1 Analytische Geometrie

Größe: px
Ab Seite anzeigen:

Download "1 Analytische Geometrie"

Transkript

1 Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet und im x Koordinatensystem mit zwei Koordinaten festgelegt. Sie werden konsequenterweise mit erster und zweiter Koordinate bezeichnet. Sehr oft werden die Koordinaten mit dem kleinen Buchstaben bezeichnet, der zum Punktnamen gehört. Zum Beispiel: P(p ;p ) Vektoren Jedem Punkt wird ein Ortsvektor zugeordnet, der im Ursprung beginnt und in dem Punkt endet. Punkte und Ortsvektoren sind in diesem Skript äquivalent. Die Rechnungen, die zu Abbildungen ausgeführt werden, werden in der Matrix-Vektor-Notation durchgeführt. Schreibweise: Punkt P(p ;p ), Ortsvektor p = p % Rechnen mit Vektoren a) Skalar-Multiplikation Wenn k eine reelle Zahl ist und v = v % Multiplikation eines Vektors mit einer Zahl erklärt durch k v = kv kv % b) Addition Sind a = a % und b b = % a b zwei Vektoren, so ist die Addition von zwei Vektoren erklärt durch a + b = a + b a + b % v p ein Vektor, dann ist die

2 c) Subtraktion Sind a = a % a und b = b % b zwei Vektoren, so ist die Subtraktion von zwei Vektoren erklärt durch a b = a + () b = a b % ' a b. Abbildungen in der Ebene Wir behandeln in diesem Kapitel Abbildungen von Objekten in der Ebene. Der Begriff Transformation steht als Synonym für die im Folgenden behandelten Abbildungen, nämlich Verschiebungen, Spiegelung, Drehung, Zentrische Streckung. Eine affine Abbildung ist eine Abbildung der Ebene auf sich, die jedem Punkt P umkehrbar eindeutig einen Bildpunkt P` zuordnet und die geradengetreu, parallelengetreu und teilverhältnistreu ist. Bei den affinen Abbildungen unterscheidet man zwischen Kongruenzabbildungen (z.b. Verschiebung, Spiegelung, Drehung), Ähnlichkeitsabbildungen (z.b. zentrische Streckung und Stauchung) und flächenmaßtreuen Abbildungen (z.b. Scherung). Eine Ähnlichkeitsabbildung ist eine Abbildung der Ebene auf sich, die jedem Punkt P umkehrbar eindeutig einen Bildpunkt P` zuordnet und die geradengetreu, parallelengetreu, teilverhältnistreu und winkelmaßtreu ist. Eine Kongruenzabbildung ist eine Abbildung der Ebene auf sich, die jedem Punkt P umkehrbar eindeutig einen Bildpunkt P` zuordnet und die geradengetreu, parallelengetreu, teilverhältnistreu, winkelmaßtreu und längenmaßtreu ist.

3 3 Für den schulischen Unterricht sind vor allem die Kongruenzabbildungen und die Ähnlichkeitsabbildungen von Bedeutung. Eine affine Abbildung, die dem Ausgangspunkt X(x ; ) den Bildpunkt X (x ;x ) zuordnet, hat die Form Koordinatenschreibweise x a x + a + d a x + a + d mit Matrix-Vektor-Schreibweise x ' '% = a a x a a % % + d d % die man symbolisch verkürzen kann zu x A x + d. Dabei ist A die Abbildungsmatrix und d der Verschiebungsvektor. Beispiele für Abbildungen. Identische Abbildung Die identische Abbildung bildet jeden Punkt auf sich selbst ab. Für jeden Punkt X(x ; ) gilt also: X (x ;x ) = X(x ; ). Damit lauten die Abbildungsgleichungen: x' = x oder ausführlich x x + 0 x + 0 x' = x' = 0 x Die Abbildungsmatrix ist dann E = 0 0 %, Einheitsmatrix genannt.. Spiegelung an der x -Achse Da der Ursprung O auf der Spiegelachse liegt, wird er auf sich selbst abgebildet. Folglich ist d = 0. Für die Koordinaten gilt offensichtlich

