3. Mathematikschulaufgabe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3. Mathematikschulaufgabe"

Transkript

1 Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm; f = 0 cm; DS = h = 9 cm. Verlängert man die Diagonale [AC] über A und C hinaus jeweils um x cm und verkürzt [DS] von S aus um x cm, so erhält man neue Pyramiden A'BC'DS.. Zeichne ein Schrägbild der Pyramide mit AC als Schrägbildachse, ω = 45 ; q = 0,5. Zeichne ferner eine der neu entstehenden Pyramiden A'BC'DS' in das Schrägbild ein.. Stelle das Volumen V(x) der Pyramiden A'BC'DS' in Abhängigkeit von x dar. (Ergebnis: V(x) = ( 0x 0x 630 ) ).3 Ermittle den Extremwert für das Volumen und gib an, um welche Art von Extremwert es sich handelt..4 Für welche Werte von x wird der Flächeninhalt des Schnittdreiecks DBS' der Pyramiden kleiner als 4 cm?..0 Gegeben ist ein gleichschenkliges Dreieck ABC mit AB = 5 cm und der Höhe h c = 0 cm.. Dem Dreieck werden Rechtecke DEFG einbeschrieben mit D, E [AB]; F [BC] und G [AC]. Es gilt: DE = y cm; EF = x cm. Zeichne das Dreieck ABC und das einbeschriebene Rechteck für y =.. Stelle die Länge der Strecke [DE] in Abhängigkeit von der Maßzahl x dar. (Ergebnis: y = x 5 ).3 Bestimme rechnerisch die Größe von x so, daß das einbeschriebene Rechteck ein Quadrat wird..4 Das Dreieck und die einbeschriebenen Rechtecke rotieren um die Achse [MC], wobei M der Mittelpunkt der Seite [AB] ist. Bestimme die Mantelfläche der entstehenden Zylinder in Abhängigkeit von x. π (Ergebnis: M (x) = ( 0x x ) ).5 Gibt es unter den entstehenden Zylindern solche, die die Mantelfläche M = 5 π besitzen? (Rechnerische Bestimmung).6 Der Mantel des entstehenden Drehkegels aus.4 wird abgewickelt. Bestimme rechnerisch das Maß des Mittelpunktswinkels ϕ der Abwicklung. RM_A059 **** Lösungen Seiten

2 Klasse 0 / II Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden..0 Gegeben ist die Parabel p: y = - x + 8x Zeichne die Parabel in ein kartesisches Koordinatensystem Für die Zeichnung: - x 8; - y 0; LE = cm. Eine Dreieckschar ABC n ist wie folgt festgelegt: A ( 0 / 0 ); B ( 6 / 0 ); C n p..3 Zeichne das gleichschenklige Dreieck ABC mit der Basis [AB], ermittle die Koordinaten von C und berechne die Innenwinkel des Dreiecks ABC..4 Gib für alle xc n den Definitionsbereich an..5 Das Dreieck ABC hat den Flächeninhalt 6 FE. Bestimme durch Rechnung die Koordinaten von C. Hinweis: x C < x C.6 Zeichne das Dreieck ABC ein..7 Zeichne das rechtwinklige Dreieck ABC 3, das [AC 3 ] als Hypothenuse hat und berechne das Maß des Winkels AC 3 B.. Zeichne zum Dreieck ABC mit A (- 6 / ); B ( 3 / - ); C ( / 7 ) den Umkreis k. Für die Zeichnung: - 7 x 6; - 5 y 8; LE = cm. Berechne den Radius des Umkreises..3 Überprüfe durch Rechnung, ob das Dreieck ABC gleichschenklig ist und berechne das Maß des Winkels ACB. (Zwischenergebnis: Winkel ACB = 65, ).4 Das Dreieck ABC gehört zu einer Dreieckschar ABC n mit C n k. Zeichne das Dreieck ABC mit [AC ] = 5 cm und berechne das Maß des Winkels BAC..5 Das Dreieck ABC 3 ist gleichschenklig mit der Basis [AB]. Zeichne das Dreieck ABC 3 und berechne seinen Flächeninhalt..6 Berechne den Flächeninhalt des kleineren Kreissegments, das von der Sehne [AB] und dem Umkreis k eingeschlossen wird. weiter siehe Blatt RM_A060 **** Lösungen 7 Seiten ()

