4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke"

Transkript

1 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

2 GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie, B.Sc., 3. Semester Modul: 4.2 Einführung in die Testtheorie KAPITEL 4 DESKRIPTIVE STATISTIK UND ITEMANALYSE

3 KAPITEL 4 DESKRIPTIVE STATISTIK UND ITEMANALYSE GHF 4.1 Einleitung 4.2 Schwierigkeitsanalyse 4.3 Itemvarianz 4.4 analyse 4.5 Itemselektion und Revision des Tests 4.6 Testwertermittlung 4.7 Testwerteverteilung und Normalisierung 4.8 Zusammenfassung und weiteres Vorgehen

4 KAPITEL 4 DESKRIPTIVE STATISTIK UND ITEMANALYSE GHF 4.4 analyse Berechnung der Interpretation der Weitergehende Überlegungen

5 4.4 analyse Die r(it) eines Items i drückt aus, wie groß der korrelative Zusammenhang der Itemwerte x(vi) mit den Testwerten x(v) ist, die aus sämtlichen Items des Tests gebildet werden. Die gibt an, wie stark die Differenzierung des jeweiligen Items mit der Differenzierung der zum Testwert zusammengefassten übrigen Items übereinstimmt.

6 4.4.1 Berechnung der x r it = r(xvi, = m xv xvi v(i) i= 1 m = i= 1 r it(i) = r xv) x vi x (xvi, xv(i)) vi Zur Berechnung der wird über alle Probanden hinweg der Zusammenhang des Items i (x(vi)) mit dem Testwert x(v) bestimmt. Unter dem Testwert x(v) eines Probanden versteht man zumeist den Summenwert aller Itemwerte Oder Den Summenwert ohne Item i = bestimmung bei wenigen Items (part-whole-correction), um die nicht zu überschätzen. Die bestimmt sich dann so

7 4.4.1 Berechnung der Die Bildung des Testwertes setzt voraus, dass alle Items inhaltlich dasselbe Merkmal erfassen. Streng genommen wird vorausgesetzt, dass die Items homogen sind. Da die ein Maß des Zusammenhangs ist und als Korrelation berechnet wird, kann sie Werte im Bereich [-1, 1] annehmen

8 4.4.1 Berechnung der Eine hohe wird im Allgemeinen durch eine hohe Itemvarianz begünstigt. Dies gilt sowohl bei intervallskalierten als auch bei dichotomen Items. Dennoch garantiert eine hohe Itemvarianz nicht unbedingt eine hohe

9 r it ( i ) Berechnung der = SD( x) 2 ritsd( x) SD( xi) + SD( xi) 2 2ritSD( x)* SD( xi) Bei intervallskalierten Items kann man aus der einfachen, unkorrigierten Item-Testwert- Korrelation r(it) die korrigierte (part-whole-corrected) r(it(i)) berechnen. SD(x) = Standardabweichung der Testwerte SD(x(i)) = Standardabweichung des Items i r(it)sd(x)*sd(x(i)) = Kovarianz zwischen den Itemwerten x(vi) von Item i und den Testwerten x(v)

10 4.4.1 Berechnung der r it(i) = x x vo v1 SD(x) n o n 1 n(n 1) Bei dichotomen Items kann die einfacher als Punktbiseriale Korrelation berechnet werden x-quer (v(0)) und x-quer(v(1)) = Mittelwerte der Probanden, die in Item i entweder eine 0 oder eine 1 als Antwort hatten n(0) und n(1) = jeweilige Anzahl der Probanden, die in Item i eine 0 oder eine 1 als Antwort hatten

11 4.4.1 Berechnung der r it(i) = SD(x) 2 ritsd(x) p i(1 p i) + p i(1 p i) 2r it SD(x) p i(1 p i) Aus der unkorrigierten lässt sich die korrigierte berechnen. p(i) = Lösungswahrscheinlichkeit für Item i Die Standardabweichung des Items i = Lösungswahrscheinlichkeit p(i) und die Gegenwahrscheinlichkeit (1-p(i))

12 4.4.2 Interpretation der Weil die r(it) eines Items i unterschiedliche Werte annehmen kann, zieht man je nach Ausprägung unterschiedliche Schlussfolgerungen: r(it) nahe bei 1 r(it) nahe bei 0 r(it) nahe bei -1

