Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)"

Transkript

1 Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg

2

3

4

5 Aufgabe Untersuchen Sie die Funktion f W R! R mit f.x/ D 5 e auf Monotonie und Konvexität. x 2.x 1/ 1 Bestimmen Sie außerdem alle Extremalstellen und Wendepunkte und skizzieren Sie den Verlauf der Funktion für x = 0. x f Aufgabe Die kumulierte Nachfrage y nach Videorecordern in Abhängigkeit der Zeit t = 1 wird durch die sogenannte Gompertz-Funktionsgleichung y.t / D 107 e 5.0;5/t prognostiziert. a) Skizzieren Sie die Funktion und geben Sie eine Interpretation. b) Berechnen Sie die Sättigungsgrenze lim y.t /. t!1 c) Zeigen Sie, dass die Änderungsrate der Nachfrage für alle t = 1 positiv und monoton fallend ist. d) Zeigen Sie auch, dass die Nachfrage für t 5 3 elastisch und für t = 4 unelastisch ist.

6

7 Begriff reelle Funktion Definition f : D R heißt reellwertige Abbildung mit Definitionsbereich D Mit D R n heißt f reelle Funktion von n Variablen Darstellung von Funktionen Durch Funktionsgleichungen f(x 1,..., x n ) = y x = (x 1,..., x n): unabhängige (exogene) Variablen y: abhängige (endogene) Variablen Durch Wertetabellen Durch Graphen Für D R: Darstellung im kartesischen Koordinatensystem Für D R 2 : 3-dimensionale Darstellung oder Niveaulinien f(x) = c mit c R 6.1. Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit 132

8 0,5 Beispiel Cobb-Douglas-Funktion neoklassische Produktionsfunktion der Form f(x 1,..., x n) = a 0 x a 1 1 x a x an n Beispiel für zwei Produktionsfaktoren f(x 1, x 2 ) = 1 x 1/2 1 x 1/2 2 = x 1 x 2 Dreidimensionale Darstellung Niveaulinien für f(x 1, x 2 ) = c mit c = 1/2,..., Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit , ,5 0,5 2 2, ,5 0, ,5 1, ,

9 Eigenschaften von Funktionen Eine Funktion f : D W mit D R n und W R heißt: surjektiv, wenn zu jedem y W ein x D mit f(x) = y existiert, injektiv, wenn für alle x, x D gilt x x f(x) f( x), bijektiv, wenn f surjektiv und injektiv ist. Komposition von Funktionen Voraussetzung: Funktionen f : D f R und g : D g R mit D f R n und f(d f ) D g R Zusammengesetzte Funktion: g f : D f R: Zuordnung des Werts (g f)(x) = g (f(x)) für alle x D f Inverse Funktion / Umkehrfunktion Voraussetzung: bijektive Funktion f : D W mit D, W R Inverse Funktion: f 1 : W D, y f 1 (y), wobei y für alle x D mit y = f(x) zugeordnet wird 6.1. Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit 134

10 Invertierung: Beispiel Beispiel b) f : R R, f(x) = x f(x) Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit x 135

11 Satz: Operationen zwischen Funktionen Gegeben: f, g : D R reelle Funktionen mit identischem Definitionsbereich D R. Dann sind auch die folgenden Abbildungen relle Funktionen: f + g : D R mit x D (f + g)(x) = f(x) + g(x) f g : D R mit x D (f g)(x) = f(x) g(x) f g : D R mit x D (f g)(x) = f(x) g(x) f g : D 1 R mit x D 1 ( ) f (x) = f(x) g g(x) 6.1. Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit D 1 = {x D : g(x) 0} 136

12 Besondere Punkte bei Funktionen Gegeben: Reelle Funktion f : D R mit D R n Definitionen c-stelle von f: x c D mit f(x c ) = c Mit c = 0 heißt c-stelle dann 0-Stelle von f Maximalstelle oder globales Maximum: x max D mit f(x max ) f(x) für alle x D Minimalstelle oder globales Minimum: x min D mit f(x min ) f(x) für alle x D x D mit f(x ) ( ) f(x) für x [x a, x +a] D heißt lokale Maximalstelle (Minimalstelle), f(x ) lokales Maximum 6.1. Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit Weitere Sprechweisen: Extremal-, Optimalstelle, Extremum, Optimum 137

