2. Mathematikschulaufgabe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. Mathematikschulaufgabe"

Transkript

1 1.0 Berechne: = = = 1.3 ( ) ( ) ( ) 87 ( ) + = = 2.0 Ergänze die fehlenden Ziffern Schreibe den entsprechenden Term. Keine Berechnung: 3.1 Gegeben sind die Ziffern 0, 8, 5, 2. Addiere zur kleinsten vierstelligen Zahl die Differenz aus der zweitgrößten dreistelligen Zahl und der kleinsten dreistelligen Zahl. 3.2 Verfünffache das Produkt der Zahlen 17 und Subtrahiere die Summe der Zahlen 77 und 88 von der Zahl 165. Blatt 2 beachten! RM_A0244 **** Lösungen 1 Seite (RM_L0244) 1 (2)

2 4. Wie ändert sich der Wert einer Differenz, wenn der Minuend und der Subtrahend jeweils um 9 vergrößert werden? 5. Das Stadttheater hat am Balkon, in den drei Rängen und im Parkett Sitzplätze. Auf dem Balkon befinden sich 176 Sitzplätze, im 1. Rang 98 Sitzplätze mehr als am Balkon, im 2. Rang 38 weniger als am Balkon. Der 3. Rang hat doppelt so viele Sitzplätze wie der Balkon. Im Parkett befinden sich so viele Sitzplätze wie der 1. und 2. Rang zusammen haben. Wie viele Sitzplätze hat das Stadttheater? Balkon: 1. Rang: 2. Rang: 3. Rang: Parkett: Gesamt: 6. Egon trägt eine Wurfsendung aus. Jeweils 60 Blätter werden von einem Gummiband zusammengehalten. Je acht solcher Packen liegen in einem Karton. Er bekommt drei Kartons. Wie viel Blätter muss Egon austragen? 7. Welches Dreieck besitzt drei Symmetrieachsen? 8. Welche Vierecke besitzen genau zwei Symmetrieachsen? 9. Wie viele Symmetrieachsen besitzt ein gleichschenkliges Trapez? RM_A0244 **** Lösungen 1 Seite (RM_L0244) 2 (2)

3 1. Berechne den Wert des Terms. Realschule a) ( ):( ) = b) : ( ) ( ) = 2.1 Setze eine Ziffer für ein, damit die Teilbarkeit erfüllt ist Formuliere die Teilbarkeitsregel durch 9. Eine Zahl ist durch 9 teilbar, wenn 2.3 Wie heißt die größte 4 - stellige Zahl, die durch 8 teilbar ist? 2.4 Wie heißt die kleinste 4 - stellige Zahl, die durch 2, 3 und 5 teilbar ist? 3. Peter kauft neue Schulsachen ein. Folgende Artikel stehen auf der Rechnung: Rechnung Grafikrechner 59,00 Geodreieck 1,48 Buntstifte 2,38 Zirkel 3,90 Bleistifte 0,83 Wie viel Geld erhält Peter zurück, wenn er mit einem 100-Euro-Schein bezahlt? 4.1 Vervollständige die Fahrten eines LKW-Fahrers: a) b) Abfahrt 4.40 Uhr 8.35 Uhr Ankunft Uhr Zeit 7 h 50 min 4.2 Am 18. Dezember gibt Franzi ihren Mitschülern ein Rätsel auf: In min habe ich Geburtstag. Wann ist ihr Geburtstag? 5.1 Wandle in die vorgegebene Einheit um: a) m (km) b) 480 mm (dm) c) 65,2 cm (mm) d) 0,5 m (cm) e) 2,01 km (m) 5.2 Von einem Stoffballen sind Bahnen der folgenden Längen abgeschnitten worden. 2 m 40 cm; 6 dm; 125 cm; 1,80 m; 2,65 m a) Welche Länge wurde insgesamt abgeschnitten? b) Auf dem Ballen waren 10 m Stoff. Wie viel Meter sind noch übrig? RM_A0245 **** Lösungen 1 Seite (RM_L0245)