4 4 x x oder in der ausführlichen Koordinatenschreibweise x x + 0 0x, was sofort zur Matrix-Vektor-Schreibweise x ' '% = 0 x 0 '% % führt. 3. Verschiebung Bei der Verschiebung um 3% wird jeder Punkt in x -Richtung um eine Einheit nach rechts und in -Richtung um 3 Einheiten nach oben verschoben. Es gilt also: x x + = x oder in Matrix-Vektor-Schreibweise + 3 = 0 x x ' '% = 0 0 % x % + 3 % Wir wollen letztlich zu den Kongruenzabbildungen die Abbildungsgleichungen bestimmen. Für das Aufstellen von Abbildungsgleichungen sind die nachfolgenden beiden Sätze hilfreich. Satz über die Verschiebung des Ursprungs Gegeben ist die Abbildung x A x + d. d = 0 Der Ursprung O(0;0) wird auf sich selbst abgebildet, also O = O. Beweis: Setzt man den Vektor für den Ursprung x = x % = 0 0 % in die Abbildungsgleichung ein, so ergibt sich für den Bildvektor x a 0 + a 0 + d = d und a 0 + a 0 + d = d, also x d. Dann ist x 0 d = 0 Das Auffinden der Abbildungsmatrix zu einer geometrisch gegebenen Abbildung wird durch folgende prinzipielle Überlegung ganz erheblich vereinfacht:

5 Satz über das Aufstellen der Abbildungsmatrix Ist der Verschiebungsvektor d = 0, so gilt: a c Die Abbildungsmatrix ist b d% Der Basisvektor e = 0% wird auf e a und e = 0 % auf e c d% abgebildet. Beweis: Die Abbildung lautet also x a c b d% x. Setzt man e = 0% ein, so ergibt sich sofort e a. Ebenso ergibt das Einsetzen von e = 0 % sofort e c d%. Wegen d = 0 und da die Abbildungsmatrix unbekannt ist, lautet die Abbildung x a a x. Setzt man e a a und e ' ein, so erhält % man a = a a a a % 0 % = a, also a a = a und a = b. Setzt man % entsprechend e und e ' ein, so erhält man c d% = a a a a % 0 % = a, also a a = c und a = d. % Damit ist die Abbildungsmatrix bestimmt. 5.3 Abbildungsgleichungen der Kongruenzabbildungen.3. Verschiebung Definition: Die Verschiebung (Translation) V a um einen Vektor a ist eine Abbildung der Ebene auf sich, die jedem Punkt P einen Bildpunkt P` so zuordnet, dass PP a gilt.

6 6 a Bei der Verschiebung um den Vektor wird jeder Punkt in x - Richtung um a Einheiten nach rechts und in -Richtung um b Einheiten nach oben verschoben. Es gilt also: x x + a = x a + b = 0 x + + b Die Verschiebung um den Vektor x A i x + E = 0 0 % ist. a ist gegeben durch a, wobei die Abbildungsmatrix A die Einheitsmatrix.3. Spiegelung Achsenspiegelung Die Achsenspiegelung an einer Geraden (Achse) a ist eine Abbildung in der Ebene auf sich, die jedem Punkt P einen Bildpunkt P so zuordnet, dass () P auf dem Lot zur Achse a durch P liegt, () der Lotfußpunkt F die Strecke PP halbiert.

7 7 Die Spiegelung an einer Geraden, die durch den Ursprung 0 verläuft und mit der x - Achse den Winkel einschließt, ist gegeben durch cos sin x A i x, wobei die Abbildungsmatrix A= % sin cos ' ( ist..3.3 Drehung Die Drehung Die Drehung um einen Punkt F und einen Winkel α ist eine Abbildung in der Ebene auf sich, die jedem Punkt P einen Bildpunkt P so zuordnet, dass () P auf dem Kreis um F durch P liegt, () die Strecken FP und FP den Winkel einschließen.

8 8 Die Drehung um den Ursprung 0, die den Winkel einschließt, ist gegeben durch x A i x, wobei die Abbildungsmatrix cos sin A= % sin cos ' ( ist Die Punktspiegelung Die Punktspiegelung ist eine besondere Drehung. Sie beschreibt die Drehung um das Spiegelungszentrum Z mit dem Drehwinkel α = 80. Die oben aufgelisteten Eigenschaften der Drehung gelten also auch für die Punktspiegelung..3.4 Zentrische Streckung Die zentrische Streckung mit dem Zentrum F und dem Streckfaktor k (k 0) ist eine Abbildung in der Ebene auf sich, die jedem Punkt P einen Bildpunkt P so zuordnet, dass () P auf der Geraden durch F und P liegt, () FP k FP Die Längenmaße ändern sich im Verhältnis : k, die Flächenmaße im Verhältnis : k

