Geordnete Binärbäume

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Geordnete Binärbäume"

Transkript

1 Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß WS 09/10

2 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 2 Geordnete Binärbäume Motivation Eine Datenstruktur für ein Namensverzeichnis soll implementiert werden Die Datenstruktur soll die Operationen find, insert und print anbieten Mit der Zeit wird die Menge an Namen wachsen (>1000) Beispiele Julia Doris Harry Tom Romeo Doris Julia Tom namen[2] = Julia Julia Romeo 1. Array 2. Liste 3. Geordnete Binärbäume (balanciert und zu einer Liste entartet)

3 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 3 Geordnete Binärbäume Ein Binärbaum b heißt geordnet, wenn b leer ist oder wenn folgendes für alle nichtleeren Teilbäume t von b gilt: Der Schlüssel von t ist größer (oder gleich) als alle Schlüssel des linken Teilbaums von t und kleiner (oder gleich) als alle Schlüssel des rechten Teilbaums von t > 7 < 5 > > < 12

4 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 4 Geordnete Binärbäume Beispiel: Geordnet sind: 7 (abstrakte Darstellung) Der leere Baum und der Baum t: t = Nicht geordnet ist der Baum t1: 7 t1 =

5 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 5 Suche im geordneten Binärbaum Prinzipieller Ablauf der Berechnung von t.find(6): 1. Vergleiche 6 mit dem Wert der Wurzel; 2. Da 6<7, gehe zum linken Kindknoten; 6<

6 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 6 Suche im geordneten Binärbaum Prinzipieller Ablauf der Berechnung von t.find(6): 1. Vergleiche 6 mit dem Wert der Wurzel; 2. Da 6<7, gehe zum linken Kindknoten; 3. Vergleiche 6 mit dem Wert dieses Knotens; 4. Da 6>5, gehe zum rechten Kindknoten dieses Knotens; 3 6< >

7 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 7 Suche im geordneten Binärbaum Prinzipieller Ablauf der Berechnung von t.find(6): 1. Vergleiche 6 mit dem Wert der Wurzel; 2. Da 6<7, gehe zum linken Kindknoten; 3. Vergleiche 6 mit dem Wert dieses Knotens; 4. Da 6>5, gehe zum rechten Kindknoten dieses Knotens; 5. Vergleiche 6 mit dem Wert dieses Knotens; 3 6< > ==6 return true; 6. Da 6==6, gebe Ergebnis true zurück.

8 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 8 Suche im geordneten Binärbaum (Implementierung) t t.find(6): 1. Suche zunächst in BinTree. 2. Wenn t nicht leer, delegiere die Aufgabe an Node durch Aufruf von anchor.find(6); 3. Verfahre wie auf den vorgehenden Folien. key=5 :BinTree 6<7 6>5 key=7 t.anchor key=10 key=3 key=6 6==6 return true key=12

9 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 9 public class BinTree {... public boolean find(int key) { if (anchor == null) return false; else return anchor.find(key);... class Node {... boolean find(int key) { Node current = this; while(current.key!= key) // solange nicht gefunden, { if (key < current.key) // gehe nach links? current = current.left; else // sonst gehe nach rechts current = current.right; if(current == null) return false; //nicht gefunden! return true; Suche im geordneten Binärbaum Gibt true zurück, wenn key im Baum; sonst wird false zurückgegeben //gefunden; gib true zurück

10 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 10 public class BinTree {... public Object findvalue(int key) { if (anchor == null) return null; else return anchor.findvalue(key);... class Node {... boolean findvalue(int key) { Node current = this; while(current.key!= key) // solange nicht gefunden, { if (key < current.key) // gehe nach links? current = current.left; else // sonst gehe nach rechts current = current.right; if(current == null) return null; //nicht gefunden! return current.value; Suche im geordneten Binärbaum Gibt value zurück, wenn key im Baum; sonst wird null zurückgegeben //gefunden; gib true zurück

11 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 11 Beim Einfügen in einen geordneten Binärbaum wird rekursiv die richtige Stelle gesucht, so dass wieder eine geordneter Binärbaum entsteht. Beispiel: t.insert(8) ergibt: Einfügen in geordneten Binärbaum (Zur Vereinfachung der Darstellung wird hier nur ein Schlüssel und kein Wert eingefügt.) 7 t = t = t.insert(8)