13 4.4.2 Interpretation der r(it) nahe bei 1 Das Item wird von Probanden mit hohem Testwert (hohe Merkmalsausprägung) gelöst bzw. symptomatisch beantwortet und von Probanden mit niedrigem Testwert (niedriger Merkmalsausprägung) nicht Hohe positive n = die einzelnen Items messen sehr Ähnliches wie der Gesamttest n im Bereich von gelten als gute n

14 4.4.2 Interpretation der r(it) nahe bei 0 Die mit dem Item erzielte Differenzierung weist keinen Zusammenhang mit der Differenzierung durch den Gesamttest auf. Das Item ist ungeeignet, zwischen Probanden mit hohem und niedrigem Testwert zu differenzieren Was auch immer das Item misst, es ist unabhängig von dem, was die übrigen Items messen und damit auch unabhängig von dem, was die Summe der übrigen Items (der Testwert) misst.

15 4.4.2 Interpretation der r(it) nahe bei -1 Das Item wird von Probanden mit niedriger Merkmalsausprägung gelöst und von Probanden mit hoher Merkmalsausprägung nicht. Dies kann durch Mängel z.b. in der Instruktion oder bei der Item-Formulierung bedingt sein, denen nachgegangen werden muss. Bei Persönlichkeitstests ist es unter Berücksichtigung theoretischer Aspekte möglich, das Item als invertiertes Item zu nutzen (invertiert: Umkehrung der Auswertung 0 1 und 1 0)

16 4.4.3 Weitergehende Überlegungen Die Itemanalyse dient der Beantwortung der Frage, ob die einzelnen Items dasselbe Merkmal messen. Die Dimensionalität der Items wird faktorenanalytisch bestimmt. Homogene Items sollen dabei zu eindimensionalen Skalen führen Heterogene Items zu mehrdimensionalen

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen Augustin Kelava 22. Februar 2010 Inhaltsverzeichnis 1 Einleitung zum inhaltlichen Beispiel:

Mehr

4.1 Grundlagen der psychologischen Diagnostik. Wintersemester 2008/ 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.1 Grundlagen der psychologischen Diagnostik. Wintersemester 2008/ 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.1 Grundlagen der psychologischen Diagnostik Wintersemester 2008/ 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheorie Wintersemester 2009/ 2010 Hochschule Magdeburg-Stendal (FH) Studiengang Rehabilitationspsychologie B.Sc. Prof. Dr. Gabriele Helga Franke Das schönste Beispiel für einen Test

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheorie Januar 2009 HS MD-SDL(FH) Prof. Dr. GH Franke Kapitel 5 Vertiefung: Reliabilität Kapitel 5 Vertiefung: Reliabilität 5.1 Definition Die Reliabilität eines Tests beschreibt

Mehr

VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler

VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler Hausübung In der Übung Übungsblatt 06 1. Gegeben: Skala zur Messung der Gesundheitssorge mit 20 Items (dichotomes Antwortformat).

Mehr

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION 1. FS Master Rehabilitationspsychologie, SoSe 2012 Normierung 2 Begriffsbestimmung Zweck der Normierung Vorgehen bei der Normierung Exkurs:

Mehr

Übersicht zur Veranstaltung

Übersicht zur Veranstaltung Übersicht zur Veranstaltung Psychometrie: Teil 1 Itemschwierigkeit Bedeutung der Itemschwierigkeit Bestimmung der Itemschwierigkeit Die Prüfung von Schwierigkeitsunterschieden Trennschärfe Bedeutung der

Mehr

1 Inhaltsverzeichnis. 1 Einführung...1

1 Inhaltsverzeichnis. 1 Einführung...1 1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Normierung Schritte der Normierung

Mehr

Tutorium Testtheorie. Termin 3. Inhalt: WH: Hauptgütekriterien- Reliabilität & Validität. Charlotte Gagern

Tutorium Testtheorie. Termin 3. Inhalt: WH: Hauptgütekriterien- Reliabilität & Validität. Charlotte Gagern Tutorium Testtheorie Termin 3 Charlotte Gagern charlotte.gagern@gmx.de Inhalt: WH: Hauptgütekriterien- Reliabilität & Validität 1 Hauptgütekriterien Objektivität Reliabilität Validität 2 Hauptgütekriterien-Reliabilität

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Deskriptive Statistik

Deskriptive Statistik Markus Wirtz, Christof Nachtigall Deskriptive Statistik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Statistische

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen PEARSON Studium Ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

TestOS-Probeversion. Der Patient befand sich zum Zeitpunkt der Testbearbeitung in der Probatorik-Phase.

