Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest"

Transkript

1 Studiekolleg ei de Uiversitäte des Freisttes Byer Üugsufge zur Vorereitug uf de Mthemtiktest

2 . Polyomdivisio:. Dividiere Sie! ) ( 6 8 ):( ) Lös.: ) ( ):(6 ) Lös.: 7 9 c) ( - ):() Lös.: d) (8 9 - ):( 0, ) Lös.: 6 0 e) ( ):( ) Lös.: - f) ( 6 y y y 6 ):( y y y y ) Lös.: y g) ( ):() Lös.: h) (6 ):( ) Lös.:. Bestimme Sie die Lösuge folgeder Gleichuge: ) 0 Lös.:-; ; ) : ; c) 0 -; -; d) 7 0 -; -; 6 e) ; ; f) 0 -; ; 9 g) ; 6 ; h) 0 -; ; i) 0 -; ; j) ; ; k) 0 -; ; l) ; ; m) 0 0 ; ; ) 0 ;, ± 0, o) ; -; ;

3 p) 0 0 -; -; ; q) 0 -; -; -;. Bruchterme:. Fsse Sie zusmme! Lös.:. Vereifche Sie soweit wie möglich! ) ( )( ) 6 6 Lös.: 6 ) y y v u y y v u y v u y y v u y Lös.: y y c) 8 Lös.: 8 d) 6 8 Lös.: 8 e) m m m m m m Lös.: m m. Qudrtische Gleichuge:. ) 8 6 0; IL { ) 7 0 ; IL {0; -7 c) 6 0; IL {; d) 6 0; IL { ± e) 0; IL ; f) 6 6 0; IL,; g) 0; IL { h) IL ± 7 i) 9 0; IL {; - j) 0; IL { 0,, 0 ±

4 . Gleichuge, die uf qudrtische Gleichuge führe: 8 ) IL ± c) 6 6 0; IL ± ; ± ) 0; IL { ± 0, 0, ; ± e) 8 0; IL { ; ± g) - 6 0; IL { 6 d) ; IL {; - ± f) -8 0; IL {9; ± h) - 0; IL {6 i) ( 7). ( ) ; IL { ± ; ±. Wurzelgleichuge: ) 7 ; IL { ) ; IL {0; c) 7 ; IL { d) 8 7; IL {; 8 8 e) 6 ; IL {6 f) 6 ; IL { g) (, 7) 0, 0,; IL {0, h) ( ) 0, ( ) ; IL { ± ; ± i) 6 ; IL { j) 0 7; IL {; - k) ( ) 9 0; IL { ± l) ; IL { 0; - - m) ; IL { 0,7 o) ( 6) 8; IL { 0 ) ( ) ; IL {. Ugleichuge: ) < ; IL ] ; [ ] 0; [ ) > 0 IL [ 0;[ ] 6; [ c) < < ; IL ] ; [ d) ( ) ; IL { 7 e) ; IL [ 0; ] [ 9; [ f) < IL [ 0; [

5 g) < ; IL ] ; [ ] ; [ h) ( )( ) 0 ; IL ] ; ] [ ; [ i) ( )( 8) 0 ; IL [,;,6] j) 6 7 k) ( ) > 0 ; IL ] ;0[ ] ; [ l) < 6 ; IL ] ;[ ] ; [ m) ( ) > ; ) > ; IL ] ; [ ] ; [ >0 IL ] ; 9[ ] ; [ IL ] ; [ o) Zeiche Sie die Bereiche ller Pukte (; y) i IR IR, für die gilt: o) y o) y 6. Gleichugssysteme: ) y 7 6y IL ; ) y y IL {( 0;) c) y y IL {( ; ) d) y y y y IL {( ; ) e) 6 y y keie reelle Lösug! f) y y 6 IL {( ;0) ;( ;0) g) 7 0 y 0 y {( ; ) IL h) y 0y 0 y 0y 0 IL ( 0;0) ; ;

6 7. Epoetilgleichuge: ) 8; IL { ) 6; IL { 6 c) 8 ; { IL d) 6 ; IL { e) ; IL { f) 0 ; IL { g) ( ) ( ) ; IL h) 0, 00 ; IL { i) 0, ; IL { j) 0 ; IL { 0 k) 8 0 ; IL l) - ; IL { 7 m) - ; IL { ) ; IL { o). 7 0 ; IL { ; p) ; IL { q). 0 ; IL { ; r) - 0 ; IL { s) - ; { IL t) ; 6 IL lg 7 u) ; IL { v) ; IL { 8. Logrithmusgleichuge ud Epoetilgleichuge: 8. Formel für Logrithme: y log y ( y IR ud IR ohe { ) z. B. 0, log0, lg lg 0, Der dekdische Logrithmus: log 0 : lg ; lg 0; lg 0 ; lg 00 ; Der türliche Logrithmus: log e : l ; l 0; l e ; (e, heißt Eulersche Zhl) 6