13 Beispiel: Maximal-, bzw. Minimalstellen Umsatzmaximierung für zwei Produkte mit Absatzquantitäten x 1, x 2 und Preisen p 1, p 2 : Gegeben: Preis-Absatz-Funktionen x 1 = 10 p 1 und x 2 = 12 p 2 Wegen x 1, x 2 0 und p 1, p 2 0 folgt p 1 [0,10] und p 2 [0,12] Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit Gesamtumsatz? Maximalstelle? Minimalstellen? 138

14 Weitere Eigenschaften reeller Funktionen f beschränkt es gibt c 0, c 1 R mit c 0 f(x) c 1 f monoton wachsend (x 1 < x 2 f(x 1 ) f(x 2 )) f monoton fallend (x 1 < x 2 f(x 1 ) f(x 2 )) bei strenger Monotonie entfällt = f konvex (x 1 x 2 f(λx 1 + (1 λ)x 2 ) λf(x 1 ) + (1 λ)f(x 2 )) f konkav (x 1 x 2 f(λx 1 + (1 λ)x 2 ) λf(x 1 ) + (1 λ)f(x 2 )) λ (0,1) bei strenger Konkavität entfällt = f periodisch mit Periode p > 0 f(x) = f(x ± p) f gerade (ungerade) f(x) = f( x) ( f(x) = f( x)) 6.1. Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit 139

15 Polynome Definition p : R R mit p(x) = a 0 + a 1 x + a 2 x a n x n = Satz heißt Polynom n-ten Grades Schreibweise: grad(p) = n n a i x i (mit a n 0) i=0 Summen, Differenzen und Produkte von Polynomen sind wieder Polynome. p(x 1 ) = 0 u(x) = p(x) x x 1 ist wieder Polynom mit grad(u) = grad(p) Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit 140

16 Rationale Funktionen Definition Satz q : D R mit q(x) = p 1(x) p 2 (x) heißt Rationale Funktion. (mit p 1, p 2 ( 0) sind Polynome) Jedes Polynom ist auch rationale Funktione (z.b. p 2 (x) = c). Summen, Differenzen, Produkte und Quotienten (falls definiert) von rationalen Funktionen sind wieder rationale Funktionen Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit 141

17 Weitere Funktionen Potenzfunktion f : R + R + mit f(x) = x a, (a R) heißt Potenzfunktion. f ist streng monoton wachsend für a > 0 und streng monoton fallend für a < 0. Für a 0 existiert eine inverse Funktion f 1 zu f Exponentialfunktion, Logarithmusfunktion f : R R + mit f(x) = a x, (a > 0, a 1) heißt Exponentialfunktion zur Basis a. g : R + R mit g(y) = log a (y), (a > 0, a 1) heißt Logarithmusfunktion zur Basis a mit g = f 1. Satz: f, g wachsen streng monoton für a > 1 und fallen streng monoton für a < Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit 142

18 Grenzwert einer Funktion Ausgangssituation Gegeben: Funktion f : D R mit D R n Grenzwert von f aufbauend auf Konvergenz von Zahlenfolgen Dazu betrachte: Alle Folgen a m = ( a m 1,..., ) T am n D mit Grenzwert a R n, also a m a für m Untersuche Grenzwerte lim f a m a (am ). Definition des Grenzwerts einer Funktion f heißt an der Stelle a R n (die nicht notwendig zu D gehören muss) konvergent gegen f R, wenn a) mindestens eine Folge (a m ) mit a m D, a m a und a m a existiert ( d.h. a ist kein isolierter Punkt ) b) für alle Folgen (a m ) mit a m D und a m a 0 gilt f(a m ) f. f heißt dann Grenzwert von f(a m ) Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit Schreibweise für alle gegen a konvergierende Folgen (a m ): lim a m a f ( a m) = f oder kurz lim x a f(x) = f 143

19 Begriff der Stetigkeit Gegeben Funktion f : D R mit D R n Definition Satz f heißt stetig in x 0 lim x x 0 f(x) = f(x 0 ) f heißt stetig in T D f ist für alle x T stetig Ist f für ein x D nicht stetig, so heißt x Unstetigkeitsstelle oder Sprungstelle Für stetige Funktionen f, g gilt: f ± g, f g, f/g (g(x) 0) sind stetig f, f g, sind stetig Falls f auf einem Intervall definiert und invertierbar: f 1 stetig Alle elementaren Funktionen sind in ihrem Definitionsbereich stetig 6.1. Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit 144

20 Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y f(b) f(x) 6.1. Grundbegriffe 6.2. Elementare Funktionen 6.3. Stetigkeit a b x f(a) 145