TestOS-Probeversion. Der Patient befand sich zum Zeitpunkt der Testbearbeitung in der Probatorik-Phase. Patient: Mustermann, Adam TestOS-Probeversion Der Patient befand sich zum Zeitpunkt der Testbearbeitung in der Probatorik-Phase. Testprotokoll DESC-I Depressionsscreening (Form 1) durchgeführt am: 15.01.2011

Mehr

Grundlagen sportwissenschaftlicher Forschung Test

Grundlagen sportwissenschaftlicher Forschung Test Grundlagen sportwissenschaftlicher Forschung Test Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Was ist Messen? Grundlagen des Messens Zuordnen von Objekten (oder Ereignissen)

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Personenparameter + Itemparameter

Personenparameter + Itemparameter 9.Testtheorie: Probabilistische Testtheorie PTT - Grundideen Grundgedanke: Item-Response-Theory IRT probabilistischer Zusammenhang! Wie wahrscheinlich ist es, dass sich eine bestimmte Merkmalsausprägung

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Nadine Löw. Organisatorische Wandlungsfähigkeit als Wettbewerbsvorteil und Erfolgsfaktor. Eine empirische Untersuchung. WiKu

Nadine Löw. Organisatorische Wandlungsfähigkeit als Wettbewerbsvorteil und Erfolgsfaktor. Eine empirische Untersuchung. WiKu Nadine Löw Organisatorische Wandlungsfähigkeit als Wettbewerbsvorteil und Erfolgsfaktor Eine empirische Untersuchung WiKu IX Geleitwort Vorwort Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis

Mehr

Kontrolle und Aufbereitung der Daten. Peter Wilhelm Herbstsemester 2014

Kontrolle und Aufbereitung der Daten. Peter Wilhelm Herbstsemester 2014 Kontrolle und Aufbereitung der Daten Peter Wilhelm Herbstsemester 2014 Übersicht 1.) Kontrolle und Aufbereitung der Daten Fehlerkontrolle Umgang mit Missing 2.) Berechnung von Skalen- und Summenscores

Mehr

Item-Response-Theorie Probabilistische Testtheorie. Christian Stroppel

Item-Response-Theorie Probabilistische Testtheorie. Christian Stroppel Item-Response-Theorie Probabilistische Testtheorie Referat von: Christian Stroppel Testtheorie Personenparameter Latente Variable ξ Testtheorie Manifeste Variable Xvi Eine Testtheorie beschreibt in welchem

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Was ist ein Test? Grundlagen psychologisch- diagnostischer Verfahren. Rorschach-Test

Was ist ein Test? Grundlagen psychologisch- diagnostischer Verfahren. Rorschach-Test Was ist ein Test? Ein Test ist ein wissenschaftliches Routineverfahren zur Untersuchung eines oder mehrerer empirisch abgrenzbarer Persönlichkeitsmerkmale mit dem Ziel einer möglichst quantitativen Aussage

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Marco Vannotti (Autor) Die Zusammenhänge zwischen Interessenkongruenz, beruflicher Selbstwirksamkeit und verwandten Konstrukten

Marco Vannotti (Autor) Die Zusammenhänge zwischen Interessenkongruenz, beruflicher Selbstwirksamkeit und verwandten Konstrukten Marco Vannotti (Autor) Die Zusammenhänge zwischen Interessenkongruenz, beruflicher Selbstwirksamkeit und verwandten Konstrukten https://cuvillier.de/de/shop/publications/2438 Copyright: Cuvillier Verlag,

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Messen im psychologischen Kontext I. Testentwicklung, Entwicklung von Items, Trennschärfeanalyse und Normierung

Messen im psychologischen Kontext I. Testentwicklung, Entwicklung von Items, Trennschärfeanalyse und Normierung Messen im psychologischen Kontext I Testentwicklung, Entwicklung von Items, Trennschärfeanalyse und Normierung Messen im psychologischen Kontext I 1. Psychologische Tests 2. Die Klassische Testtheorie

Mehr

GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Konstruierte Skalen in den Sozialwissenschaften

GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Konstruierte Skalen in den Sozialwissenschaften TEIL 3: MESSEN UND SKALIEREN GLIEDERUNG Das Messen eine Umschreibung Skalenniveaus von Variablen Drei Gütekriterien von Messungen Objektivität Reliabilität Validität Konstruierte Skalen in den Sozialwissenschaften