7 Rechegesetze für Logrithme (u, v > 0) u log ( u v) log u log v log log u log v v log u log u, log 0 log log log log c die Bsisumrechugsformel > 0 ud, c IR ohe { log c ( ) 8. Aufge: 8.. Bereche Sie! )lg 0, { { d) log 8 g) 0, log { IL ) log, IL e) 0 { log { IL h) log { 0 IL c) log, 8 IL f) log IL i) 0 IL { IL { log IL { 0 { j) log, IL k) log { IL l) log 6 6 IL { m) log 7 p) log { IL ) log { IL q) log, 0, 0 { IL o) IL r) log IL { log IL { s)lg0000 { IL t) log IL u) log IL {, v) log y) log IL w) log 0, IL z) log IL ) log, 0, IL 0 IL { 7

8 8.. Für welche Werte vo gilt? log {, ) IL ) log IL c) log 0, IL d) log 8 IL e) log 0 IL { f) log { 6 IL g) log IL { 8.. Zerlege Sie! ) ( uvw) log Lös.: log u log v log w e f ) log Lös.: log e log f log g log h g h c) log u Lös.: log u d) log Lös.: log e) log ( y ) Lös.: log ( y) log ( y) 8.. Fsse Sie zusmme! ) log log y log z Lös.: log y z ) log log y Lös.: log y c) log log log y Lös.: log y m log Lös.: log d) m ( y) ( log log y) ( y) ( y) 8

9 8.. Bestimme Sie die Defiitiosmege ID ud die Lösugsmege IL! ) lg( ) ; ; ) lg ( ) lg lg c) ( ) log log 0 log ; d) log ( ) lg( 6) ; e) ( lg ) lg 0, 7 ; lg f) 000; g) ( 00 ) lg 000 ; IR > ID IL { 0,7 ID IR IL { ID IR IL { IR > ID IL { ID IR {, 0 IL 0 ; 0, ID IR IL { 0 ± ID IR IL { 0 ;0 h) > 00000; ID IR i) ; ID IR j) 0-8 : ; ID IR k) - 0 ; ID IR IL IR > 0 lg IL lg, lg80 IL 0 lg lg0 IL lg lg 8..6 Bestimme Sie die Lösugsmege IL! ) lg 0 ; IL ± 0 ) l( ) ; lg c) e IL e IL 0 ;0 ; {

10 d) y lg y y 0 IL { e) log ; f) log 0,008 ; IL IL log g) log ( ) log 0 ; IL h) log 7 8 ; IL { i) log ; IL { j) log 8 ; IL k) log ; IL { 7 l) log ; IL { m) log ; IL { 6 ) ( 0 ) lg 00 ; IL { 0; 0,0 o) log ; IL {, p) log log log ; IL { 8..7 Skizziere Sie de Grphe der Fuktio f : f ( ) l, > 0 sowie de Grphe der Umkehrfuktio f! 0

11 9. Trigoometrie: Gegekthete si α Hypoteuse c cos α Akthete Hypoteuse c Gegekthete t α Akthete cot α Akthete Gegekthete Fuktioswerte esoderer Wikel, Vorzeiche α I II III IV si α cos α t α 0 icht icht 0 def. def. - - cot α icht icht def. 0 def Additiostheoreme:

12 Doppelwikelfuktioe: cos t cos ( ) ( ) Summe zweier trigoometrischer Fuktioe (Idetitäte): Ds Bogemß: α π 80 Aufge: Für welche mit < 60 0 (. 0 < π ) zw gilt? si { 0 ; 60 ;80 ; 00 ) si ) cos si { 0 ; 0 ; { 0 ; 90 d) cos ( ) 0 ; { 9 ; c) si cos ; { ; e) si cos 0 f) si cos 0 ; { ;

13 ; { 0 ; 90 ; 70 g) si cos h) si cos( ) ; { 0 ; 0 ; 0 ; 80 i) si( ) cos ; { 0 ; ;80 ; j) si cos ; { 0 ;0 ; 00 ; 0 k) cos( ) cos ; { 60 ; 90 ; 70 ; 00 ; { 0 ;0 ; 0 ; 0 l) cos 0 ; { 60 ; 00 m) si cos, ) si cos IR ; ± π k π k Z y π o) si si y, p) si ( cos ) π π ; 6 ; IR q) si t cos ; r) si ( ) cos 0 ; π ; π ; π; π π s) ( si ) cos cos 0 ; π 0; ; π ; { 0 ;0 ; 0 ; 0 t) si t u) si t, ; π ; 7 π ; π; π v) t( ) t ; { 0 ; 0 ;0 ;80 ; 0 ; 0 ; { 0 ; 90 w) si cos si cos ; { ) si cos π y) Zeiche Sie de Grphe der Fuktio f : y si, IR.