21 : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen und Reihen 5 Finanzmathematik 6 Reelle Funktionen 7 Differenzieren 1 7 Differenzieren 1 Differentialquotient und Ableitung Änderungsrate und Elastizität Kurvendiskussion 8 Differenzieren 2 9 Integration 10 Differentialgleichungen

22 Warum Differentialrechnung? Anwendungen Analyse und ökonomische Interpretation wirtschaftswissenschaftlicher Gesetzmäßigkeiten durch Untersuchung der Charakteristika von Funktionen Ermittlung von optimalen Lösungen betriebswirtschaftlicher Entscheidungsprobleme wie zum Beispiel Absatzmengenplanung, Loßgrößenplanung etc. Wesentliche Lernziele Verständnis des Differentialquotienten Fähigkeit, eine Funktion zu differenzieren Bestimmung und Interpretation von Änderungsraten und Elastizitäten Durchführung und Interpretation von Kurvendiskussionen 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 147

23 Preisbestimmung beim Angebotsmonopol Bekannt sind folgende Zusammenhänge: p(x) = c 1 c 2 x (Preis-Absatz-Funktion) K(x) = c 3 + c 4 x (Kostenfunktion) (mit c 1, c 2, c 3, c 4 R + Konstanten) Damit ergibt sich: Fragen: Umsatzfunktion: U(x) = c 1 x c 2 x 2 Gewinnfunktion: G(x) = U(x) K(x) = c 1 x c 2 x 2 (c 3 + c 4 x) Welche Menge/Welcher Preis ist Umsatz-/Gewinnmaximal? Welche Veränderung des Umsatzes ergibt sich bei einer Veränderung der Absatzmenge? 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 148

24 Differenzenquotient: Idee Tour de France: Anstieg nach L Alpe d Huez Länge des Anstiegs: 13,9 km Auf einer Höhe von 740 m beginnen die 21 Kehren Zielankunft liegt auf 1850 m Höhendifferenz Bestimmung von Steigungen: Distanz 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 149

25 Differenzenquotient Gegeben: Reelle Funktion f : D R mit D R Dann heißt der Ausdruck f(x 2) f(x 1 ) x 2 x 1 Differenzenquotient (Steigung) von f im Intervall [x 1, x 2 ] D Alternative Schreibweise, dabei Ersetzen von x 2 durch x 1 + x 1 f (x 1 + x 1 ) f (x 1 ) x 1 = f (x 1) x 1 f(x 1 + x 1 ) f(x 1 ) f(x) B A }{{} x 1 x 1 x 1 + x 1 f(x 1 ) x 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 150

26 Differentialquotient Eine reelle Funktion f : D R mit D R heißt an der Stelle x 1 D differenzierbar, wenn der Grenzwert existiert. f(x 1 ) lim x 1 0 x 1 Ist f an der Stelle x 1 differenzierbar, heißt f(x 1 ) lim x 1 0 x 1 = lim x 1 0 = f(x 1 + x 1 ) f(x 1 ) x 1 df dx 1 (x 1 ) = f (x 1 ) Differentialquotient oder erste Ableitung von f an der Stelle x 1. f heißt in D differenzierbar, wenn f für alle x D differenzierbar ist. G. W. Leibniz ( ) I. Newton ( ) 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 151

27 Ableitungsregeln Summen, Differenzen, Produkte und Quotienten (soweit definiert) von differenzierbaren Funktionen sind differenzierbar. Summenregel: Produktregel: (f ± g) (x) = f (x) ± g (x) (f g) (x) = f(x) g(x) + f(x) g (x) Daraus ergibt sich für eine Konstante c: (c f) (x) = c f (x) Quotientenregel: ( ) z (x) = z (x) n(x) z(x) n (x) 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion Kettenregel: n (n(x)) 2 (g f) (x) = [g (f(x))] = g (f(x)) f (x) 152

28 Ableitung elementarer Funktionen Gegeben: f : D R, mit D R und a > 0, b R. Dann gilt: f(x) f (x) 1 ln x x 1 log a x x ln a e x e x a x a x ln a 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität x b sin x cos x bx b 1 cos x sin x 7.3. Kurvendiskussion 153

29 Ableitungen höherer Ordnung Gegeben: f : D R, mit D R und a > 0, b R Wenn der Differentialquotient f : D R in x D differenzierbar ist, dann heißt df (x) dx = d2 f(x) (dx) 2 = f (x) zweite Ableitung oder Differentialquotient zweiter Ordnung von f in x D. Analog für n = 2,3,...: ( ) d ( ) f (n 1) (x) = d d (n 1) f(x) = f (n) (x) dx dx (dx) (n 1) f (n) (x) bezeichnet dabei die n-te Ableitung von f in x D. f heißt n-mal stetig differenzierbar in D, wenn f in D stetig und in jedem Punkt x D n-mal differenzierbar ist 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 154