12 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 12 Einfügen in geordneten Binärbaum (Implementierung) t.insert(8) :BinTree t this... key=5 key=7 key=10 key=3 key=6 key=12 Aufruf von t.insert(id):

13 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 13 Einfügen in geordneten Binärbaum (Implementierung) t.insert(8) :BinTree t this... key=5 key=7 key=10 key=3 key=6 key=12 Delegieren der Aufgabe durch Aufruf von achor.insert(id):

14 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 14 Einfügen in geordneten Binärbaum (Implementierung) anchor.insertkey(8): :BinTree t this... this key=5 key=7 key=10 key=3 key=6 key=12 Delegieren Delegieren der Aufgabe der durch Aufgabe durch Aufruf von Aufruf anchor.insertkey(id): von head.add(x): Durchlauf durch das Node-Geflecht mit zwei Hilfsvariablen current und parent

15 t this parent Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 15 anchor.insert(8):... this current Einfügen in geordneten Binärbaum (Implementierung) key=3 key=5 :BinTree key=6 key=7 Falls id > current.key, gehe nach Setze rechts: if(id > current current.key) = this; current parent = current.right; = current; key=10 key=12 Delegieren der Aufgabe durch Aufruf von anchor.insert(id): Durchlauf durch das Node-Geflecht mit zwei Hilfsvariablen current und parent

16 this Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 16 anchor.insert(8): current... this current parent Einfügen in geordneten Binärbaum (Implementierung) key=3 key=5 :BinTree key=6 key=7 Und Falls setze: x > current.elem, parent gehe nach = current; rechts: if(x > current.elem) current = current.right; key=10 key=12

17 this Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 17 anchor.insert(8): current... this current parent Einfügen in geordneten Binärbaum (Implementierung) key=3 key=5 :BinTree key=6 key=7 Und Falls setze: id < current.key, parent gehe nach = links: current; if(key < current.key) current = current.left; key=10 key=12

18 this Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 18 anchor.insert(8): current... this current null parent Einfügen in geordneten Binärbaum (Implementierung) Wenn current= null, füge neuen Knoten ein: if(current Falls x == < null) current.elem, :BinTree { parent.left gehe nach links: if(x = new < Node(null,id,null); current.elem) current = current.left; return this; key=7 key=5 key=10 key=3 key=6 key=12

19 this Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 19 anchor.insert(8): current... this current parent Einfügen in geordneten Binärbaum (Implementierung) null key=3 key=5 :BinTree key=6 key=7 Wenn current= null, füge neuen Knoten ein: if(current == null) { parent.left = new Node(null,id,null); return this; key=8 key=10 key=12

20 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 20 Einfügen in geordneten Binärbaum Fügt einen neuen Knoten mit Schlüssel id an der richtigen Stelle im geordneten Baum ein public void insert(int id, Object o) { if(anchor==null) // falls kein Knoten im anchor anchor = new Node(null, id, o, null,); // neuer Knoten else anchor = anchor.insert(id, o); wobei insert in class Node folgendermaßen definiert wird:

21 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 21 Node insert(int id, Object o) { Node current = this; // starte bei this Node parent; while(true) // terminiert intern { parent = current; Einfügen in geordneten Binärbaum (Implementierung) if(id < current.key) // gehe nach links? { current = current.left; if(current == null) // am Ende füge links ein { parent.left = new Node(null, id, o, null); return this; // end if go left else { current = current.right; if(current == null) // am Ende füge rechts ein { parent.right = new Node(null, id, o, null); return this; // end else go right // end while Fügt einen neuen Knoten passend ein Achtung:id darf nicht im Baum vorkommen! // falls id > current.key, gehe nach rechts

22 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 09/10 22 Zusammenfassung Binäre Bäume können in Java implementiert werden als Verallgemeinerung der einfach verketteten Listen mit zwei Nachfolgerverweisen Eine Operation auf binären Bäume mit Knoten (z.b. find, insert ) wird dann definiert durch Delegation der Operation an die Knotenklasse Im gezeigten Beispiel gibt die Klasse BinTree die Verantwortung für einen Teil ihrer Funktionalität an die Hilfsklasse Node ab Als weiteres Beispiel kann eine Methode print definiert werden, welche Informationen über den Knotenwert in der Konsole ausgibt

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte)

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte) Praktische Informatik (Software) Vorlesung Softwareentwicklung 1 Prof. Dr. A. Ferscha Hauptklausur am 01. 02. 2001 Zuname Vorname Matr. Nr. Stud. Kennz. Sitzplatz HS / / / Punkte Note korr. Fügen Sie fehlende

Mehr

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 16 4 14 5 12 56 6 16 7 18 8 20 9 10 Summe

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@informatik.uni-leipzig.de aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst.