14 0 Aufge zur Geometrie: 0.. Beweise Sie, dss die Flächeihlte der Dreiecke ABC ud ADE gleich sid. Die Strecke [ EB ] ud [ CD ] sid prllel. BC werde mit S ezeichet. Die eide Dreiecke he ds Viereck ABSE gemeism. Es leit och zu zeige: BDS ist flächegleich zu ESC. Beweis: Der Schittpukt der Strecke [ DE ] ud [ ] Nu gilt: BDC ist flächegleich zu EDC, weil diese eide Dreiecke die Seite CD gemeism he ud die Höhe i eide Dreiecke gleich ist ([ EB ] ist prllel zu [ CD ]). ESC ist flächegleich zu BDS die Behuptug. 0. Eiem Kreis mit dem Mittelpukt L ud dem Rdius R 0 cm sid drei kleiere Kreise mit de Rdie r eieschriee. Bereche Sie de Rdius r der kleiere Kreise. Lösug: R 0 cm r ( ist der Astd vom kleie Kreis zum Mittelpukt L des große Kreises). 0 r. Nch dem Strhlestz gilt: ( r) : R r :0 (Seiteläge s im gleichschekelige Dreieck ei gegeeem Umkreisrdius R0, s R cos0 R s 0 ). 00 Ausreche liefert de Wert r, 6 [cm] (mit dem Tscherecher). 0 0

15 0. Eiem Kreis mit Rdius R AH sid 7 Kreise mit gleichem Rdius r DN so eieschriee, dss sich die Kreise erühre. Welcher Teil der Fläche des große Kreises wird vo de 7 kleie Kreise edeckt? Lösug: Es gilt r (R-r). si0 (R-r). 0, 0, R 0, r rr Fläche des große Kreises: F R R π 9r π Fläche der 7 kleie Kreise: 7 F r 7r π 7r π 7 9r π 9 edeckt. Atwort: 9 7 der Fläche des große Kreises werde durch die 7 kleie Kreise 0. Es soll der Astd zweier prlleler Sehe i eiem Kreis mit Rdius r AB 6 cm erechet werde. Die Seheläge sid s CD cm ud s EF 6 cm.

16 Lösug: AG ; AH ; ch dem Stz des Pythgors gilt im AGD : 6 6 ud im AFH : 6 6 ud 6 Der Astd eträgt 9 cm. 0. Vo eiem Pukt B eies Berges sieht m de Gipfel D eies zweite Berges uter dem Wikel α. Der Pukt B liegt AB Meter üer dem See. Ds Spiegelild E des Gipfels im See sieht m vo B uter dem Wikel β. Gesucht ist die Höhe CD des zweite Berges i Ahägigkeit vo, α ud β. Lösug: () si β BE BE si β () Nch dem Siusstz gilt: BE si( β α ) si( α β ) ED BE si ( β α ) si( β α ) ED ( ) ( ) ( ) ( ) ( ) ( ) si α β si α β si α β () CD ED si β BE si β si β si β α si β si β α si β α 6

17 0.6 Die Spitze eies Turmes wird vo Pukt A us uter eiem Wikel α 0 gesehe, vom Pukt B us uter eiem Wikel β 60. Die Strecke AB 80 m lg. Wie hoch ist der Turm? Höhe h CD. Lösug: ACB γ 0, we α 0 ch dem Siusstz gilt: siα si γ BC si 0 BC ; BC 80 AB si 0 80 h CD 80 si ( 69, m) 0.7 Gegee: AC c 0 cm ; BC cm ; DC e cm ; gesucht: siα ; siβ; si γ; 7