3 Klasse 0 / II Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 3.0 Gegeben sind die Geraden g und g mit g : y = x+ 3 g : y = x Zeichne die Geraden g und g in ein kartesisches Koordinatensystem und berechne ihren Schnittpunkt. 3. Berechne die Neigungswinkel von g und g und den spitzen Winkel, den die beiden Geraden einschließen. RM_A060 **** Lösungen 7 Seiten ()

4 Klasse 0 / II.0 Ein gerader Kreiskegel hat den Grundkreisradius r = 5 cm und die Höhe h = cm. Diesem Kegel werden Zylinder einbeschrieben. Die einbeschriebenen Zylinder stehen auf der Grundfläche des Kegels und berühren den Kegelmantel. Die Höhe der einbeschriebenen Zylinder ist x cm, der Radius des Grundkreises beträgt y cm.. Der Kegel mit dem einbeschriebenen Zylinder wird längs der Kegelachse geschnitten. Zeichne die Schnittfigur.. Stelle die Mantelfläche der einbeschriebenen Zylinder in Abhängigkeit von x dar (Ergebnis: M (x) = 5 ( x x) 6 π + ).3 Es gibt einbeschriebene Zylinder mit der Mantelfläche 45 π cm. Ermittle rechnerisch die zugehörige Belegung für x..4 Der Mantel des Kegels aus.0 wird abgewickelt. Bestimme das Maß des Mittelpunktswinkels ϕ der Abwicklung..0 Das Quadrat ABCD mit der Seitenlänge 9 cm ist die Grundfläche einer 0 cm hohen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Diagonalenschnittpunkt M. Verlängert man die Seiten [AB] und [DC] über die Endpunkte hinaus um jeweils x cm und verkürzt gleichzeitig die Höhe um x cm ( 0 < x < 0 ), so enstehen neue vierseitige Pyramiden A'B'C'D'S' mit dem Rechteck A'B'C'D' als Grundfläche.. Zeichne ein Schrägbild der ursprünglichen Pyramide (CD = Schrägbildachse; ω = 45 ; q = 0,5) und zeichne eine Pyramide A'B'C'D'S' farbig ein.. Berechne das Volumen V(x) der Pyramiden A'B'C'D'S' in Abhängigkeit von x. (Ergebnis: V (x) = - 6x + 33x + 70).3 Für welche Belegung von x erhält man die Pyramide mit dem größten Volumen?.4 Für welche Belegung von x besitzt die Seitenfläche B'C'S' der Pyramide einen extremen Flächeninhalt? (Teilergebnis: A (x) = 4,5 x x + 0,5 ).5 Für welchen Bereich von x ist der Flächeninhalt der Seitenfläche B'C'S' größer als 54 cm? RM_A06 **** Lösungen 4 Seiten

5 Klasse 0 / II RM_A06 **** Lösungen Seiten

6 Klasse 0 / II RM_A063 **** Lösungen 5 Seiten

7 Klasse 0 / II RM_A064 **** Lösungen Seiten

8 Klasse 0 / II.0 Eine Gleichung der Form y = ax + bx + c mit G =, a, b, c und a 0 gehört zur Parabel p. Sie verläuft durch den Punkt R(4/5) und hat den Scheitelpunkt S (/9). Die Parabel p hat die Gleichung y = (x - 3) - 4 mit G =.. Ermittle rechnerisch die Gleichung der Parabel p in ihrer Normalform. [Teilergebnis: p mit y = - x + 4 x + 5] Zeichne die Parabeln p und p in ein Koordinatensystem. Für die Zeichnung: - x 8; -5 y 0; Längeneinheit cm. Berechne die Koordinaten der Schnittpunkte A und C der Parabeln p und p. [Teilergebnis: A(0/5) und C(5/0)].3 Die Schnittpunkte A und C sind Eckpunkte von Vierecken AB n CD n mit B n p und D n p. Dabei haben die Punkte B n und D n dieselbe x-koordinate. Zeichne das Viereck AB CD für x =,5 in das Koordinatensystem zu. ein. Bestimme den Flächeninhalt A(x) der Vierecke AB n CD n in Abhängigkeit von der Abszisse x der Punkte B n bzw. D n..0 Gegeben ist das Prisma ABCDEFGH mit der Höhe h = 6 cm und der Raute ABCD als Grundfläche mit AC = 0 cm und BD = 8 cm.. Zeichne das Schrägbild des Prismas so, dass die Diagonale [BD] auf der Schrägbildachse liegt (Blatt quer nehmen). Für die Zeichnung: q = 0,5; ω = 45. Berechne die Oberfläche des Prismas ABCDEFGH auf eine Stelle nach dem Komma gerundet..3 Es entstehen neue Prismen, in dem man die Diagonale [BD] von B und D aus um jeweils x cm verkürzt und die Höhe des Prismas um x cm verlängert. Zeichne das Prisma für x = 3 in das Schrägbild zu. ein..4 Gib die maximale Grundmenge für x an..5 Berechne das Volumen der neuen Prismen in Abhängigkeit von x. [Teilergebnis: V(x) = (-0x + 30x + 540) cm 3 ].6 Für welche Werte von x erhält man Prismen, deren Volumen größer als 500 cm 3 ist? (Rechnerische Lösung erforderlich!) Fortsetzung siehe Blatt RM_A074 **** Lösungen 6 Seiten ()