4 1. Berechne und beschrifte die Rechnung und das Ergebnis mit den zugehörigen mathematischen Fachbegriffen: = 2. Berechne :13 = 3. Es gibt vier verschiedene Möglichkeiten, die Zahl 64 als Potenz zu schreiben. Nenne drei davon. a) b) c) 4. Bestimme, was für den Platzhalter eingesetzt werden muss falls möglich! a) 2 x = 256 c) 5 1 = b) n 2 = 32 d) :0= 42 Blatt 2 beachten! RM_A0313 **** Lösungen 2 Seiten (RM_L0313) 1 (2)

5 5. Setze Klammern so, dass die Rechnung stimmt : = Berechne den Termwert. ( ) = 7. Trage im Koordinatensystem die folgenden Punktmengen ein: SB, mit grünem Stift [AB. A ( 11, ) B92, ( ) S75, ( ) T ( 3 5 ), mit blauem Stift [ ] Zeichne mit orangem Stift die Gerade g durch den Punkt T, so dass gilt: g AB Zeichne mit braunem Stift durch den Punkt A eine Gerade s, so dass gilt: s BT 8. Gib die folgenden Aussagen in mathematischer Kurzschreibweise wieder. a) Die Punkte A und B liegen auf einer Strecke, die senkrecht zur Geraden durch die Punkte C und D ist. b) Der Punkt E liegt nicht auf der Halbgeraden, die in Punkt F beginnt und durch den Punkt G verläuft. c) Der Punkt H liegt auf der kürzesten Verbindung zwischen den Punkten K und M. RM_A0313 **** Lösungen 2 Seiten (RM_L0313) 2 (2)

6 1.1 Welche Zahl muss mit 5 potenziert werden, damit man 32 erhält? 1.2 Womit muss man 6 potenzieren, um 216 zu erhalten? 1.3 Berechne: a) b) Was ist eine Gerade? 2.2 Was ist eine Halbgerade? 3. Wie verlaufen die Geraden g und h, wenn gilt: a) gkundk h b) g kundk h c) g kundk h d) gkundk h 4.1 a) Trage die Punkte A5 1, B86 und C15 in ein Gitternetz ein. b) Zeichne die Strecke [AC]. c) Zeichne durch den Punkt P73 eine Gerade g, die zu [AC] parallel ist. d) Zeichne durch C eine Gerade h, die auf [AC] senkrecht steht. e) Die Geraden g und h schneiden sich in dem Punkt D. Trage D in die Zeichnung ein und gib seine Lage an. f) Zeichne die Halbgerade [BD. 4.2 Betrachte die Punktmengen und setze für den Platzhalter das richtige Zeichen ein. a) Q g b) ST g c) PS PQ d) PQ QS e) T PS f) g PQ g) T;P;S g RM_A0318 **** Lösungen 2 Seiten (RM_L0318)

7 1. Übertrage nachfolgende Aufgaben auf dein Blatt und schreibe die fehlenden Ziffern in die Kästchen: Ergänze folgende Lücken mit den entsprechenden Fachbegriffen auf deinem Blatt: a) 19-5 = 14 b) 33 : 3 = Erstelle auf deinem Blatt nur den zugehörigen Term. Berechne nichts! a) Dividiert man die Differenz aus 150 und 30 durch eine natürliche Zahl, so erhält man 14. b) Der erste Summand ist 134. Der zweite Summand ist um 88 größer als der erste Summand, der dritte Summand ist um 32 kleiner als der erste Summand. c) Dividiere die zweitgrößte dreistellige Zahl durch den Nachfolger der Zahl Berechne die Termwerte. a) b) c) :145 d) 1248 : 52 Mache nur bei dieser Teilaufgabe auch die Probe. RM_A0326 **** Lösungen 3 Seiten (RM_L0326) 1 (2)

