Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Fehlerrechnung. Einführung. Jede Messung ist fehlerbehaftet! Ursachen:"

Transkript

1 Fehlerrechnung Einführung Jede Messung ist fehlerbehaftet! Ursachen: Ablesefehler (Parallaxe, Reaktionszeit) begrenzte Genauigkeit der Messgeräte falsche Kalibrierung/Eichung der Messgeräte Digitalisierungs-Fehler (typ. ± 1 Digit ) Einfluss von Fremdgrößen (z.b. Temperatur) Übertragungsfehler (elektronisch oder bei Messaufschrieb) Einteilung in V\VWHPDWLVFKH)HKOHU und 1

2 Systematische Fehler führen zu einer einseitigen Abweichung der gemessenen Größe sind mit statistischen Methoden nicht erfassbar oder korrigierbar o müssen möglichst ausgeschlossen werden! Zufällige Fehler führen zu einer Wahrscheinlichkeitsverteilung können statistisch erfasst werden erlauben eine Berechnung des wahrscheinlichsten Wertes Statistische Methoden zur Fehlerrechnung Bei mehreren Messungen x 1...x N ist der wahrscheinlichste richtige Wert der DULWKPHWLVFKH0LWWHOZHUW! :DUXPLVWGDVVR""""" Die Abweichung ist minimal, wenn die Fehlerfunktion ihr Minimum hat. Dies ist der Fall, wenn B) 2

3 Statistische Methoden zur Fehlerrechnung Es ist also zu berechnen: Die Ableitung ergibt: Statistische Methoden zur Fehlerrechnung Ist die Anzahl N der Messwerte ( Stichprobe ) groß, kann der mittlere Fehler eines gemessenen Einzelwertes berechnet werden als Der mittlere Fehler des Mittelwerts beträgt dann $QPHUNXQJ%HLNOHLQHQ6WLFKSUREHQ1LVWHVVLQQYROOPLWGHP PLWWOHUHQ)HKOHUGHV(LQ]HOZHUWV]XUHFKQHQ 3

4 Statistische Methoden zur Fehlerrechnung Beispiel: Zeitmessung an einer Fahrbahn: L WLV 2,82 2,80 2,67 2,88 2,74 2,56 2,87 2,66 2,78 2,66 Mittelwert: Standardabweichung *HVDPWDQJDEH rel. Fehler Oft interessiert nicht der absolute Fehler, sondern das Verhältnis zwischen dem Fehler (Standardabweichung) und dem eigentlichen Wert (Mittelwert). Dieser Quotient heisst relativer Fehler. Bezogen auf unser Beispiel ist also der relative Fehler der Zeitmessung: oder mit konkreten Größen: Die Gesamtangabe kann daher auch lauten: 4

5 Fehlerfortpflanzung Wird eine Größe nicht direkt gemessen, sondern aus anderen gemessenen Größen berechnet, tragen die Fehler aller Einzelmessungen zum Gesamtfehler bei. In diesen Fällen berechnet man den Fehler der Zielgröße V = V(ξ 1... ξ K ) nach Gauß als: Das Symbol bezeichnet eine SDUWLHOOH$EOHLWXQJ. Hierbei betrachtet man die Funktion V so, als sei sie nur von einer Eingangsgröße abhängig. (Nicht w mit Delta G verwechseln!!! ) Beispiel zur Fehlerfortpflanzung Wir nehmen an, dass mit den gemessenen Zeiten und einer bekannten Messstrecke die Beschleunigung eines Wagens berechnet werden soll. Hierfür gilt die Gleichung Der Fehler wird also berechnet als: 5

6 Beispiel zur Fehlerfortpflanzung Berechnung der partiellen Ableitungen: und Der Fehler der gemessenen Beschleunigung ist also: Für den Fehler der Zeitmessung kann die Standardabweichung aus den 10 Zeitmessungen eingesetzt werden. Die Strecke wurde nur einmal gemessen, daher ist Hs sinnvoll abzuschätzen (z.b. Ablesegenauigkeit des Lineals) Beispiel zur Fehlerfortpflanzung Die Beschleunigung beträgt also Für den Fehler erhält man: Der Fehler wird fast ausschließlich von der Zeitmessung verursacht! 6

