zweier Scheiben mit sowohl gleicher als auch unterschiedlicher Masse, die sich auf einem Luftkissentisch nahezu reibungsfrei

Mehr

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Kreisberechnungen GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 16. November 12 Inhaltsverzeichnis 1 Kreisberechnungen 1 1.1

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

2. Kinematik. 2.1 Modell Punktmasse

2. Kinematik. 2.1 Modell Punktmasse 2. Kinematik 2.1 Modell Punktmasse 2.22 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung in 3 Dimensionen

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Themengebiet: Mechanik. Tabelle 1: Gegenüberstellung der sich entsprechenden Größen bei Translation und Rotation

Themengebiet: Mechanik. Tabelle 1: Gegenüberstellung der sich entsprechenden Größen bei Translation und Rotation Seite 1 1 Literatur Themengebiet: Mechanik W. Kranzer, So interessant ist Physik, Köln, 1982, S. 63-65, 331-335 R. L. Page, The Physics of Human Movement, Exeter, 1978, S. 45-56 2 Grundlagen 2.1, Drehmoment,

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Grundlagenfach NATURWISSENSCHAFTEN

Grundlagenfach NATURWISSENSCHAFTEN Schweizerische Maturitätsprüfung Kandidat(in) Nr.... Sommer 2010, Universität Bern Name / Vorname:... Grundlagenfach Bereich: Teil: Verfasser: Zeit: Hilfsmittel: NATURWISSENSCHAFTEN Physik R. Weiss 80

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Physikalische Grundlagen der Technischen Informatik

Physikalische Grundlagen der Technischen Informatik Aufgaben für die schriftliche Teilprüfung Physikalische Grundlagen der Technischen Informatik der Diplom-Vorprüfung Techische Informatik Lehrstuhl für Optoelektronik 1 Prof. Dr. K.-H. Brenner 6. April

Mehr

Aufgabe 34 (Mechanik, Drehbewegung) Die Spitze des Minutenzeigers einer Turmuhr hat die Geschwindigkeit 1,50 mms -1. Wie lang ist der Zeiger?

Aufgabe 34 (Mechanik, Drehbewegung) Die Spitze des Minutenzeigers einer Turmuhr hat die Geschwindigkeit 1,50 mms -1. Wie lang ist der Zeiger? zu 2.2 / IV. Wiederholung zur Drehbewegung (Rotation) Aufgabe 31 (Mechanik, Drehbewegung) Fach: Physik/ L. Wenzl Datum:. Der Erdradius beträgt etwa 6370 km. Mit welcher Geschwindigkeit bewegt sich ein

Mehr