9 9 Auch diese Abbildungsgleichung lässt sich mit dem Satz über das Aufstellen der Abbildungsmatrix bestimmen, wenn das Streckzentrum der Ursprung ist. Denn dann wird der Ursprung auf sich selbst abgebildet. Die Einheitsvektoren werden dann mit dem Faktor k gestreckt/ gestaucht, also e = 0% ' e k 0% und e = 0 % ' e 0 k% Die zentrische Streckung mit dem Ursprung als Streckzentrum und dem Streckfaktor k, k / {0}, ist gegeben durch x A x, wobei die Abbildungsmatrix A = k 0 0 k% ist. Funktionsgraphen können ebenfalls gestreckt oder gestaucht werden, wobei wir dort nicht von zentrischer Streckung sprechen dürfen, da die Eigenschaften (z.b. winkeltreu, parallelentreu, ) nicht immer gegeben sind. Die Streckung eines Graphen mit dem Ursprung als Streckzentrum und dem Streckfaktor a in x -Richtung und b in -Richtung, a,b 0 = A i x, wobei die { }, ist gegeben durch x' Abbildungsmatrix A = a 0 0 ist.

1 Abbildungen in der Ebene

1 Abbildungen in der Ebene 1 Inhalt 1 Abbildungen in der Ebene... 2 1.1 Verschiebung... 3 1.2 Spiegelung... 3 1.2.1 Achsenspiegelung... 3 1.3 Drehung... 4 1.3.1 Die Drehung... 4 1.4 Zentrische Streckung... 5 2 Funktionen... 7 2.1

Mehr

3 Abbildungen in der Ebene

3 Abbildungen in der Ebene 18 3 Abbildungen in der Ebene Wir behandeln in diesem Kapitel Abbildungen von Punkten der Ebene auf Punkte. Ziel dieser Betrachtung ist, Funktionsgraphen mit diesen Abbildungen (punktweise) abzubilden

Mehr

3 Analytische Geometrie der Kongruenzabbildungen

3 Analytische Geometrie der Kongruenzabbildungen 3 Analytische Geometrie der Kongruenzabbildungen 4 3 Analytische Geometrie der Kongruenzabbildungen 3. Grundlagen, Begriffe, Schreibweisen 3.. Achsenkreuz Die Achsen heißen in dieser Darstellung x und

Mehr

Dynamische Erkundungen zu. Affinen Abbildungen. mit dem Programm Geogebra

Dynamische Erkundungen zu. Affinen Abbildungen. mit dem Programm Geogebra Dynamische Erkundungen zu Affinen Abbildungen mit dem Programm Geogebra Günter Seebach, Hennef Günter Seebach: Dynamische Erkundungen zu Affinen-Abbildungen 24.10.2010 2 Inhaltsverzeichnis: 1. Vorbemerkung:...

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

ABBILDUNGEN. Schiebung, Drehung, Spiegelung, Streckung. Version 2.0 Herbert Paukert. Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ]

ABBILDUNGEN. Schiebung, Drehung, Spiegelung, Streckung. Version 2.0 Herbert Paukert. Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ] Ein PAUMEDIA-Projekt Herbert Paukert 1 ABBILDUNGEN Schiebung, Drehung, Spiegelung, Streckung Version 2.0 Herbert Paukert Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ] Hauptachsen-Transformationen

Mehr

3 Abbildungen von Funktionsgraphen

3 Abbildungen von Funktionsgraphen 32 3 Abbildungen von Funktionsgraphen In Kapitel 1 dieses Workshops haben wir uns mit der Transformation von geometrischen Figuren im Achsenkreuz beschäftigt: mit Verschiebungen, Spiegelungen, Achsenstreckungen

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( )

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( ) 23 4 Abbildungen von Funktionsgraphen Der Graph zu einer gegebenen Funktion f ist die Menge aller ( ) sind. Für einen einzelnen Punkte, deren Koordinaten ; f () Punkt des Graphen gibt man einen Wert aus

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen. Die zwei sehen ganz ähnlich aus

Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen. Die zwei sehen ganz ähnlich aus Kapitel 4: Ähnlichkeitsabbildungen Beispiele Verkleinerungen Vergrößerungen Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen. Mathematische Präzisierung, aber

Mehr

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen Gruppe A: Verschiebungen Eine Abbildung heißt Verschiebung v r, wenn für jeden Punkt P und seinen Bildpunkt P jeweils gilt: r OP' = OP + v. Eine Figur heißt verschiebungssymmetrisch, wenn sie durch eine

Mehr

3 Abbildungen von Funktionsgraphen

3 Abbildungen von Funktionsgraphen 27 3 Abbildungen von Funktionsgraphen In Kapitel 1 dieses Workshops haben wir uns mit der Transformation von geometrischen Figuren im Achsenkreuz beschäftigt: mit Verschiebungen, Spiegelungen, Achsenstreckungen

Mehr

DR. JOACHIM MOHR AFFINE ABBILDUNGEN

DR. JOACHIM MOHR AFFINE ABBILDUNGEN DR. JOACHIM MOHR Delphi, Mathematik, Musik AFFINE ABBILDUNGEN und - kurzgefasst - AFFINER RAUM Der affine Raum Diese knappe Einführung zu dem Begriff des affinen Raumes soll die Schreibweise bei den Beispielen

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

XIII Geometrische Abbildungen und Matrizen

XIII Geometrische Abbildungen und Matrizen XIII Geometrische Abbildungen und Matrizen Geometrische Abbildungen und Abbildungsgleichungen 0 8 k= R' 6 S' R S P' Q' Q x P Z=O 6 8 0 Fig. Bei einer zentrischen Streckung wird von einem Punkt, dem Zentrum,

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare und affine Abbildungen im zweidimensionalen Anschauungsraum R 2

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare und affine Abbildungen im zweidimensionalen Anschauungsraum R 2 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare und affine Abbildungen im zweidimensionalen Anschauungsraum R Das komplette Material finden Sie hier: School-Scout.de S 1

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 5. Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen.

Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen. Vergrößerungen entrische Streckung 1 Kapitel 4: Ähnlichkeitsabbildungen Beispiele Verkleinerungen Vergrößerungen Bijektive, geradentreue und winkeltreue bbildungen der Ebene heißen Ähnlichkeitsabbildungen.

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Abbildung A e 2 b a e Wir überziehen die Ebene neben dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen

Mehr

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt: 5 Zur Geometrie euklidischer Bewegungen 5.1 Bewegungen Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

Weitere geometrische Abbildungen

Weitere geometrische Abbildungen Weitere geometrische Abbildungen Anna Wegener, Matthias Wegen, Daniel Kretschmer 15.01.2015 1 / 38 Affinitätsabbildungen - Motivation Kongruenzabbildungen Ähnlichkeitsabbildungen Affinitätsabbildungen

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

IV. Affine Abbildungen

IV. Affine Abbildungen IV. Affine IV. Abbildungen Affine Abbildungen 2 22 IV. Af ne Abbildungen. Kongruenzabbildungen Bei einer Kongruenzabbildung wird jedem Punkt P( der zweidimensionalen Ebene R 2 in eindeutiger Weise ein

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Klassifikation ebener affiner Abbildungen

Klassifikation ebener affiner Abbildungen Klassifikation ebener affiner Abbildungen Die Analyse und Klassifikation der affinen Abbildungen der Ebene ist ein hervorragendes Beispiel für das, was Freudenthal lokales Ordnen nennt. Die affinen Abbildungen

Mehr

Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag

Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 08 Blatt 9.06.08 Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag 33. a Es ist cos ϕ sin ϕ cos

Mehr

Affine Abbildungen. * Übersicht * Kompakte Zusammenstellung der Ergebnisse. mit Verweisen auf die Quellen in den ausführlichen einzelnen Thementexte.