7 Beispiel zur Fehlerfortpflanzung Korrekte Angabe der Beschleunigung oder Vereinfachungen Setzt sich eine Größe V als Potenzprodukt der Eingangsgrößen zusammen, dann kann der relative Fehler der Endgröße vereinfacht berechnet werden: Der Fehler ist die Summe der mit dem Exponenten gewichteten relativen Einzelfehler: Für das hier vorgestellte Beispiel ist dann und folglich,b) 7

8 Vereinfachungen 8

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten Ch. Wendel Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

Grundlagen der Statistik und Fehlerrechnung

Grundlagen der Statistik und Fehlerrechnung Physikalisches Grundpraktikum Teil 1 WS 2010/2011 Grundlagen der Statistik und Fehlerrechnung Stefan Diehl 28.02.2011 12.30 13.30 HS I 01.03.2011 12.30 13.30 CHEG18 Inhalt Grundbegriffe der Statistik Wahrscheinlichkeitsverteilungen

Mehr

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung) Messtechnische Grundlagen und Fehlerbetrachtung (inkl. Fehlerrechnung) Länge Masse Zeit Elektrische Stromstärke Thermodynamische Temperatur Lichtstärke Stoffmenge Basisgrößen des SI-Systems Meter (m) Kilogramm

Mehr

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011 Fehlerfortpflanzung M. Schlup 7. Mai 0 Wird eine nicht direkt messbare physikalische Grösse durch das Messen anderer Grössen ermittelt, so stellt sich die Frage, wie die Unsicherheitsschranke dieser nicht-messbaren

Mehr

Kapitel 2. Fehlerrechnung

Kapitel 2. Fehlerrechnung Fehlerrechnung 1 Messungen => quantitative Aussagen Messungen müssen zu jeder Zeit und an jedem Ort zu den gleichen Ergebnissen führen Messungen sind immer mit Fehler behaftet. => Angabe des Fehlers! Bespiel

Mehr

Elastizität Hooke sches Gesetz

Elastizität Hooke sches Gesetz Elastizität Hooke sches Gesetz Im linearen (elastischen) Bereich gilt: Die Spannung ist proportional zur Dehnung F E A E l l Die Proportionalitätskonstante heißt: Elastizitätsmodul. Das makroskopische

Mehr

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung 1 Einführung in die Fehlerrechnung liederung 1. Motivation. Fehlerarten 1. robe Fehler. Systematische Fehler 3. Zufällige Fehler 3. Rechnerische Erfassung der Messabweichungen 1. Fehlerabschätzung einmaliges

Mehr

Messunsicherheit und Fehlerrechnung

Messunsicherheit und Fehlerrechnung Messunsicherheit und Fehlerrechnung p. 1/25 Messunsicherheit und Fehlerrechnung Kurzeinführung Peter Riegler p.riegler@fh-wolfenbuettel.de Fachhochschule Braunschweig/Wolfenbüttel Messunsicherheit und

Mehr

Behandlung von Messabweichungen

Behandlung von Messabweichungen 1 Behandlung von Messabweichungen Hier wird eine kurze Darstellung zum Verständnis der Problematik von Messgenauigkeit und Messunsicherheit aus der Sicht des Physikalischen Praktikums gegeben, siehe auch

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Aufgaben zu Messfehlern

Aufgaben zu Messfehlern Aufgaben zu Messfehlern. Aufgabe Ein Spannungsmesser zeigt 35V, das sind 2,5% zuviel. Wie groß ist der absolute Fehler und der wahre Wert? 2. Aufgabe Ein Spannungsmesser zeigt an einer Eichspannungsquelle

Mehr

0. Mathematische Grundlagen

0. Mathematische Grundlagen 0. Mathematische Grundlagen Literatur: S. Großmann Mathematischer Einführungskurs für die Physik Teubner Studienbücherei Physik 1991 ISBN 3-519-03074-8 Inhalt von Kap. 0: Mathematische Beschreibung physikalischer