8 5. Berechne mit dem Distributivgesetz: Berechne den Termwert: : Setze < oder > oder = ein. a) b) c) d) Die C (31 Schüler) fährt für fünf Tage in ein Schullandheim. Die Busfahrt kostet insgesamt 403,00. Zusätzlich zahlt jeder Schüler pro Übernachtung 29,00 mit Verpflegung. Außerdem wollen 18 Schüler für jeweils 5,00 kegeln, während der Rest der Klasse lieber eine Rodelbahn für 4,00 ausprobiert. Wie viel zahlt ein Schüler, der sich für die Rodelbahn entschieden hat, für den gesamten Aufenthalt im Schullandheim? (Gesamtansatz) 9. Entscheide, ob folgende Aussagen richtig oder falsch sind und schreibe deine Lösung auf dein Blatt. Verbessere falsche Aussagen! a) Die Hochzahl einer Potenz heißt Exponent. b) Potenzen mit dem Exponenten 3 heißen Quadratzahlen. c) Die Addition kann durch eine Spitze-Fuß-Verknüpfung dargestellt werden. d) Dividieren mit Rest: Der Rest muss immer kleiner sein als der Dividend. e) Die Division durch Null ist immer erlaubt. RM_A0326 **** Lösungen 3 Seiten (RM_L0326) 2 (2)

9 1. Gib jeweils die zugehörige mathematische Kurzschreibweise an. 1.1 Der Punkt D liegt nicht auf der Geraden h. 1.2 Die Strecke [AB] liegt auf der Geraden g. 1.3 Die Gerade g schneidet die Gerade PQ im Punkt T. 1.4 Die Gerade h steht senkrecht auf der Geraden g. 2.0 Gegeben sind die Punkte C15. A 21, B63, 2.1 Zeichne die Punkte in das Koordinatensystem. 2.2 Zeichne AB sowie [BC] ein. Bestimme die Länge von [BC] und gib diese an: 2.3 Für die Gerade g gilt: g AB und C g. Zeichne die Gerade g ein. 3.0 Die Punkte M11, A3 1,U3 5, und Sx y bilden ein Rechteck. 3.1 Zeichne das Rechteck ein und gib die Koordinaten des Punktes S an: 3.2 Zeichne die Diagonalen des Rechtecks mit blauer Farbe ein. Benenne die Eigenschaften der Diagonalen eines Rechtecks: 3.3 Spiegele das Rechteck an der Symmetrieachse AU. Wie heißt die nun entstandene Gesamtfigur? RM_A0343 **** Lösungen 2 Seiten (RM_L0343) 1 (2)

10 4.0 Berechne mit Zwischenschritten Gib einen passenden Term an und berechne seinen Wert. Subtrahiere vom Quotienten aus 726 und 6 die Summe aus 28 und Berechne unter Verwendung des Distributivgesetzes möglichst geschickt RM_A0343 **** Lösungen 2 Seiten (RM_L0343) 2 (2)

11 1. Berechne den Termwert. a) b) : Erstelle einen passenden Term. Berechne den Termwert nicht. a) Subtrahiere vom Produkt der Zahlen 17 und 24 den Quotienten der Zahlen 3582 und 9. b) Multipliziere die Summe der Zahlen 1 und 38 mit der Differenz der Zahlen 316 und Löse folgende Aufgaben schriftlich. a) : 87 b) Wende zur Berechnung des Ergebnisses das Distributivgesetz an. Notiere deinen Rechenweg ausführlich Setze die fehlenden Zeichen <, > oder = ein: a) b) c) RM_A0346 **** Lösungen 2 Seiten (RM_L0346) 1 (2)

12 6. Ergänze die fehlenden Ziffern sinnvoll. _19 90 _ 37_10 1_57 3_83_7 7. Gib dein Ergebnis in EURO an und verwende dazu das Komma. a) Wie viel fehlt noch auf 20? ct 657 ct b) Berechne: 346 ct 185 ct 14, ct 8. Max kauft im Baumarkt ein. In seinem Einkaufswagen liegen bereits zwei Eimer Wandfarbe für jeweils 37,89, ein Pinsel für 3,98, zwei Beutel Spachtelmasse für je 2,95 und eine große Box mit Schrauben für 17,95. Max zahlt bar und hat dafür 120 in seinem Geldbeutel dabei. Er möchte noch drei Energiesparlampen für jeweils 4,99 mitnehmen und sich an der Kasse ein Eis für 1,50 kaufen. Reicht dafür das mitgenommene Geld? 9. Im Obstladen kann man unter zwei Sorten Birnen wählen. Von der ersten Sorte kosten 4 Kilogramm 7,96. Von der zweiten Sorte kosten 5 Kilogramm 9,75. Welche Sorte ist billiger? RM_A0346 **** Lösungen 2 Seiten (RM_L0346) 2 (2)