30 Definition Elastizität Voraussetzung: D R und f : D R ist differenzierbar. Dann heißt Änderungsrate von f und Elastizität von f. ɛ f (x) = f (x) f(x) x ρ f (x) = f (x) f(x) = f (x) x f(x) = ρ f (x) x 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 155

31 Elastische versus unelastische Funktionen Definition Beispiel Für ɛ f (x) > 1 reagiert die relative Änderung von f(x) überproportional auf relative Änderungen von x, die Funktion f heißt im Punkt x elastisch. Für ɛ f (x) < 1 bezeichnen wir die Funktion f im Punkt x als unelastisch. f(x) = ae bx mit a, b 0 ρ f (x) = f (x) f(x) = abebx ae bx = b und ɛ f(x) = x ρ f (x) = bx Die Änderungsrate der Exponentialfunktion ist also konstant Die Elastizität wächst linear mit x Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 156

32 Steigung und erste Ableitung Gegeben: f : [a, b] R ist stetig und differenzierbar auf (a, b). Dann gilt: f monoton wachsend in [a, b] f (x) 0 für alle x (a, b) f monoton fallend in [a, b] f (x) 0 für alle x (a, b) f konstant in [a, b] f (x) = 0 für alle x (a, b) f (x) > 0 für alle x (a, b) f streng monoton wachsend in [a, b] f (x) < 0 für alle x (a, b) f streng monoton fallend in [a, b] 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 157

33 Krümmung und zweite Ableitung Gegeben: f : [a, b] R ist stetig und zweimal differenzierbar auf (a, b). Dann gilt: f konvex in [a, b] f (x) 0 für alle x (a, b) f konkav in [a, b] f (x) 0 für alle x (a, b) f beschreibt eine Gerade in [a, b] f (x) = 0 für alle x (a, b) f (x) > 0 für alle x (a, b) f streng konvex in [a, b] f (x) < 0 für alle x (a, b) f streng konkav in [a, b] 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 158

34 Beispiel f : R R mit f(x) = xe x f (x) = e x xe x = (1 x)e x f(x) Damit: f (x) 0 für x 1 und f (x) 0 für x 1 e 1 f mon. wachsend für x 1 und f mon. fallend für x 1 f global maximal bei x = 1 2e 2 3e Differentialquotient und Ableitung f (x) = e x (1 x)e x = (x 2)e x f (x) 0 für x 2 und f (x) 0 für x x 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion f konvex für x 2 und f konkav für x 2 159

35 Charakteristische Punkte Definition Wendepunkt f(x) hat in x 0 (a, b) einen Wendepunkt wenn es ein r > 0 gibt mit f ist in [x 0 r, x 0 ] streng konvex und f ist in [x 0, x 0 + r] streng konkav und (oder umgekehrt) Definition Terrassenpunkt x 0 ist Terrassenpunkt wenn x 0 Wendepunkt ist und f (x) = Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 160

36 Lokales versus globales Maximum 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion Der Finanzminister endlich mal wieder oben auf (Zeichnung: Haitzinger, 2009) 161

37 Extremumsbedingung Voraussetzung f zweimal stetig differenzierbar in (a, b) und f (x 0 ) = 0 mit (x 0 (a, b)) Dann gilt f (x 0 ) < 0 x 0 ist lokales Maximum von f f (x 0 ) > 0 x 0 ist lokales Minimum von f f (x) < 0 für alle x (a, b) x 0 ist globales Maximum von f f (x) > 0 für alle x (a, b) x 0 ist globales Minimum von f 7.1. Differentialquotient und Ableitung 7.2. Änderungsrate und Elastizität 7.3. Kurvendiskussion 162

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Prof. Dr. Stefan Etschberger Organisation Termine, Personen, Räume Gliederung 1 Grundlegende

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

ÜBUNGSAUFGABEN. Mathematik für Ökonomen II

ÜBUNGSAUFGABEN. Mathematik für Ökonomen II Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg ÜBUNGSAUFGABEN zur Vorlesung Mathematik für Ökonomen II Sommersemester 2006 1 Aufgabe 51 Man gebe die rekursiv definierten