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen (Folie 38, Seite 23 im Skript) Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen

Mehr

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen...

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen... Bäume und Graphen In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. Inhalt 1. Bäume... 1.1. Grundlagen... 1.. Repräsentation von Binärbäumen... 9 1..1.

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Tutoraufgabe 1 (2 3 4 Bäume):

Tutoraufgabe 1 (2 3 4 Bäume): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Übungsblatt (Abgabe.0.0) F. Corzilius, S. Schupp, T. Ströder Allgemeine Hinweise: Die Hausaufgaben sollen in Gruppen von je bis Studierenden aus

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm 10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Rekurrenzen T(n) = T(n 1) + N beschreibt Laufzeitverhalten eines rekursiven Algorithmus

Rekurrenzen T(n) = T(n 1) + N beschreibt Laufzeitverhalten eines rekursiven Algorithmus Algorithmen und Datenstrukturen Übung Rekurrenzen T(n) = T(n ) + N beschreibt Laufzeitverhalten eines rekursiven Algorithmus Bsp. Fibunacci F(n) = F(n ) + F(n ) N F(0) = F() = F(N) rekursive Aufrufe,8

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in

Mehr

Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 12 4 18 5 20 64 6 9 7 17 8 18 9 12 Summe 120

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Lösungsvorschläge. zu den Aufgaben im Kapitel 4

Lösungsvorschläge. zu den Aufgaben im Kapitel 4 Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Klausur zur Veranstaltung Programmierung (fortgeschrittene Konzepte)

Klausur zur Veranstaltung Programmierung (fortgeschrittene Konzepte) Klausur zur Veranstaltung Programmierung (fortgeschrittene Konzepte) Bearbeitungszeit: 100 Minuten (14:15-15:55) Gesamtpunktzahl: 80 Punkte + 30 Zusatzpunkte Die Punktzahlen sind in etwa so bemessen, dass

Mehr

II.3.1 Rekursive Algorithmen - 1 -

II.3.1 Rekursive Algorithmen - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -

Mehr

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 16 4 14 5 12 56 6 16 7 18 8 20 9 10 Summe

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Zusatzaufgaben Lösungsvorschlag Objektorientierte Programmierung Lösung 22 (Java und UML-Klassendiagramm)

Mehr

Advanced Programming in C

Advanced Programming in C Advanced Programming in C Pointer und Listen Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Oktober 2013 Überblick 1 Variablen vs. Pointer - Statischer und dynamischer

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus wurden ausgewählte Teile in Abstimmung

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

8 Baum in perfekter Komposition

8 Baum in perfekter Komposition 8 Baum in perfekter Komposition Die Implementierung des Binärbaums im letzten Kapitel wird mithilfe des Entwurfsmusters Kompositum optimiert. Knoten und Abschluss Bei der einfach verketteten Liste wurde

Mehr

Binärbäume. Prof. Dr. E. Ehses, 2014 1

Binärbäume. Prof. Dr. E. Ehses, 2014 1 Binärbäume Grundbegriffe der Graphentheorie Bäume und Ihre Anwendungen Unterschiedliche Darstellungen von Bäumen und Binärbäumen Binärbäume in Java Rekursive Traversierung von Binärbäumen Ebenenweise Traversierung

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Kapitel 8: Abstrakte Datentypen. Inhalt. Definition ADT Keller ADT Schlange

Kapitel 8: Abstrakte Datentypen. Inhalt. Definition ADT Keller ADT Schlange Wintersemester 005/06 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2005/06 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps Teil 1: Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume AVL-Bäume Splay-Bäume B-Bäume Digitale Suchbäume Heaps M.O.Franz; Oktober 2007 Algorithmen und

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

HTTP://WWW.WIKIPAINTINGS.ORG/EN/FRIEDENSREICH-HUNDERTWASSER/YOU-ARE-A-GUEST-OF-NATURE-BEHAVE Abstrakte Datentypen.