Mehr

Kapitel 2 Experiment: Messwert & Messgenauigkeit

Kapitel 2 Experiment: Messwert & Messgenauigkeit Kapitel 2 Experiment: Messwert & Messgenauigkeit Die Reproduzierbarkeit von Experimenten ist ein zentrales Thema in allen Naturwissenschaften. In diesem Kapitel erarbeiten wir Verfahren, mit denen wir

Mehr

E12: Elektronen in Feldern

E12: Elektronen in Feldern Grundpraktikum E12: Elektronen in Feldern Autor: Partner: Versuchsdatum: Versuchsplatz: Abgabedatum: Inhaltsverzeichnis 1 Physikalische Grundlagen und Aufgabenstellung 2 2 Bestimmung der effektiven Feldlängen

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

( ) ( ) ( ) ( ) 9. Differentiale, Fehlerrechnung

( ) ( ) ( ) ( ) 9. Differentiale, Fehlerrechnung 44 9. Differentiale, Fehlerrechnung Bei den Anwendungen der Differentialrechnung spielt der geometrische Aspekt (Tangentensteigung) eine untergeordnete Rolle. Ableitungen sind deshalb wichtig, weil sie

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0 Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I WS 009/010 Kapitel.0 Schritt 1: Bestimmen der relevanten Kenngrößen Kennwerte Einflussgrößen Typ A/Typ B einzeln im ersten Schritt werden

Mehr

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006 Physikprotokoll: Fehlerrechnung Martin Henning / 736150 Torben Zech / 7388450 Abdurrahman Namdar / 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitungen 3 3 Messungen und Auswertungen

Mehr

Abschätzung der Messunsicherheit (Fehlerrechnung)

Abschätzung der Messunsicherheit (Fehlerrechnung) Abschätzung der Messunsicherheit (Fehlerrechnung) Die vorliegende Anleitung ist für das Anfängerpraktikum Physik gedacht, um den Einstieg in die Abschätzung von Messunsicherheiten und die Berechnung der

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Methoden der Werkstoffprüfung Kapitel I Grundlagen. WS 2009/2010 Kapitel 1.0

Methoden der Werkstoffprüfung Kapitel I Grundlagen. WS 2009/2010 Kapitel 1.0 Methoden der Werkstoffprüfung Kapitel I Grundlagen WS 2009/2010 Kapitel 1.0 Grundlagen Probenmittelwerte ohne MU Akzeptanzbereich Probe 1 und 2 liegen im Akzeptanzbereich Sie sind damit akzeptiert! Probe

Mehr

Rechnen mit ungenauen Daten

Rechnen mit ungenauen Daten Rechnen mit ungenauen Daten Der Mangel an mathematischer Bildung gibt sich durch nichts so auffallend zu erkennen, wie durch maßlose Schärfe im Zahlenrechnen. C.F. Gauß Inhalte: Einführung Fehler bei der

Mehr

Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5)

Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) 1 (5) Carl-Engler-Schule Karlsruhe Physik-Labor (BS/BK/FS) (5) Laborversuch: Bessel-Verfahren. Grundlagen Bei der Bestimmung der Brennweite einer Sammellinse lassen sich die Gegenstands- und Bildweite direkt

Mehr

Mathematische Grundlagen für das Physik-Praktikum:

Mathematische Grundlagen für das Physik-Praktikum: Mathematische Grundlagen für das Physik-Praktikum: Grundwissen: Bruchrechnung Potenzen Logarithmen Funktionen und ihre Darstellungen: Lineare Funktionen Proportionen Exponentialfunktion Potenzfunktionen

Mehr

Lichtgeschwindigkeit Versuchsauswertung

Lichtgeschwindigkeit Versuchsauswertung Versuche P1-42,44 Lichtgeschwindigkeit Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 Inhaltsverzeichnis

Mehr

Einführung in die Fehlerrechnung

Einführung in die Fehlerrechnung Einführung in die Fehlerrechnung Jede quantitative physikalische Messung ist mit Fehlern behaftet. Die Angabe der Fehler gehört zu einer ordentlichen Auswertung ebenso dazu, wie die Angabe des eigentlichen