13 1.1 Was ist eine Quadratzahl? 1.2 Ergänze die Lücken so, dass Quadratzahlen entstehen. 6, 1 4, Ergänze mit den jeweiligen Fachbegriffen : Berechne: 4320 : : Berechne folgende Potenzwerte: Das 828 m hohe Burj Khalifa in Dubai ist 2011 das höchste Bauwerk der Welt. Wie viele übereinander gestellte, einstöckige Häuser von 9 m Höhe erreichen die gleiche Höhe wie das Burj Khalifa? 6. Im Training schwimmt Jara die 25m-Bahn 40mal in Rückenlage und 60mal im Kraulstil. Berechne die gesamte Schwimmstrecke. 7. Auf einer 14tägigen Italienreise mit dem Wohnmobil fährt Familie Müller insgesamt 2980 km. Wie viele Kilometer legten sie im Durchschnitt pro Tag zurück? 8. Der Radprofi Riccardo testet ein neues Rennrad. In Augsburg fährt er um 9:00 Uhr los, macht um 10:00 Uhr eine Pause von 15 Minuten und kommt in Ulm um Punkt 11:45 Uhr an. Die gefahrene Strecke ist 85 km lang. a) Wie viele Kilometer ist Riccardo in einer Stunde gefahren (reine Fahrzeit ohne Berücksichtigung der Pause)? b) Wie viele Stunden würde Riccardo für die 408 km lange Strecke München Gardasee brauchen (reine Fahrtzeit ohne Pausen)? RM_A0347 **** Lösungen 2 Seiten (RM_L0347) 1 (1)

14 1. Schreibe in die Kästchen die richtigen mathematischen Begriffe. 18 : Das Klammergesetz der Multiplikation heißt: Fachbegriff: Das Verteilungsgesetz heißt: Fachbegriff: 3. Schreibe nur den Rechenausdruck auf (keine Rechnung): Dividiere die Differenz aus 67 und 9 durch 2. Subtrahiere den Quotienten aus 33 und 11 von dem Produkt aus 22 und Nicole kauft sich 6 Schreibhefte für insgesamt 2,34. Wie viel kosten 11 dieser Hefte insgesamt? Stelle eine Rechnung auf. 5. Schreibe die Zahlen als Potenzen. (Verwende nicht die Hochzahl 1!) Berechne mit Zwischenschritten: : 408 : RM_A0348 **** Lösungen 2 Seiten (RM_L0348) 1 (2)

15 7. Fülle die Lücken, so dass die Rechnung stimmt. a) Gleiche Zahl in beide Kästchen. b) c) d) 405 : Folgende Mengen sind gegeben: A 2, 4, 6, 8,10,12 ; B 3, 6, 9,12 ; C 5,10,15 ; D 1, 5, 7,11 ; E 2, 6,12 Setze für die Platzhalter Zahlen, oder die Buchstaben A bis E oder die Zeichen ; ; ; ; ; ein A 0 D A 1; 12 D A 2; 6;12 CD RM_A0348 **** Lösungen 2 Seiten (RM_L0348) 2 (2)

16 1. a) Gib die Mengen T 12 und T 30 in aufzählender Form an. T12 T30 b) Bestimme: T12 T30 c) Bestimme: T 12 \T30 d) Welche Zahlen fehlen hier? Ergänze die Teilermenge! T ; 19 T ; 5; 11; 2. a) Gib die Menge V 15 in aufzählender Form an (6 Glieder). V15 b) Ergänze sinnvoll: V5 IU (IU ist die Menge aller ungeraden Zahlen) 20; 30; 50 V T Gib jeweils den Potenzwert an. a) 6 2 b) 3 6 c) Finde die passende Zahl für x. 4 x a) x 16 b) 3 81 c) 5 x x x x denn: denn: denn: 5. Scheibe als Potenz. (Verwende nicht die Hochzahl 1!) a) 125 b) 81 c) 1Million RM_A0385 **** Lösungen 2 Seiten (RM_L0385) 1 (2)

17 6. Berechne die Werte folgender Terme schrittweise a) b) 2012 : c) d) :17 7. Bestimme die Lösungsmenge. a) x123999; G V2 b) x 99 1; G V100 d) x ; G V5 c) 12 x 91: 7 35; G RM_A0385 **** Lösungen 2 Seiten (RM_L0385) 2 (2)