9 Klasse 0 / II 3.0 Der Punkt M ist Mittelpunkt der Basis [QR] des gleichschenkligen Dreiecks PQR mit QR = 8cm und PM = 8cm. Das Dreieck PQR ist Grundfläche einer Pyramide PQRS. Seine Spitze S liegt senkrecht über M mit MS = 0cm. 3. Zeichne ein Schrägbild der Pyramide PQRS. [PM] soll auf der Schrägbildachse liegen. Für die Zeichnung: q = 0,5; ω = 45. Berechne das Maß α des Winkels MPS auf Stellen nach dem Komma gerundet. [Ergebnis: α = 5,34 ] 3. Punkte A n auf der Seitenkante [PS] der Pyramide sind Eckpunkte von Dreiecken QRA n. Zeichne das Dreieck QRA für PA = 5cm in das Schrägbild zu 3. ein. Berechne den Flächeninhalt A des Dreiecks QRA auf Stellen nach dem Komma gerundet. 3.3 Bei dem Dreieck QRA ist der Winkel A MP = 60. Berechne das Maß β des Winkels QA R auf Stellen nach dem Komma gerundet. RM_A074 **** Lösungen 6 Seiten ()

10 Klasse 0 / II G = bzw. G= x Auf zwei Dezimalstellen runden!.0 Gegeben sind die Parabel p:y= 0,5x + bx+ c und die Gerade g:y = x. 3. Der Graph der Parabel p verläuft durch die Punkte A ( / 8 ) und B ( - 3 / - 4,5 ). Bestimme die Funktionsgleichung der Parabel. [Zwischenergebnis: p:y= 0,5x + 4x+ ]. Zeichne die Graphen beider Funktionen in ein Koordinatensystem und berechne die Koordinaten der Schnittpunkte S und S. (Platzbedarf: < x < 9 und < y < ).3 Welchen Winkel schließt die Gerade g mit der x - Achse ein?.4 Zwischen S und S liegen Punkte P n auf der Geraden g. Geben Sie die Koordinaten der Punkte P n in Abhängigkeit von x an. Die Punkte Q n auf der Parabel p haben eine doppelt so große Abszisse x wie die Punkte P. n Bestimmen Sie die Koordinaten der Punkte Q n in Abhängigkeit von x..0 In einer rechteckigen Grünanlage ABCD wird die Grundfläche einer Raute EFGH einbeschrieben, die später mit Blumen bzw. Rasen bepflanzt wird. AB= 0m; BC= m; BC= m E AB; F BC; G CD; H DA. Zeichnen Sie das Rechteck sowie die einbeschriebene Raute im Maßstab : 00. Berechnen Sie die Seitenlänge der Raute. [Teilergebnis: EF =,66 m ]. Innerhalb der Raute werden zwei kongruente dreieckige Beete PEH und PEF abgestreckt, für die gilt P [HG] und P [GF], zudem gilt PEH = FEP = 40. Zeichnen Sie die beiden Beete PHE und PEF ein. Berechnen Sie das Maß des Winkels EHP und die Streckenlänge EP. [Teilergebnis: EHP = 6,93 und EP = 0,5 m ].3 Berechnen Sie den Flächeninhalt der beiden Blumenbeete PHE und PEF..4 Auf der drachenförmigen Fläche innerhalb der Raute zwischen den beiden Blumenbeeten PHE und PEF wird ein Kreissektor mit Mittelpunkt E und Kreisbogen PP abgetrennt, auf dem Rasen angesät wird. Zeichnen Sie den Kreissektor ein..5 Die Figur, die vom Kreisbogen PP und den Strecken [PG] und [P G] begrenzt wird, soll mit Steinplatten belegt werden. Berechnen sie diesen Flächeninhalt A Steine. [Teilergebnis: A Steine = 4, 40 m ].6 Welchen prozentualen Anteil hat die mit Steinplatten belegte Fläche an der gesamten Rautenfläche? RM_A005 **** Lösungen 4 Seiten