HTTP://WWW.WIKIPAINTINGS.ORG/EN/FRIEDENSREICH-HUNDERTWASSER/YOU-ARE-A-GUEST-OF-NATURE-BEHAVE Abstrakte Datentypen. HTTP://WWW.WIKIPAINTINGS.ORG/EN/FRIEDENSREICH-HUNDERTWASSER/YOU-ARE-A-GUEST-OF-NATURE-BEHAVE Abstrakte Datentypen OOPM, Ralf Lämmel (C) Ralf Lämmel, OOPM, Universität Koblenz-Landau 562 Motivation abstrakter

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

5.14 Generics. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

5.14 Generics. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Motivation für Generics: Containertypen speichern eine Anzahl von Elementen anderer Typen Wie definiert man die Containerklasse ArrayList? In der Definition könnte man als Elementtyp Object angeben maximale

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Übungsblatt 5 Lösungsvorschlag Objektorientierte Programmierung 22. 05. 2006 Lösung 9 (SMS-Eingabe am

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Informatik II Musterlösung

Informatik II Musterlösung Ludwig-Maximilians-Universität München SS 2006 Institut für Informatik Übungsblatt 4 Prof. Dr. M. Wirsing, M. Hammer, A. Rauschmayer Informatik II Musterlösung Zu jeder Aufgabe ist eine Datei abzugeben,

Mehr

Probeklausur: Programmierung WS04/05

Probeklausur: Programmierung WS04/05 Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java: Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen

Mehr

Programmiertechnik II

Programmiertechnik II 2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

188.154 Einführung in die Programmierung für Wirtschaftsinformatik

188.154 Einführung in die Programmierung für Wirtschaftsinformatik Beispiel 1 Vererbung (Liste) Gegeben sind die beiden Klassen ListNode und PersonNode. 188.154 Einführung in die Programmierung für Wirtschaftsinformatik Wiederholung, Prüfungsvorbereitung Monika Lanzenberger

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Inhalte Informatik. I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen

Inhalte Informatik. I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen Inhalte Informatik I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen II.0 Grundlegende Programmstrukturen und Algorithmen Sortier- und Suchalgorithmen auf Arrays

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Elementare Datenstrukturen für dynamische Mengen Stapel & Warteschlangen Verkettete Listen Bäume Anwendungsbeispiel:

Mehr

Java. Wir verwenden oft Java für Datenstrukturen und Algorithmen. Die Vorlesung ist aber von der Programmiersprache unabhängig.

Java. Wir verwenden oft Java für Datenstrukturen und Algorithmen. Die Vorlesung ist aber von der Programmiersprache unabhängig. Komplexität von Algorithmen (Folie 34, Seite 18 im Skript) Wir verwenden oft für Datenstrukturen und Algorithmen. Die Vorlesung ist aber von der Programmiersprache unabhängig. Lernziel sind die einzelnen

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Übung 6. Rot-Schwarz-Bäume

Übung 6. Rot-Schwarz-Bäume Übung 6. Rot-Schwarz-Bäume Top-Down 2.-3-4-Bäume Zum Ausschluß des ungünstigsten Falls bei binären Suchbäumen ist eine gewisse Flexibilität in den verwendeten Datenstrukturen nötig. Das kann bspw. durch

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Rekursive Funktionen

Rekursive Funktionen Um Rekursion zu verstehen, muss man vor allem Rekursion verstehen. http://www2.norwalk-city.k12.oh.us/wordpress/precalc/files/2009/05/mona-lisa-jmc.jpg Rekursive Funktionen OOPM, Ralf Lämmel Was ist Rekursion?