Mehr

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Jürgen Bortz Statistik Für Sozialwissenschaftler Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Springer-Verlag Berlin Heidelberg Newlfork London Paris Tokyo Inhaltsverzeichnis Einleitung

Mehr

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung Was heißt messen? Ganz allgemein: Eine Eigenschaft eines Objektes wird ermittelt, z.b. die Wahlabsicht eines Bürgers, das Bruttosozialprodukt eines Landes, die Häufigkeit von Konflikten im internationalen

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs tatistik für Wirtschaftswissenschaften Lösungen UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Brückenkurs tatistik für Wirtschaftswissenschaften: Lösungen

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION 2. FS Master Rehabilitationspsychologie, SoSe 2012 Faktorenanalyse/ faktorielle Validität 2 Einleitung Allgemeines zu Faktorenanalysen (FA)

Mehr

Lehrbuch der Statistik

Lehrbuch der Statistik Jürgen Bortz Lehrbuch der Statistik Für Sozialwissenschaftler Zweite, vollständig neu bearbeitete und erweiterte Auflage Mit 71 Abbildungen und 223 Tabellen Springer-Verlag Berlin Heidelberg New York Tokyo

Mehr

Interpretationshilfe Check P6

Interpretationshilfe Check P6 Interpretationshilfe Check P6 16. September 2016 Institut für Bildungsevaluation Assoziiertes Institut der Institut Universität für Bildungsevaluation Zürich Assoziiertes Institut der Universität Zürich

Mehr

Übung: Praktische Datenerhebung

Übung: Praktische Datenerhebung Übung: Praktische Datenerhebung WS 2011 / 2012 Modul: Methoden der empirischen Sozialforschung 1 (Übung zur Vorlesung) Judith Jahn / Aline Hämmerling 1 Ablauf Block 1 Dauer 3 h Inhalt Einführung: Ziel

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Fragebogen- und Testkonstruktion in der Online-Forschung

Fragebogen- und Testkonstruktion in der Online-Forschung Fragebogen- und Testkonstruktion in der Online-Forschung Dr. Meinald T. Thielsch 13. Juni 2008 Globalpark Innovations 2008 Diagnostisches Problem der (Online-)Forschung Es werden in vielen Arbeiten der

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst.

Bitte bearbeite zunächst alle Aufgaben bevor du einen Blick in die Lösungen wirfst. Übungsblatt 2 - Varianz, Standardabweichung, Kovarianz Das zweite Übungsblatt umfasst die Themen Varianz, Standardabweichung und Kovarianz. Hinter den Aufgaben steht wie gewohnt in Klammern die durchschnittliche

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen Ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Anna Weimer 14.03.2016 Vortrag am ASG. Psychologiestudium an der Uni Ulm

Anna Weimer 14.03.2016 Vortrag am ASG. Psychologiestudium an der Uni Ulm Anna Weimer 14.03.2016 Vortrag am ASG Psychologiestudium an der Uni Ulm Seite 2 Inhalt 1. Überblick über Themengebiete des Psychologiestudiums (Bachelor) Einführung, Methoden & Diagnostik Grundlagen Anwendung

Mehr

Der Bochumer Burnout-Indikator (BBI) Ein Frühwarninstrument zur Erfassung des Burnout-Risikos

Der Bochumer Burnout-Indikator (BBI) Ein Frühwarninstrument zur Erfassung des Burnout-Risikos Forschungsbericht Der Bochumer Burnout-Indikator (BBI) Ein Frühwarninstrument zur Erfassung des Burnout-Risikos Projektteam Testentwicklung, 2014 Verfasser: Rebekka Schulz & Rüdiger Hossiep Projektteam

Mehr

Einfache Varianzanalyse für unabhängige Stichproben

Einfache Varianzanalyse für unabhängige Stichproben Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

Messen im psychologischen Kontext II: Reliabilitätsüberprüfung und explorative Faktorenanalyse

Messen im psychologischen Kontext II: Reliabilitätsüberprüfung und explorative Faktorenanalyse Messen im psychologischen Kontext II: Reliabilitätsüberprüfung und explorative Faktorenanalyse Dominik Ernst 26.05.2009 Bachelor Seminar Dominik Ernst Reliabilität und explorative Faktorenanalyse 1/20