Mehr

Protokoll zum Versuch Millikanversuch (MV) im Fortgeschrittenenpraktikum

Protokoll zum Versuch Millikanversuch (MV) im Fortgeschrittenenpraktikum 12. Dezember, 2008 Protokoll zum Versuch Millikanversuch (MV) im Fortgeschrittenenpraktikum Klaus Steiniger, Alexander Wagner, Gruppe 850 klaus.steiniger@physik.tu-dresden.de, alexander.wagner2@mailbox.tu-dresden.de

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 16.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Widerstandsmessung - 1 Aufgaben: 1. Brückenschaltungen 1.1 Bestimmen Sie mit der Wheatstone-Brücke

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Was ist Physik? Modell der Natur universell es war schon immer so

Was ist Physik? Modell der Natur universell es war schon immer so Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft

Mehr

Bei einer Reihenschaltung zweier Widerstände wurden folgende Spannungswerte gemessen : U 1 =200V, U 2 =1,5V

Bei einer Reihenschaltung zweier Widerstände wurden folgende Spannungswerte gemessen : U 1 =200V, U 2 =1,5V Aufgaben zu Fehlerfortpflanzung Aufgabe 1: Der ohmsche Widerstand eines Drahtes soll aus den Abmessungen und der Leitfähigkeit bestimmt werden. Der rel. Fehler bei der Längenmessung sei f l =+0,5%, bei

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

T1: Wärmekapazität eines Kalorimeters

T1: Wärmekapazität eines Kalorimeters Grundpraktikum T1: Wärmekapazität eines Kalorimeters Autor: Partner: Versuchsdatum: Versuchsplatz: Abgabedatum: Inhaltsverzeichnis 1 Physikalische Grundlagen und Aufgabenstellung 2 2 Messwerte und Auswertung

Mehr

M5 Viskosität von Flüssigkeiten

M5 Viskosität von Flüssigkeiten Christian Müller Jan Philipp Dietrich M5 Viskosität von Flüssigkeiten I. Dynamische Viskosität a) Erläuterung b) Berechnung der dynamischen Viskosität c) Fehlerrechnung II. Kinematische Viskosität a) Gerätekonstanten

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

Protokoll zum Versuch: Atwood'sche Fallmaschine

Protokoll zum Versuch: Atwood'sche Fallmaschine Protokoll zum Versuch: Atwood'sche Fallmaschine Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 11.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3

Mehr

Übungsaufgaben. Was für Buchstaben gilt, gilt leider nicht für Zahlen! 4, ,75638

Übungsaufgaben. Was für Buchstaben gilt, gilt leider nicht für Zahlen! 4, ,75638 Übungsaufgaben uat enier Stidue an der elingshcen Cabridge Unirestiät ist es eagl, in wlehcer Rienhnelfoge die Bcuhtsbaen in enie Wrot sethen, das enizg wcihitge dbaei ist, dsas der estre und Izete Bcuhtsbae

Mehr

Nichtlineare Bauelemente - Protokoll zum Versuch

Nichtlineare Bauelemente - Protokoll zum Versuch Naturwissenschaft Jan Hoppe Nichtlineare Bauelemente - Protokoll zum Versuch Praktikumsbericht / -arbeit Anfängerpraktikum, SS 08 Jan Hoppe Protokoll zum Versuch: GV Nichtlineare Bauelemente (16.05.08)

Mehr

1. Versuch: Fehlerrechnung - Statistik

1. Versuch: Fehlerrechnung - Statistik Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 1. Versuch: Fehlerrechnung - Statistik In diesem Versuch werden Sie mit den statistischen Grundlagen vertraut gemacht. Anhand der

Mehr

9.3 Lineare Regression

9.3 Lineare Regression 9.3 Lineare Regression 115 A B C D E F G H 1 2 Pearsonscher Korrelationskoeffizient 3 4 5 6 x-werte y-werte ANALYSE ASSISTENT 7 2,4-4 8 3,2-1 9 8,3 6,4 Spalte 1 Spalte 2 10 6,4 6 Spalte 1 1 11 7,2 6,3

Mehr

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 4. Versuch: Atwoodsche Fallmaschine 1 Einführung Wir setzen die Untersuchung der beschleunigten Bewegung in diesem Versuch fort.