Affine Abbildungen. * Übersicht * Kompakte Zusammenstellung der Ergebnisse. mit Verweisen auf die Quellen in den ausführlichen einzelnen Thementexte. Affine Abbildungen * Übersicht * Kompakte Zusammenstellung der Ergebnisse mit Verweisen auf die Quellen in den ausführlichen einzelnen Thementexte. Datei Nr. 3 Stand 9 August 5 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Ähnlichkeitsabbildungen und Ähnlichkeitslehre

Ähnlichkeitsabbildungen und Ähnlichkeitslehre Ähnlichkeitsabbildungen und Ähnlichkeitslehre Lisa Laudan, Christopher Wolf 1 Rahmenlehrplan Sek I Berlin Klasse 9/10 Standards für das Ende der Klasse 10: Die SuS berechnen Streckenlängen und Winkelgrößen

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

Lineare Abbildungen Definitionen von linearer Abbildung, linearer Transformation, affiner Abbildung. Parallentreue und Teilverhältnistreue

Lineare Abbildungen Definitionen von linearer Abbildung, linearer Transformation, affiner Abbildung. Parallentreue und Teilverhältnistreue Lineare Abbildungen Vorlesung Lineare Algebra mit integrierten Übungen WS 12 13 Studiengang LBS Unterrichtsfach Mathematik Lineare Algebra, Teil 2 Abbildungen Lineare Abbildungen Lineare Eigenwerte, Eigenvektoren

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Teil 3 Abbildungen in der Ebene

Teil 3 Abbildungen in der Ebene Vektor-Geometrie für die Mittelstufe (Sekundarstufe 1) Teil 3 Abbildungen in der Ebene Für Realschulen in Bayern! (Prüfungsstoff!) und für moderne Geometrie-Kurse am Gymnasium Auch in der berstufe zur

Mehr

Lineare Algebra, Teil 2 Abbildungen

Lineare Algebra, Teil 2 Abbildungen Lineare Abbildungen Vorlesung Lineare Algebra mit integrierten Übungen WS 12 13 Studiengang LBS Unterrichtsfach hmth Mathematiktik Lineare Algebra, Teil 2 Abbildungen Lineare Abbildungen Lineare Gleichungssysteme

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Definition, Abbildungsmatrix, Spiegelung, Projektion

Definition, Abbildungsmatrix, Spiegelung, Projektion Bau und Gestaltung, Mathematik 2, T. Borer Aufgaben 5-2/ Aufgaben 5 Lineare Abbildungen Definition, Abbildungsmatrix, Spiegelung, Projektion Lernziele - beurteilen können, ob eine gegebene Abbildung linear

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

Elementare Geometrie Vorlesung 18

Elementare Geometrie Vorlesung 18 Elementare Geometrie Vorlesung 18 Thomas Zink 26.6.2017 1.Bild eines Vektors bei einer affinen Abbildung Es sei f : E E eine affine Abbildung von Ebenen. Es sei v ein Vektor der Ebene E, d.h. eine Translation.

Mehr

6. Ähnlichkeitsabbildungen

6. Ähnlichkeitsabbildungen 3 6. Ähnlichkeitsabbildungen Ein gegebenes Vieleck ABCDE ist durch Hintereinanderausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen

Mehr

3 Koordinatentransformationen

3 Koordinatentransformationen 8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

A3.2 Quadratische Funktionen

A3.2 Quadratische Funktionen A. Quadratische Funktionen Die Quadratfunktion Definition: Eine reelle Funktion f: = a + b + c, D = R (a, b, c R a 0) heißt quadratische Funktion. Beispiele:. f: =. f: = 0,5 - + Die Quadratfunktion f:

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Lösungsvorschläge für die Geometrie-Klausur vom 28.7.

Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Aufgabe 1: (a) Die beiden Punkte liegen offensichtlich auf der hyperbolischen Geraden g = {z H R(z) = 1}. Die beiden idealen Punkte sind a = 1, b =.

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Teil

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung http://www.fersch.de Klemens Fersch. September 8 Inhaltsverzeichnis 6 6. Vektorrechung in der Ebene.............................................. 6.. Vektor - Abstand - Steigung - Mittelpunkt.................................

Mehr

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 LK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1 4. SCHRITT: DEN RECHTEN WINKEL NACHWEISEN Ein

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Vektorrechnung. Wolfgang Kippels 27. Oktober Inhaltsverzeichnis. 1 Vorwort 2. 2 Grundlagen der Vektorrechnung 3

Vektorrechnung. Wolfgang Kippels 27. Oktober Inhaltsverzeichnis. 1 Vorwort 2. 2 Grundlagen der Vektorrechnung 3 Vektorrechnung Wolfgang Kippels 7 Oktober 018 Inhaltsverzeichnis 1 Vorwort Grundlagen der Vektorrechnung Beispielaufgaben 1 Lineare Abhängigkeit und Komplanarität 11 Aufgabe 1 1 Aufgabe Winkel zwischen