11 Klasse 0 / II. Die Punkte P ( 0,5 ) und Q ( ) geöffneten Normalparabel p: 3,5 6 bestimmen die Lage einer nach oben y x x,75 =. a) Berechnen Sie den Scheitelpunkt der Normalparabel! b) Die Punkte P ( ) und Q (,5 6) liegen auf dem Graph der linearen Funktion g. Berechnen Sie Ihre Funktionsgleichung! c) Berechnen Sie die Schnittpunkte der linearen Funktion mit der Normalparabel. d) Zeichnen Sie die beiden Funktionen in ein Koordinatensystem.. Die Normalparabel p hat die Funktionsgleichung y = x + 6x+ 7. a) Berechnen Sie die Koordinaten des Scheitelpunktes S der Parabel p. b) Die Punkte P ( 3 ) und P ( 6) liegen auf dem Graphen einer nach unten geöffneten Normalparabel p. Ermitteln Sie rechnerisch die Funktionsgleichung in Normalform. c) Bestimmen Sie rechnerisch die Koordinaten des Scheitelpunktes S der Parabel p. d) Zeichnen Sie die Graphen in ein Koordinatensystem. e) Berechnen Sie die Koordinaten der Schnittpunkte T und T der beiden Parabeln p und p. 3. Geben Sie den Definitionsbereich folgender Bruchgleichung an und bestimmen Sie die Lösungsmenge 3x + 5 = x ; G = x x x x 4. Ein rechteckiger Fußboden wird neu gefliest (siehe Skizze). Die hell geflieste Fläche ist genauso groß wie die dunkle Fläche. Die hellen Flächen sind an jeder Stelle gleich breit. Berechnen Sie die Breite der hellen Streifen in m! RM_A0305 **** Lösungen 6 Seiten (RM_L0305)

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung 1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5)

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5) 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A( ) ; B( 0,5) und C( 0,5 ) 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Raumgeometrie - Prisma (Würfel, Quader)

Raumgeometrie - Prisma (Würfel, Quader) Raumgeometrie - Prisma (Würfel, Quader) 1.0 Ein Quader mit einem Rechteck als Grundfläche ist 8 cm hoch. Die zwei Seitenflächen haben den Flächeninhalt 96 cm und 7 cm. 1.1 Berechne Volumen und Oberfläche

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

R4/R6. Seite 1 von 6 Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern.

R4/R6. Seite 1 von 6 Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Seite 1 von 6 Prüfungsdauer: bschlussprüfung 007 150 Minuten an den Realschulen in ayern R4/R6 Mathematik II Nachtermin ufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1 Nebenstehende Skizze zeigt

Mehr

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken 1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des

Mehr

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr)

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr) 10. Klasse der Haupt-/Mittelschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 011 (0. Juni 011 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des Mittleren Schulabschlusses

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a Aufgabe Die drei linear unabhängigen Vektoren a = OA, b = OB,c = OC spannen ein dreiseitiges Prisma auf. Dabei ist S der Schwerpunkt des Dreiecks OAB, M der Schnittpunkt der Diagonalen in der Seitenfläche

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede

Mehr

Kroemer

Kroemer Kroemer - 02011-1- Normalparabel 13 y 2.0 2.1 3.0 3.1 4.0 4.1 5.1 5.2 6.1 6.2 12 11 10 9 8 7 6 5 4 3 2 1 0-7 -6-5 -4-3 -2-1 0 1 2 3 4 5 6 7 8 9-1 -2 Aufgabe: a) Zeichne eine Normalparabel p: y= x² - erstelle