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Differenzialrechnung

Differenzialrechnung Mathematik bla Differenzialrechnung Ort - Zeit - Geschwindigkeit E:\1_GYMER\_Unterricht\AUFGABEN\0_3 Differenzialrechnung\00_differenzialrechnung.docx 1 Das Weg-Zeit-Diagramm und die Geschwindigkeit Ordne

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

67 Grenzwert einer Funktion f in x 0 x 0 [a, b] D(f)

67 Grenzwert einer Funktion f in x 0 x 0 [a, b] D(f) Grenzwerte Stetigkeit Differentiation einer Funktion (Uneigentliche) Grenzwerte von Zahlenfolgen Nrn. 43 47 67 Grenzwert einer Funktion f in x 0 x 0 [a, b] D(f) Die Zahl x 0 ist also als Grenzwert erreichbar

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung

LMU MÜNCHEN. Mathematik für Studierende der Biologie Wintersemester 2016/17. GRUNDLAGENTUTORIUM 5 - Lösungen. Anmerkung LMU MÜNCHEN Mathematik für Studierende der Biologie Wintersemester 2016/17 GRUNDLAGENTUTORIUM 5 - Lösungen Anmerkung Es handelt sich hierbei um eine Musterlösung so wie es von Ihnen in einer Klausur erwartet

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker Mathematik für Wirtschaftsinformatiker Alfred Müller, Martin Rathgeb Universität Siegen Wintersemester 2008/09 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Zahlbereiche.................................... 1 1.2

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x)

Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. f(x 0 ) f(x) 3.2.4. Analyse von Funktionen Die Funktion f sei (zumindest) in einem Intervall I = [a, b] definiert und dort hinreichend oft differenzierbar. Begriffe: Die Funktion f hat in x 0 I eine stationäre Stelle,

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

1 Maximierung ohne Nebenbedingungen

1 Maximierung ohne Nebenbedingungen VWL III 1-1 Prof. Ray Rees 1 Maximierung ohne Nebenbedingungen Literatur: Schulbücher zur Mathematik ab der 10. Klasse Hoy et.al. (2001), Chapter 4-6, 11, 12. Chiang (1984), Chapter 9-11. Binmore (1983),

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Differenzierbarkeit von Funktionen

Differenzierbarkeit von Funktionen Differenzierbarkeit von Funktionen ist ein fundamentales Konzept zur a Beschreibung von Naturvorgängen: Änderungsrate, Momentangeschwindigkeit, Beschleunigung Differentialgleichungen als Bewegungsgleichungen

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Funktionale Abhängigkeiten

Funktionale Abhängigkeiten Funktionale Abhängigkeiten Lehrplan Die Lehrpläne für die allgemein bildenden Schulen finden Sie online unter: http://www.bmukk.gv.at/schulen/unterricht/lp/lp_abs.xml 5. Klasse (Funktionen) Beschreiben

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts

Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts Mathematik für Studierende der Erdwissenschaften Lösungen der Beispiele des 5. Übungsblatts 1. Stetigkeit und Grenzwerte: (a) Aus der folgenden grafischen Darstellung von y 1 (x) = x 2/3 /(1 + x 2 ) ist

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze

Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze Prof. Dr. Lorenz Schwachhöfer Inhaltsverzeichnis 1 Mathematische Grundlagen 2 2 Folgen und Reihen 7 3 Stetigkeit 15 4 Differenzierbarkeit

Mehr

Repetitorium Mathe 1

Repetitorium Mathe 1 Übungsaufgaben Skript Repetitorium Mathe 1 WS 2014/15 25./26.01. und 31.01./01.02.2015 Inhaltsverzeichnis 1 Bruchrechnung 2 2 Zahlsysteme 2 3 Arithmetisches und geometrisches Mittel 2 4 Wachstum 2 5 Lineare

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Kapitel 7. Differentialrechnung

Kapitel 7. Differentialrechnung Kapitel 7. Differentialrechnung 7.1. Grundbegriffe Der Differentialquotient und das Integral sind die Kernbegriffe der Analysis. Auf ihnen fusst die mathematische Beschreibung der Naturvorgänge mittels

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Kapitel 7 STETIGKEIT

Kapitel 7 STETIGKEIT Kapitel 7 STETIGKEIT Fassung vom 8. Juni 2002 Claude Portenier ANALYSIS 29 7. Der Begri Stetigkeit 7. Der Begri Stetigkeit DEFINITION I.a. sagt man, daßeine Abbildung von einer Menge X in K n, wobei K

Mehr