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007 Sitzung 5: Faktoranalyse und Mittelwertsvergleiche 22. Januar 2007 Verschiedene Tests Anwendungsfall und Voraussetzungen Anwendungsfall Mehrere Variablen, die Gemeinsamkeiten haben, werden gebündelt. (Datenreduktion)

Mehr

3.4.1 Referenzwerte für das fetale Schätzgewicht in der SSW

3.4.1 Referenzwerte für das fetale Schätzgewicht in der SSW 60 3.4 Die Bedeutung des fetalen und des mütterlichen Gewichts in der 21.-24.SSW als prädiktiver Parameter für das Geburtsgewicht bei Geburt in der 36.-43.SSW 3.4.1 Referenzwerte für das fetale Schätzgewicht

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

Innovativität und Arbeitgeberattraktivität

Innovativität und Arbeitgeberattraktivität Luise Pauline Sommer Innovativität und Arbeitgeberattraktivität Eine empirische Untersuchung mit Fokus auf den deutschen Mittelstand Verlag Dr. Kovac Hamburg 2012 Inhaltsverzeichnis Abbildungsverzeichnis

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Inhaltsverzeichnis. Vorwort zur 3. Auflage 11. Kapitel 1 Einführung 13. Kapitel 2 Testtheoretische Grundlagen 29

Inhaltsverzeichnis. Vorwort zur 3. Auflage 11. Kapitel 1 Einführung 13. Kapitel 2 Testtheoretische Grundlagen 29 Vorwort zur 3. Auflage 11 Kapitel 1 Einführung 13 1.1 Ziel des Buches............................................... 14 1.2 Testanwendungsbereiche........................................ 18 1.3 Arten von

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (010). Quantitative Methoden. Band (3. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

I Einführung 1. 1 Über den Umgang mit Statistik 3

I Einführung 1. 1 Über den Umgang mit Statistik 3 I Einführung 1 1 Über den Umgang mit Statistik 3 1.1 Statistik richtig lehren und lernen 3 1.2 Testergebnisse richtig interpretieren 6 1.3 Einfluss des Zufalls 8 1.4 Die Interpretation von Zusammenhängen

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

Gemeinsame Wahrscheinlichkeitsverteilungen

Gemeinsame Wahrscheinlichkeitsverteilungen Gemeinsame Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Gemeinsame Wahrscheinlichkeits-Funktion zweier Zufallsvariablen Randverteilungen Bedingte Verteilungen Unabhängigkeit von Zufallsvariablen

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Albert/Marx 04: Empirisches Arbeiten Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Kaum jemand führt heutzutage statistische Berechnungen noch von Hand durch, weil es sehr viele Computerprogramme

Mehr

Christian Vinck Die Entwicklung einer Balanced Scorecard für eine Non-Profit-Organisation: Am Beispiel des Deutschen Tennis Bundes e. V.

Christian Vinck Die Entwicklung einer Balanced Scorecard für eine Non-Profit-Organisation: Am Beispiel des Deutschen Tennis Bundes e. V. Christian Vinck Die Entwicklung einer Balanced Scorecard für eine Non-Profit-Organisation: Am Beispiel des Deutschen Tennis Bundes e. V. XIII Inhaltsverzeichnis A Einleitung 1 1 Einführung in die Forschungsthematik...

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

6. Faktorenanalyse (FA) von Tests

6. Faktorenanalyse (FA) von Tests 6. Faktorenanalyse (FA) von Tests 1 6. Faktorenanalyse (FA) von Tests 1 6.1. Grundzüge der FA nach der Haupkomponentenmethode (PCA) mit anschliessender VARIMAX-Rotation:... 2 6.2. Die Matrizen der FA...

Mehr

Welche psychometrischen Tests sollte der Arzt kennen und interpretieren können? Dipl.-Psych. Patricia Albert Schmerzzentrum

Welche psychometrischen Tests sollte der Arzt kennen und interpretieren können? Dipl.-Psych. Patricia Albert Schmerzzentrum Welche psychometrischen Tests sollte der Arzt kennen und interpretieren können? Dipl.-Psych. Patricia Albert Schmerzzentrum Was Sie erwartet Was sind psychometrische Tests? Welches sind in der Therapie

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme 1 Korrelationen 3 Lineare Regression 6 Zusammenhang zwischen Korrelation, Regression und t-test 8 Streudiagramme SPSS bietet die Möglichkeit, verschiedene

Mehr