18 1. Bestimme mit Hilfe der Primfaktorzerlegung den ggt. ggt 54;90 ggt 45;63; Bestimme mit Hilfe der Primfaktorzerlegung das kgv. kgv 12; 45 kgv 48; 64; Welche Zahl enthält nur den Primfaktor 3 einmal, den Primfaktor 7 dreimal und den Primfaktor 9 einmal? Gib den Rechenweg an. RM_A0386 **** Lösungen 3 Seiten (RM_L0386) 1 (3)

19 4. Ermittle das kgv der Zahlen 5, 7 und 35. Gib dazu alle Vielfachmengen an und achte auf die richtige mathematische Schreibweise (keine Primfaktorzerlegung!). 5. Nenne vier Primzahlen zwischen 50 und Bestimme alle Zahlen bis 50, deren Primfaktorzerlegung nur den Primfaktor 3 enthält. 7. Fülle mit Hilfe der Teilbarkeitsregeln die Tabelle aus. Verwende dazu die Zeichen Iund I (Beispiel: 7I80 ) (aib bedeutet: a ist Teiler von b, aib bedeutet: a ist nicht Teiler von b) Teilbar durch Gib die mathematische Kurzschreibweise an. a) Der Punkt P liegt auf der Strecke mit den Endpunkten C und D. b) Die Strecke mit den Endpunkten A und B hat die Länge 5 cm. c) Die Halbgerade hat den Anfangspunkt R und den Endpunkt S. RM_A0386 **** Lösungen 3 Seiten (RM_L0386) 2 (3)

20 9. Vervollständige den Text, indem du die einzelnen Lücken ausfüllst. Verwende dazu folgende Begriffe: g h, parallel, rechten Winkel, senkrecht. Zwei Geraden g und h, die zu einer dritten Geraden stehen, nennt man. Die Kurzschreibweise lautet: Wenn die Geraden g und h senkrecht zueinander stehen, dann bilden sie einen. 10. Zeichne die folgenden Aufgaben in ein Gitternetz. Längeneinheit 1 cm. a) Zeichne die Geraden g AB g g mit BC AC A 21, B72, C36 b) Welche Figur ist entstanden? RM_A0386 **** Lösungen 3 Seiten (RM_L0386) 3 (3)

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1. Entscheide, welche der folgenden Zahlen Primzahlen oder Quadratzahlen sind: 1; 5; 6; 25; 26; 29; 36; 37; 49; 51 Primzahlen: Quadratzahlen: 2. Gibt es eine Quadratzahl, die auch Primzahl ist? 3. Bekannt

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e)

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e) Mathematik-Arbeitsblatt Klasse: 29.10.2015 Aufgabe 1 (5Z1.11-004-e) H2:I1:K1 0 1 2 Setze < oder > ein! a) 397 3397 c) 456 655 e) 2345 2435 1 b) 67 890 67 980 d) 632 432 f) 10 001 1001 Aufgabe 2 (5Z1.11-013-m)

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

I. Natürliche Zahlen (Seite 1)

I. Natürliche Zahlen (Seite 1) I. Natürliche Zahlen (Seite 1) Natürliche Zahlen und der Zahlenstrahl: Man bezeichnet die Zahlen 1, 2, 3, als natürliche Zahlen. Jede natürliche Zahl hat einen Nachfolger und jede (außer 1) einen Vorgänger.

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik

Fragen und Aufgaben zum Grundwissen Mathematik Natürliche Zahlen Kapitel I ZÄHLEN UND ORDNEN GROßE ZAHLEN UND ZEHNERPOTENZEN Acht Schwimmer bestreiten einen Wettkampf. Miriam gewinnt die Bronzemedaille. Franz wird Vorletzter. Welche Platzierung haben

Mehr

Voransicht. Grundrechen Führerschein: Aufwärmtraining

Voransicht. Grundrechen Führerschein: Aufwärmtraining Grundrechen Führerschein: Aufwärmtraining Mit dieser Seite kannst du dich auf den Grundrechen Führerschein vorbereiten. 1 Additionspuzzle. Zerschneide das Bild rechts, rechne die Aufgabe links in deinem

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2 Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die

Mehr

Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung).

Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). Grundwissen 5 - Aufgaben 22.01.2016 Seite 1 1. Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). a) Gib an, welche dieser drei Figuren den größten und welche den kleinsten

Mehr

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 In dieser Anfangsphase sollen die Schülerinnen und Schüler keine Wiederholung des Grundschulstoffs durchmachen, sondern bereits

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Grundlagen Algebra Aufgaben und Lösungen

Grundlagen Algebra Aufgaben und Lösungen Grundlagen Algebra Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 201 Inhaltsverzeichnis 1 Primfaktoren - ggt - kgv 2 1.1 ggt (a, b) kgv (a, b)...............................................

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

7 Beziehungen im Raum

7 Beziehungen im Raum Lange Zeit glaubten die Menschen, die Erde sei eine Scheibe. Heute zeigen dir Bilder aus dem Weltall sehr deutlich, dass die Erde die Gestalt einer Kugel hat. 7 Beziehungen im Raum Gradnetz der Erde Längengrade

Mehr

Basiswissen 5. Klasse

Basiswissen 5. Klasse Basiswissen 5. Klasse 1. Daten Zur Darstellung von Daten werden oft Strichlisten, Figurendiagramme oder Säulen- und Strichdiagramme verwendet. Strichliste: Alter Strichliste Anzahl 5-10 Jahre 3 10-15 Jahre

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe . Mathematikschulaufgabe. Sortiere die folgenden Zahlen der Größe nach, beginne mit der kleinsten Zahl: 4 0 ;,499; ; 0,8; ( ) ;,; ; 0. Berechne: a) ( 7) + ( ) b) 8 ( ) + ( 7) +, c) ( 7) 8+ ( 6+ ) :( )

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5)

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5) 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A( ) ; B( 0,5) und C( 0,5 ) 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

Teilbarkeit natürlicher Zahlen

Teilbarkeit natürlicher Zahlen Teiler einer Zahl - Teilermengen Aufgabe: Teilbarkeit natürlicher Zahlen Eine Klasse besteht aus 30 Schülern und soll in Gruppen mit gleich vielen Schülern eingeteilt werden. Welche Möglichkeiten gibt

Mehr

Lernzirkel Schriftliches Rechnen

Lernzirkel Schriftliches Rechnen Lernzirkel Schriftliches Rechnen Name: An jeder Station müssen mindestens drei Aufgaben gerechnet werden, davon mindestens eine Textaufgabe ( ). An jeder Station gibt es leichte, mittelschwere und schwere

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

5 Grundwissen der 5. Klasse

5 Grundwissen der 5. Klasse Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 5. Klasse 5 Grundwissen der 5. Klasse 5.1 Natürliche Zahlen und ganze Zahlen Definition: 1. Alle natürlichen Zahlen 1, 2, 3, 4,... fasst man zur Zahlenmenge

Mehr

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K:

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: Serie W1, Kl. 5 1. 89 + 32 = 2. 17 8 = 3. 120 : 5 = 4. 123 42 = 5. Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: 6. 165 cm = dm 7. 48 000 g = kg 8. Skizziere das abgebildete Würfelnetz.

Mehr

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler

Zahl der Unterrichtsstunden: 5 Wochen Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Nr. 1 des s (1. Halbjahr) Thema: Zahlen Zahl der Unterrichtsstunden: 5 Wochen stellen im Bereich Arithmetik/Algebra natürliche Zahlen dar (Zifferndarstellung, Stellenwerttafel, Wortform, Zahlenstrahl),

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36

3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36 VI. Die Multiplikation und Division natürlicher Zahlen ================================================================= 6.1 Die Multiplikation 3 4 Wir schreiben 4 + 4 + 4 = 3 4 und damit ist 3 4 = 12.

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

BRUCHRECHNEN. Erweitern und Kürzen:

BRUCHRECHNEN. Erweitern und Kürzen: BRUCHRECHNEN Jede Bruchzahl läßt sich als Dezimalzahl darstellen 5 5:8 0.65 endlicher Dezimalbruch 8 0,6 unendlicher Dezimalbruch Nachfolgend werden die wesentlichen Zusammenhänge der Bruchrechnung angeführt.