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack. Betreuerin: Natalia Podlaszewski 11. November 2008

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack. Betreuerin: Natalia Podlaszewski 11. November 2008 Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 11. November 2008 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 7................................ 3

Mehr

Übungsaufgaben. Physik II. Fehlerrechnung. Institut für mathematisch - naturwissenschaftliche Grundlagen

Übungsaufgaben. Physik II. Fehlerrechnung. Institut für mathematisch - naturwissenschaftliche Grundlagen Institut für mathematisch - naturwissenschaftliche Grundlagen http://www.hs-heilbronn.de/ifg Übungsaufgaben Physik II Fehlerrechnung Autor: Prof. Dr. G. Bucher Bearbeitet: Dipl. Phys. A. Szasz Februar

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheorie Januar 2009 HS MD-SDL(FH) Prof. Dr. GH Franke Kapitel 5 Vertiefung: Reliabilität Kapitel 5 Vertiefung: Reliabilität 5.1 Definition Die Reliabilität eines Tests beschreibt

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten K. Koop Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

DGM Arbeitskreis Quantitative Gefügeanalyse

DGM Arbeitskreis Quantitative Gefügeanalyse DGM Arbeitskreis Quantitative Gefügeanalyse VI. Treffen 10/11.5.2016 (Hochschule Aalen) Messgerätefähigkeit, Stabilitätsüberwachung von Messprozessen Lars Thieme PixelFerber, Berlin 2016 PixelFerber 1

Mehr

CHEMISCHES RECHNEN II ANALYT. CHEM. FÜR FORTGS

CHEMISCHES RECHNEN II ANALYT. CHEM. FÜR FORTGS Arbeitsunterlagen zu den VU CHEMISCHES RECHNEN II - 771.119 Einheit 1 ANALYT. CHEM. FÜR FORTGS. - 771.314 Einheit 3a ao. Prof. Dr. Thomas Prohaska (Auflage März 006) Beurteilung von Analysenergebnissen

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Überprüfung der Genauigkeit eines Fahrradtachos

Überprüfung der Genauigkeit eines Fahrradtachos Überprüfung der Genauigkeit eines Fahrradtachos Stand: 26.08.2015 Jahrgangsstufen 7 Fach/Fächer Natur und Technik/ Schwerpunkt Physik Kompetenzerwartungen Die Schülerinnen und Schüler bestimmen experimentell

Mehr

14. Polarpunktberechnung und Polygonzug

14. Polarpunktberechnung und Polygonzug 14. Polarpunktberechnung und Polygonzug An dieser Stelle sei noch einmal auf das Vorwort zu Kapitel 13 hinsichtlich der gekürzten Koordinatenwerte hingewiesen. 14.1. Berechnungen bei der Polaraufnahme

Mehr

SG Stoßgesetze. Inhaltsverzeichnis. Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

SG Stoßgesetze. Inhaltsverzeichnis. Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 SG Stoßgesetze Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Stöße............................ 2 2.2 Schwerpunktsystem....................

Mehr

Bestimmung der Erdbeschleunigung g

Bestimmung der Erdbeschleunigung g Laborbericht zum Thema Bestimmung der Erdbeschleuni Erdbeschleunigung g Datum: 26.08.2011 Autoren: Christoph Winkler, Philipp Schienle, Mathias Kerschensteiner, Georg Sauer Friedrich-August Haselwander

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Übungen mit dem Applet Vergleich von zwei Mittelwerten

Übungen mit dem Applet Vergleich von zwei Mittelwerten Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung

Mehr

S1 Bestimmung von Trägheitsmomenten

S1 Bestimmung von Trägheitsmomenten Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Fehlerrechnung. Allgemeines Version: 27. Juli 2004

Fehlerrechnung. Allgemeines Version: 27. Juli 2004 Allgemeines Version: 27. Juli 2004 Fehlerrechnung Aufgabe einer physikalischen Messung ist es, en Zahlenwert einer physikalischen Größe festzustellen. Weil aber einerseits ie Schärfe er menschlichen Sinneswahrnehmungen

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Fehlerrechnung mit Hilfe der Differentialrechnung