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Quadratische Funktionen und Gleichungen

Quadratische Funktionen und Gleichungen Quadratische Funktionen und Gleichungen. Das ist ein Bild der Nationalflagge von England. cm cm a cm Lösung: (a) b cm (a) Zeichne die Figur für a =, b = 6 und = 2 im Maßstab :2. (b) Zeige rechnerisch:

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Trigonometrie - Sinussatz, Kosinussatz

Trigonometrie - Sinussatz, Kosinussatz Erstelle zu jeder der folgenden Aufgaben zuerst eine maßstäbliche Zeichnung. 1. Berechne die Länge der nicht gegebenen Dreiecksseite im Dreieck ABC: a) b = 6,7 cm c = 5,9 cm α = 63,5 b) b = 2,6 cm c =

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Grundkursabitur 2006 Analytische Geometrie Aufgabe VI. In einem kartesischen Koordinatensystem sind die Punkte A 3 2 3,,

Grundkursabitur 2006 Analytische Geometrie Aufgabe VI. In einem kartesischen Koordinatensystem sind die Punkte A 3 2 3,, Grundkursabitur 6 Analytische Geometrie Aufgabe VI In einem kartesischen Koordinatensystem sind die Punkte A,, B C6 und D6 sowie die Gerade g: X gegeben. 5 9 + λ mit λ R. a) Bestimmen Sie die Normalenform

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG Abitur Mathematik: Musterlösung Bayern 212 Aufgabe 1 a) ZEICHNUNG LAGE DER GRUNDFLÄCHE ABC Man kann anhand der gleichen x 1 -Koordinate 1 bei allen drei Punkten erkennen, dass die Grundfläche ABC parallel

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK 10. KLSSE DER MITTELSHULE BSHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SHULBSHLUSSES 2012 MTHEMTIK am 20. Juni 2012 von 8:30 Uhr bis 11:00 Uhr Jeder Schüler muss e i n e von der Prüfungskommission ausgewählte

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert) Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

Mathematik Grundlagenfach. Lukas Fischer 180 Minuten

Mathematik Grundlagenfach. Lukas Fischer 180 Minuten Schriftliche Maturitätsprüfung 015 Kantonsschule Alpenquai Luzern Fach Mathematik Grundlagenfach Prüfende Lehrperson Lukas Fischer (lukas.fischer@edulu.ch) Klasse 6Wa Prüfungsdatum 6. Mai 015 Prüfungsdauer

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Zeit: 90 Minuten 1.0 Gegeben ist die Parabel p mit der Gleichung y = - x - x + 3 G= x 1.1 Zeichne den Graphen von p in ein Koordinatensystem und ergänze die Zeichnung fortlaufend. Für die Zeichnung: -

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe . Mathematikschulaufgabe. Stelle die folgende Produktmenge im Koordinatensystem dar: M = [ -2; +2 ] Q x [ -2; + ] Q 2.0 Gegeben ist die Funktion f: y = 2 + x G= Q x Q 2. Zeichne die Funktion in ein Koordinatensystem.

Mehr

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. STEREOMETRIE I Grundlagen 1. Punkte, Geraden und Ebenen Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. a) Gerade Axiom:

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Technische Darstellung

Technische Darstellung Fakultät Maschinenwesen Institut für Festkörpermechanik Professur für Getriebelehre Prof. Dr. rer. nat. habil. Dr. h. c. Karl-Heinz Modler Bearbeiter: Dr.-Ing. Kerstin Becker Telefon: +49 351 463-32732

Mehr

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Projektionskurve Abiturprüfung LK Bayern 2003

Projektionskurve Abiturprüfung LK Bayern 2003 Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Berufsmaturitätsprüfung 2013 Mathematik

Berufsmaturitätsprüfung 2013 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste

Mehr

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben

Mehr

Verkaufspreis Bruttopreis MWSt

Verkaufspreis Bruttopreis MWSt 1.SA 1. Löse die angegebene Formel nach c auf: x = aa ( + c) ( a+ b+ c) 6. Schreibe den Ansatz in Form einer Gleichung und löse diese: a) Nach Abzug von 3% Skonto werden für eine Ware S 15510,30 bezahlt.

Mehr

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10 Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juli 006 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen

Mehr

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC

Mehr