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 LÖSUNGEN. Gib die Primfaktorzerlegung der Zahlen 0 und an. 0 0 7 7 7. Erkläre, wie man zwei ganze Zahlen addiert bzw. multipliziert. Bei gleichem

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen) 4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen

Mehr

k) (Zehntausender) f) (Hunderter)

k) (Zehntausender) f) (Hunderter) Hier findet ihr zu allen Themen der 5. Klasse Aufgaben zum Wiederholen. Wenn ihr Rechen- oder Tippfehler findet, bitte informiert mich (z. B. mit einer Email an voss@dsbarcelona.com), damit ich sie beseitigen

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Große Anzahlen schätzen. 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind.

Große Anzahlen schätzen. 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind. Große Anzahlen schätzen 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind. Ich schätze, es sind Menschen. Wie weiß man, wie viele Menschen das ungefähr sind? Kennst du

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander. Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und

Mehr

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen

Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen Mathematik 5. Klasse Diese Stoffübersicht ist in drei Hauptteile gegliedert: 1. Grundlagen der Algebra (Zahlenmengen, Rechenarten, Rechengesetze); 2. Geometrie; 3. Darstellung und Kombinatorik Quellen:

Mehr

5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht.

5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht. Schulstempel Probeunterricht 00 Mathematik 5. Jgst. -. Tag. Tag. Tag gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut erkennbar

Mehr

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Marie-Curie-Gymnasium Waldstrasse 1a 16540 Hohen Neuendorf Tel.: 03303/9580 Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Um euch den Einstieg in den Mathematikunterricht zu erleichtern,

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Matherad. Kathrin Brand Tanja Hitzel Katrin Zacher. 873 der 9er-Trick hilft mir

Matherad. Kathrin Brand Tanja Hitzel Katrin Zacher. 873 der 9er-Trick hilft mir Matherad 3 Lösungen Trainingsheft Kathrin Brand Tanja Hitzel Katrin Zacher 873 der 9er-Trick hilft mir Wiederholung: Zehner und Einer Z 3 E 5 Z 2 E 8 Z 8 E 30 + 5 = 3 5 20 + 8 = 2 8 80 + = 8 Z 4 E Z E

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

155 Rechnen und Textaufgaben. Gymnasium 5. Klasse

155 Rechnen und Textaufgaben. Gymnasium 5. Klasse 155 Rechnen und Textaufgaben Gymnasium 5. Klasse Inhaltsverzeichnis Aufgabennummer Der Zahlenraum der natürlichen Zahlen............... 1 Große natürliche Zahlen........... 3 Zahlenstrahl.............................

Mehr

Download. Mathematik Üben Klasse 5 Multiplikation und Division. Differenzierte Materialien für das ganze Schuljahr.

Download. Mathematik Üben Klasse 5 Multiplikation und Division. Differenzierte Materialien für das ganze Schuljahr. Download Martin Gehstein Mathematik Üben Klasse 5 Multiplikation und Division Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Multiplikation

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Grundwissen. Flächen- und Rauminhalt

Grundwissen. Flächen- und Rauminhalt Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. Baue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandelt wurde, nimmst du die zugehörigen

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Mathematik Sekundarstufe I Index des Begleitheftes 1

Mathematik Sekundarstufe I Index des Begleitheftes 1 Mathematik Sekundarstufe I Index des Begleitheftes 1 Begriff abrunden x Das Runden 1 3b 46 absolute Häufigkeit x Die absolute und die relative Häufigkeit 1 5 62 Achsenspiegelung x Die Abbildung 1 1c 8

Mehr

Rechnen in Einführung in die elementare Zahlentheorie

Rechnen in Einführung in die elementare Zahlentheorie Rechnen in Einführung in die elementare Zahlentheorie Die elementare Zahlentheorie beschäftigt sich mit den natürlichen Zahlen 1,,3,4,5,6... und deren Teilbarkeit. Jede natürliche Zahl kann in Faktoren

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Mathematik-Arbeitsblatt Klasse:

Mathematik-Arbeitsblatt Klasse: Mathematik-Arbeitsblatt Klasse: 23.10.2012 Aufgabe 1 (5A1.01-031-m) Martin, Michael und Max möchten für die Mama zu Weihnachten gemeinsam ein Buch als Geschenk kaufen. Es kostet 27. Jeder der drei hat

Mehr

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e 1 Rechnen mit ganzen Zahlen Führen Sie die nachfolgenden Berechnungen aus: 1.1 a. 873 112 1718 157 3461 + b. 1578 9553 7218 212 4139 + 1.3 Berechnen Sie: a. 34 89 b. 67 46 c. 61 93 d. 55 11 e. 78 38 1.2

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat Mathematik 1. Klasse EBENE UND RAUM Gegenstandsmengen zählen, vergleichen und Ich orientiere und positioniere mich im Raum (links, rechts, oben, unten) und bewege mich zielorientiert. Zahlenraum 20/30

Mehr

Kompetenztest. Wiederholung aus der 2. Klasse. Das ist Mathematik. Kompetenztest. Testen und Fördern. Wiederholung aus der 2.

Kompetenztest. Wiederholung aus der 2. Klasse. Das ist Mathematik. Kompetenztest. Testen und Fördern. Wiederholung aus der 2. Name: Klasse: Datum: 1) Ordne richtig zu. Verkauf Einnahmen Arbeiter für die Arbeit benötigte Zeit direkte Proportionalität Anzahl der Kühe Platz im Stall pro Kuh Anzahl der Pferde Zeit die der Futtervorrat

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Turmzimmer 1: Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 7. Ist die Zahl ein Teiler? 2. Teilbarkeit durch 5 und 10 8. Teiler in der Zahlentafel suchen 3. Quersummen berechnen 9. Ist die

Mehr

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Terme und Gleichungen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Terme

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Lösungen zum Selbstüberprüfungsbogen Bruchrechnung

Lösungen zum Selbstüberprüfungsbogen Bruchrechnung Lösungen zum Selbstüberprüfungsbogen Bruchrechnung Modul: Bruchrechnung Name: SINUS.NRW 00 ) Vorstellung zu Brüchen r f Übungen a) Notiere die zugehörigen Brüche. b) Wie groß ist der Anteil der Fläche

Mehr

Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu!

Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu! Ich zeige, was ich kann! Name: 3. Klasse / EC 1 Trage passende Zahlen in das Hunderterfeld ein. Suche dann Rechnungen dazu! 2 3 Rechenrätsel: Denke an das Hunderterfeld! Die Zahl steht unter der Zahl mit

Mehr

MATHE - CHECKER. 5. Klasse. by W. Rasch

MATHE - CHECKER. 5. Klasse. by W. Rasch MATHE - CHECKER 5. Klasse by W. Rasch 1. Aufgabe Gegeben ist die Zahl 5 909 999. Wie heißt ihr Nachfolger? A: 5909000 B: 5909100 C: 5910000 D: 6000000 2. Aufgabe Gegeben ist der Term 41 555 + 4 927-8 062.

Mehr

Mathematik Grundlagen

Mathematik Grundlagen Mathematik Grundlagen Skriptum zum Kurs an der VHS Floridsdorf Mag. Jutta Gut (Oktober 008) b² a² c² Mathematik Grundlagen Seite Die Grundrechnungsarten Rechenarten. Stufe Addition: Subtraktion: Summand

Mehr

Aufgaben zu geometrischen Grundbegriffen 1

Aufgaben zu geometrischen Grundbegriffen 1 Aufgaben zu geometrischen Grundbegriffen 1 Punkt, Gerade, Strecke und Strahl 1. Gib alle Buchstaben an, mit denen ein Punkt bezeichnet wird. A 2. Schreibe verschiedene Redewendungen auf, in denen das Wort

Mehr

Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6

Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 1. Bestimme jeweils die Teilermenge der folgenden Zahlen: a) 62 b) 25 c)71 d) 28 Lösungsbeispiel: T 62 = {...} (Einzelne Elemente der

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:....

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259 Klammerrechnung Lösungen 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3= 60 3= 180 (3+ 36) 6= 70 6= 0 (63+ 17) 3= 80 3= 0 (19+ 1) 6= 0 6= 0 (7+ 16) 9= 90 9= 810 (36+ ) 8= 80 8= 60 (8+

Mehr