Fehlerrechnung mit Hilfe der Differentialrechnung HTBLA Neufelen Fehlerrechnung mit Hilfe er Differentialrechnung Seite von 9 Peter Fischer pe.fischer@atn.nu Fehlerrechnung mit Hilfe er Differentialrechnung Mathematische / Fachliche nhalte in Stichworten:

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Protokoll Grundpraktikum I: M3 - Elastizität und Torsion

Protokoll Grundpraktikum I: M3 - Elastizität und Torsion Protokoll Grundpraktikum I: M3 - Elastizität und Torsion Sebastian Pfitzner. Mai 13 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (5577) Arbeitsplatz: Platz 4 Betreuer: Jacob Michael Budau Versuchsdatum:

Mehr

Ohmscher Spannungsteiler

Ohmscher Spannungsteiler Fakultät Technik Bereich Informationstechnik Ohmscher Spannungsteiler Beispielbericht Blockveranstaltung im SS2006 Technische Dokumentation von M. Mustermann Fakultät Technik Bereich Informationstechnik

Mehr

Praktikum Materialwissenschaft II. Wärmeleitung

Praktikum Materialwissenschaft II. Wärmeleitung Praktikum Materialwissenschaft II Wärmeleitung Gruppe 8 André Schwöbel 1328037 Jörg Schließer 1401598 Maximilian Fries 1407149 e-mail: a.schwoebel@gmail.com Betreuer: Markus König 21.11.2007 Inhaltsverzeichnis

Mehr

Systematische und zufällige Messabweichungen bei Experimenten

Systematische und zufällige Messabweichungen bei Experimenten Systematische und zufällige Messabweichungen bei Experimenten Die Naturwissenschaft Physik ist eine messende Wissenschaft, d. h. die physikalischen Gesetze werden durch Messungen gefunden bzw. bestätigt

Mehr

Messung und Einheitensystem. Institut für Experimentalphysik

Messung und Einheitensystem. Institut für Experimentalphysik Messung und Einheitensystem 1 Beobachtung eines physikalischen Vorgangs in quantitativer Form Definition von rößen notwendig (ursprünglich an Sinneswahrnehmungen angelehnt) Zusammenhänge durch leichungen

Mehr

Versuchsprotokoll. Untersuchung der Bewegung eines Gleiters auf der Luftkissenbahn

Versuchsprotokoll. Untersuchung der Bewegung eines Gleiters auf der Luftkissenbahn Versuchsprotokoll Untersuchung der Bewegung eines Gleiters auf der Luftkissenbahn Autoren: Anderson, Peter SYI101-Gruppe1 Müller, Petra SYI101-Gruppe1 Sonderman, Xaver SYI101-Gruppe1 Datum: Inhaltsverzeichnis

Mehr

Berechnung des ph-wertes einer schwachen Säure

Berechnung des ph-wertes einer schwachen Säure Berechnung des ph-wertes einer schwachen Säure 1/32 Schwefelwasserstoff H2S hat einen pks-wert von 6,92. Wie groß ist der ph-wert einer 0,01-molaren H2S-Lösung? Berechnung des ph-wertes einer schwachen

Mehr

Mathematik GK 11 m3, AB 07 Hochwasser Lösung

Mathematik GK 11 m3, AB 07 Hochwasser Lösung Aufgabe 1: Hochwasserwelle Während einer Hochwasserwelle wurde in einer Stadt der Wasserstand h des Flusses in Abhängigkeit von der Zeit t gemessen. Der Funktionsterm der Funktion, die den dargestellten

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Prozesskontrolle Modul 7 Dr.-Ing. Klaus Oberste Lehn Fachhochschule Düsseldorf Sommersemester 2012 Quellen www.business-wissen.de www.wikipedia.de www.sdreher.de 2012 Dr. Klaus Oberste Lehn 2 SPC Statistische

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Ideales und Reales Gas Versuchsauswertung

Ideales und Reales Gas Versuchsauswertung Versuche P2-47,48,49 Ideales und Reales Gas Versuchsauswertung Marco A. Harrendorf und Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 02.05.2011 1 Inhaltsverzeichnis