Mehr

Inf 12 Aufgaben 14.02.2008

Inf 12 Aufgaben 14.02.2008 Inf 12 Aufgaben 14.02.2008 Übung 1 (6 Punkte) Ermitteln Sie eine mathematische Formel, die die Abhängigkeit der Suchzeit von der Anzahl der Zahlen N angibt und berechnen Sie mit Ihrer Formel die durchschnittliche

Mehr

Zusammenfassung: Programmieren 2 (C#)

Zusammenfassung: Programmieren 2 (C#) Zusammenfassung: Programmieren 2 (C#) Arrays Eindimensional int[] feld; feld = new int[2]; int[] feld2 = new int[3]; int[] feld3 = new int[] 1, 2, 3 ; //oder int[] feld4 = 1, 2, 3 ; int laenge = feld3.length;

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

1. Grundlegende Konzepte in Java (6 Punkte)

1. Grundlegende Konzepte in Java (6 Punkte) 1. Grundlegende Konzepte in Java (6 Punkte) a) Welches der folgenden Literale ist korrekt und wenn ja, von welchem Typ ist es? "true" nicht korrekt X korrekt vom Typ String 'true' X nicht korrekt korrekt

Mehr

Präfx Trie zur Stringverarbeitung. Cheng Ying Sabine Laubichler Vasker Pokhrel

Präfx Trie zur Stringverarbeitung. Cheng Ying Sabine Laubichler Vasker Pokhrel Präfx Trie zur Stringverarbeitung Cheng Ying Sabine Laubichler Vasker Pokhrel Übersicht: Einführung Eigenschaften von Tries Verwendung von Tries Allgemeine Defnition von Patricia Tries Eigenschaften von

Mehr

Programmierung mit Feldern OOPM, Ralf Lämmel

Programmierung mit Feldern OOPM, Ralf Lämmel Übung: Deklarieren Sie ein entsprechendes Feld in Java! Programmierung mit Feldern OOPM, Ralf Lämmel Einführendes Beispiel Eingabe: ein Feld von int-werten public static int sum(int[] a) { int result =

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Prioritätswarteschlangen Mariano Zelke Datenstrukturen 2/28 Der abstrakte Datentyp Prioritätswarteschlange : Füge Elemente (mit Prioritäten) ein und entferne

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Abstrakte Klassen und Induktive Datenbereiche

Abstrakte Klassen und Induktive Datenbereiche Abstrakte Klassen und Induktive Datenbereiche Abstrakte Klassen, Induktive Datenbereiche, Bäume, Binärbäume, Bäume mit Blättern, Listen, Konstruktoren, Prädikate, Selektoren, Mutatoren, Operationen. Abstrakte

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

JAVA KURS COLLECTION

JAVA KURS COLLECTION JAVA KURS COLLECTION COLLECTIONS Christa Schneider 2 COLLECTION Enthält als Basis-Interface grundlegende Methoden zur Arbeit mit Collections Methode int size() boolean isempty() boolean contains (Object)

Mehr

Abteilung Informatik, JFC/Swing 2004 Diego Schmidlin V2.2

Abteilung Informatik, JFC/Swing 2004 Diego Schmidlin V2.2 Inhalt 1. Drag and Drop (DnD) 1. Transfer-Mechanismus 2. Transfer-Support 3. Cursor-Symbole 4. Einführendes Beispiel 5. Komponenten DnD-fähig machen 6. Standard DnD-Verhalten ändern Folie 1 Lernziele Sie

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Verkettete Liste. = null. kopf

Verkettete Liste. = null. kopf Der Datentyp verkettete Liste (ADT Liste) Eine verkettete Liste von Zahlen kopf Ref. 1 5 nachfolger Ref. 2 4 Verkettete Liste nachfolger Ref. 3 3 nachfolger Ref. 4 2 nachfolger null 1 Erster Knoten der

Mehr

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 25. September 2013 Aufgabe 1 Gegeben sei ein binärer Suchbaum mit Werten im Bereich von 1 bis 1001. In diesem Baum wird nach der Zahl

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Kapitel 3: Datentyp Liste

Kapitel 3: Datentyp Liste Kapitel 3: Datentyp Liste! Einleitung! Listen-Interface! Liste als Feld: ArrayList! Einfach verkettete Listen! Hilfskopfknotentechnik! Liste als einfach verkettete Liste: LinkedList! Doppelt verkettete

Mehr

MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am

MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am MB-ALG, SS1 Seite 1 Hauptklausur, geschrieben am.07.01 Vorname Nachname Matrikel-Nr Diese Klausur ist mein letzter Prüfungsversuch (bitte ankreuzen): Ja Nein Ihre Lösung für Aufgabe 1 können Sie direkt

Mehr

Suchbäume mit inneren Knoten verschiedener Knotengrade.

Suchbäume mit inneren Knoten verschiedener Knotengrade. Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in

Mehr