Mehr

Geometrie mit Lösungen. Gieding

Geometrie mit Lösungen. Gieding Geometrie mit Lösungen Gieding 060112 1 01 Die Aufgabe a) Es sei p die Normalparabel, dh der Graph der Funktion f(x) = x 2 p sei das Bild von p bei einer Drehung D Z,α Bei dieser Drehung werden die Punkte

Mehr

Geometrische Abbildungen der Ebene

Geometrische Abbildungen der Ebene Geometrische Abbildungen der Ebene Dr. Elke Warmuth Sommersemester 2018 1 / 29 Bezeichnungen Kongruenzabbildungen Spiegelungen Klassifikation aller Kongruenzabbildungen 2 / 29 Abbildung, Funktion, Transformation

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 21 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 21 Definition Eine

Mehr

Transformation - Homogene Koordinaten. y + b )

Transformation - Homogene Koordinaten. y + b ) Transformation - Homogene Koordinaten In der "üblichen" Behandlung werden für die Verschiebung (Translation) und die Drehung (Rotation) verschiedene Rechenvorschriften benutzt - einmal Addition von Vektoren

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

Übersicht zu den Textinhalten

Übersicht zu den Textinhalten Abbildungen Übersicht zu den Textinhalten Zum Thema Abbildungen gibt es mehrere Texte. Hier wird aufgelistet, wo man was findet. Datei Nr. 11050 Stand 3. Oktober 2013 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

Zentrische Streckung Mündliche Aufgaben

Zentrische Streckung Mündliche Aufgaben Zentrische Streckung Mündliche Aufgaben Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor k? Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Grundkurs

Abgleich mit dem Kerncurriculum 2016 für die gymnasiale Oberstufe Stoffverteilungsplan Mathematik Grundkurs Lambacher Schweizer Q2.1 Lineare Gleichungssysteme (LGS) Einführung und Lösungsverfahren: Beispiele für LGS (auch über- und unterbestimmte), Darstellen von LGS mithilfe von Koeffizientenmatrizen, systematisches

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Fit in Mathe. Musterlösung. September Klassenstufe 10 Kongruenzabbildungen

Fit in Mathe. Musterlösung. September Klassenstufe 10 Kongruenzabbildungen Thema Kongruenzabbildungen Wie sieht das nächste Bild aus?? Die szahl ist natürlich 5, denn die rechte Hälfte obiger symmetrischer Figuren sind die Zahlen von 1 bis 4, danach folgt 5, also das Buchstabenpaar

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

Aufgabe 5: Analytische Geometrie (WTR)

Aufgabe 5: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil

Mehr

5 Zur Geometrie euklidischer Bewegungen. Eine Bewegung eines euklidischen Raumes wird bezüglich eines kartesischen Koordinatensystems

5 Zur Geometrie euklidischer Bewegungen. Eine Bewegung eines euklidischen Raumes wird bezüglich eines kartesischen Koordinatensystems 5 Zur Geometrie euklidischer Bewegungen 5.1 Erinnerung an 3.3.3 Eine Bewegung eines euklidischen Raumes wird bezüglich eines kartesischen Koordinatensystems beschrieben durch x = U x + w (U T U = E) mit

Mehr

3. Ähnlichkeitsabbildungen

3. Ähnlichkeitsabbildungen 3. Ähnlichkeitsabbildungen 3.1 Definitionen: Ähnlichkeitsabbildungen, Dilatationen Bis jetzt haben wir Isometrien (Kongruenzabbildungen) betrachtet. Diese bbildungen wurden aufgebaut aus den Geradenspiegelungen.

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen und Matrizen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen und Matrizen Kapitel 2 Lineare Algebra II 2 Lineare Abbildungen und Matrizen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 2 Definition

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Einführung in GeoGebra Geometrie

Einführung in GeoGebra Geometrie ICT an der KZN Einführung in GeoGebra Geometrie Ähnlichkeit Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2017 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2 freeware

Mehr

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2 1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................

Mehr

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt Lineare Abbildungen Lineare Abbildungen De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt (L. ) f ist homogen; d.h. f( ~v) = f(~v) für alle 2 R, ~v 2 V, (L. ) f ist additiv;

Mehr