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Praktikum Physik. Protokoll zum Versuch: Oberflächenspannung. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch: Oberflächenspannung. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch: Oberflächenspannung Durchgeführt am 02.02.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 4. Vorlesung Dr.-Ing. Wolfgang Heenes 11. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Meßtechnik 2. Vorbesprechung

Mehr

Versuch M1 für Nebenfächler mathematisches Pendel

Versuch M1 für Nebenfächler mathematisches Pendel Versuch M1 für Nebenfächler mathematisches Pendel I. Physikalisches Institut, Raum HS126 Stand: 19. April 2016 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

Messwerte und ihre Fehler

Messwerte und ihre Fehler Die Praktika des Instituts für Physikalische Chemie (KIT) Messwerte und ihre Fehler Grundlagen der Fehlerrechnung mit Kurzanleitung in die computergestützte Datenauswertung März 2016 Herausgeber: Institut

Mehr

Dichtebestimmung für feste und üssige Körper

Dichtebestimmung für feste und üssige Körper Dichtebestimmung für feste und üssige Körper Praktikumsversuch am 20.10.2010 Gruppe: 3 Thomas Himmelbauer Daniel Weiss Abgegeben am: 27.10.2010 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbemerkung zur Fehlerrechnung

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

Polte, Galina; Rennert, Klaus-Jürgen; Linß, Gerhard: Korrektur von Abbildungsfehlern für optische Messverfahren

Polte, Galina; Rennert, Klaus-Jürgen; Linß, Gerhard: Korrektur von Abbildungsfehlern für optische Messverfahren Polte, Galina; Rennert, Klaus-Jürgen; Linß, Gerhard: Korrektur von Abbildungsfehlern für optische Messverfahren Publikation entstand im Rahmen der Veranstaltung: Workshop "Flexible Montage", Ilmenau, 09.

Mehr

Validierung von Messmethoden. Validierung von Messmethoden

Validierung von Messmethoden. Validierung von Messmethoden Validierung von Messmethoden Was soll eine gute Messmethode erfüllen? 1. Richtigkeit (accucacy) 2. Genauigkeit (precision) PD Dr. Sven Reese, LMU München 1 Richtigkeit (accuracy) Gibt Auskunft darüber,

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Fehlerrechnung EXPERIMENTELLE FEHLER ANALYTIK II IAAC, TU-BS, 2004 ANALYTIK II IAAC, TU-BS, 2004. Dr. Andreas Martens a.mvs@tu-bs.

Fehlerrechnung EXPERIMENTELLE FEHLER ANALYTIK II IAAC, TU-BS, 2004 ANALYTIK II IAAC, TU-BS, 2004. Dr. Andreas Martens a.mvs@tu-bs. Fehlerrechnung ANALYTIK II Dr. Andreas Martens a.mvs@tu-bs.de Institut f. Anorg.u. Analyt. Chemie, Technische Universität Braunschweig, Braunschweig, Germany EXPERIMENTELLE FEHLER ANALYTIK II - 2 - Signifikante

Mehr

10,24 ; 10,18 ; 10,28 ; 10,25 ; 10,31.

10,24 ; 10,18 ; 10,28 ; 10,25 ; 10,31. Bei einer Flaschenabfüllanlage ist die tatsächliche Füllmenge einer Flasche eine normalverteilte Zufallsvariable mit einer Standardabweichung = 3 [ml]. Eine Stichprobe vom Umfang N = 50 ergab den Stichprobenmittelwert

Mehr

Muster eines Versuchsberichts

Muster eines Versuchsberichts Muster eines Versuchsberichts Der folgende Versuchsbericht ist ein Muster zur Orientierung. Der Versuchsbericht wird oft auch als Versuchsprotokoll bezeichnet. Dabei ist jedoch im Gegensatz zum Messprotokoll

Mehr

Messungen und Messfehler

Messungen und Messfehler Messungen und Messfehler B. Schönfeld LMPT, ETH Zürich September 2007 1 Einleitung Messfehler sind (meistens) keine Fehler, sondern Messunsicherheiten. Was man in Messungen bestimmt, sind Schätzwerte,

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik

Mehr