18 Lösug: ch dem Lehrstz des Pythgors gewedet uf ds ud log für ds AB cm ; i BDC sei DBC β ( β ) ADC folgt: AD 6 cm e si β si β si β si 80 si β e 6 si α 0,6 c 0 0 siγ (Siusstz): siγ 0,6 siα 6 BDC folgt: BD cm 0.8 Gegee: c AD DB 6 cm ; r MT cm ; y CP ; gesucht: CT Lösug: die Dreiecke ADC ud MTC sid ählich c c ( I ) : ( y r) c r : ( II ) : r : ( y r) ( I ) c r y r r ( II ) y c c r r c r rc c r ( I ) ( II ) r r,8 cm ud y, cm 8

19 0.9 Gegee ist ds Rechteck OAPT mit SA ; BT ud BP AT; gesucht: OA; y OT Lösug: ( I ) die Dreiecke ( II ) die Dreiecke APS ud APT sid ählich : y y : y ; APT ud PTB sid ählich y : : y ; us ( I ) ud ( ) II folgt: ( für 0) ud y 9

20 Studiekolleg ei de Uiversitäte des Freisttes Byer Aufhmeprüfug Mthemtiktest Hiweis: Die Bereitug ud die Lösug sid uf diese Blätter zu schreie. Es sid keie Hilfsmittel erlut. Areitszeit: 60 Miute. Für welche IR gilt: (6 7 ) 0 // Lösug: durch Proiere fidet m ls eie Lösug. die Polyomdivisio liefert: (6 7 ):( -) 6 - Lösugsmege IL ; ; // Prüfugsummer:... Nme:... Studiefch: Vereifche Sie: 6 // Lösug:... //. Vereifche Sie: y y y : y y y y // Lösug:... y y //

21 . Für welche reelle Werte vo k ht die folgede Gleichug geu zwei verschiedee reelle Lösuge? k k 0 // Lösug: die Diskrimite D k k > 0 k>6 oder k< - //. Für welche IR gilt: < // Lösug: die Defiitiosmege ID IR ohe {. Fll: > IL {.Fll:.Fll: < < IL IR < ; IL IR < < ; Gesmtlösugsmege IL IR < < ; // 6. Bestimme Sie für die folgede Gleichug die mimle Defiitiosmege D sowie die Lösugsmege L i der Grudmege G IR.: ( ) log ( ) log log // Lösug: die Defiitiosmege ID ] ; [ [( ) ( ) ] log ( ) log 6 die Lösugsmege IL { // 6 0

22 7. Bestimme Sie die Lösugsmege L i der Grudmege G IR. 9 7 // Lösug: die Lösugsmege IL // 8. Für welche IR ud 0 π gilt die folgede Gleichug: cos cos? // Lösug: cos cos cos π π die Lösugsmege IL ; ; π; π // ( cos ) 0 cos 0 cos 9. Jemd ht 0 Flsche Geträke der Sorte A, B ud C für 0 gleiche Müze gekuft., y ud z sid jeweils die Azhl der Flsche vo Sorte A, B ud C. Für Flsche der Sorte A zhlte er eie Müze, für zwei Flsche der Sorte B eeflls eie Müze ud für jede Flsche der Sorte C zwei Müze. Wie viele Flsche jeder Sorte ht er gekuft? // Lösug: () y z 0 z y () y z 0 { () i () eisetze liefert die Gleichug: 0 0 y. D, y, z IN sei müsse, folgt: 9; y 0; z ; 9 Atwort: 9 Flsche vo A, 0 Flsche vo B, Flsche vo C. //

23 0. Ds Dreieck ABC ist gleichscheklig-rechtwiklig. Die Schekel sid AC CB r cm lg. M[] ist der Mittelpukt der Strecke [AB]. Die drei Kreisöge he die Mittelpukte A, B ud C ud erühre sich uf de Dreiecksseite i de Pukte D[], E[] ud M[]. Bereche Sie de Flächeihlt des Flächestücks D[]E[]M[] i der Mitte des Dreiecks i Ahägigkeit vo r, ds vo de Kreisöge egrezt wird. Siehe Skizze! // Lösug: () F ABC AC CB r () F [ ] [ ] AM[ ] π r π AM D (c) FCD [ ] E[ ] r 8 r r π r π (d) F D[ ] M[ ] E[ ] r r π r π // 8. Es soll die Höhe des geildete Turms ermittelt werde. Hierzu werde zwei Stäe so ufgestellt, dss sie eide sekrecht stehe ud dss m üer ihre oere Ede die Turmspitze peile k. Die eide Stäe sid,80 m zw.,0 m lg. Welche Turmhöhe ergit sich, we folgede Messuge durchgeführt wurde: m; 06 m. Stelle Sie zuerst eie Formel für die Höhe h i Ahägigkeit vo,, c ud d uf ud ereche Sie d ohe Tscherecher die Höhe h. // Lösug: Die Höhe des Turms sei h; α sei der Wikel zwische der Wgrechte ud der Gerde zur Turmspitze. d c h c tα,,8 h,8 tα 06 h 8,8 [ m] //

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Formelsammlung MATHEMATIK Oberstufe

Formelsammlung MATHEMATIK Oberstufe Formelsmmlug MATHEMATIK Oerstufe Diese Formelsmmlug erhet keie Aspruch uf Vollstädigkeit ud Richtigkeit. Sie wird ei Bedrf durch weitere Kpitel ergäzt..poteze Fktorezerleguge, R r,s R k Z m, N r s r+ s

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse!

Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse! ohe Hilfsmittel. Bereche! ) 0 Üugsufge BLF ) lg 0, 0 c) 0 d) 0, 0 e) f) 00% vo 0, 7. Löse! ) 0, ) lg c) ( ) 0 0. Wie groß ist die Fläche des Kreises? ), cm² ) 5, cm² c) 6,5. Gi Defiitios ud Werteereich!

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 2010 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 1.0 Lekt ma eie Schiffschaukel auf eie Afagshöhe vo 2,00

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Grundwissen Mathematik 9. Klasse. Eigenschaften - Besonderheiten - Beispiele

Grundwissen Mathematik 9. Klasse. Eigenschaften - Besonderheiten - Beispiele Grudwisse Mthemtik 9. Klsse Theme Erweiterug des Zhlebereichs reelle Zhle Eigeschfte - Besoderheite - Beispiele Jede rtiole Zhl k ls Bruch geschriebe werde: = q p Dieser Bruch stellt etweder eie gze Zhl,

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

I. Quadratische Funktionen und quadratische Gleichungen (Seite 1)

I. Quadratische Funktionen und quadratische Gleichungen (Seite 1) I. Qudrtische Fuktioe ud qudrtische Gleichuge (Seite ) Allgemeie qudrtische Fuktioe: Der Grph eier Fuktio der Form f(x) = x² heißt Normlprbel. Der Pukt mit dem kleiste Fuktioswert heißt Scheitelpukt ud

Mehr

Abschlussprüfung 20XX Muster an den Realschulen in Bayern

Abschlussprüfung 20XX Muster an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussrüfug 0XX Muster a de Realschule i ayer Mathematik II Hilfsmittelfreier Teil Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabeteil A Hauttermi A ereche Sie. a) vo 40 sid

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 205 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: A.0 A. Aufgabe A Die ebestehede Figur ist durch de Kreisboge BC mit dem Radius

Mehr

Abschlussprüfung 150 Minuten an den Realschulen in Bayern

Abschlussprüfung 150 Minuten an den Realschulen in Bayern Prüfugsdauer: Abschlussprüfug 50 Miute a de Realschule i Bayer 2009 Mathematik I Haupttermi Aufgabe A Name: Vorame: Klasse: Platzziffer: Pukte: A.0 Ei Messbecher fasst, bis zum Rad gefüllt, geau eie Liter

Mehr

Abschlussprüfung 20XX Muster an den Realschulen in Bayern

Abschlussprüfung 20XX Muster an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0XX Muster a de Realschule i ayer Mathematik I Hilfsmittelfreier Teil Name: orame: Klasse: Platzziffer: Pukte: A Aufgabeteil A ereche Sie. a) vo 70 sid Haupttermi

Mehr

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1 Abschlussprüfug 200X Wahlteil Mathematik I Aufgabe A 1 Vorame: Klasse: Platzziffer: Pukte: / A 1.0 A 1.1 Gegebe ist die Fuktio f mit der Gleichug 0,5 y 2 ( 3) 4,5 ( GI IR IR ). Begrüde Sie, warum ma bei

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

f) n n 2 x x 4 für n gerade; x für n ungerade

f) n n 2 x x 4 für n gerade; x für n ungerade R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Prof. U. Stephan Studiengang BAU 1. Fachsemester Formelsammlung, V. 1 TFH Berlin, FB II LV Mathematik Seite 1 von 6

Prof. U. Stephan Studiengang BAU 1. Fachsemester Formelsammlung, V. 1 TFH Berlin, FB II LV Mathematik Seite 1 von 6 Prof. U. Steph Studiegg BAU 1. Fchsemester Formelsmmlug, V. 1 TFH Berli, FB II LV Mthemtik Seite 1 vo 6 Formelsmmlug ur LV Mthemtik im Studiegg Buigeieurwese Umgg mit dem Tscherecher: Formel: Nottio: Die

Mehr

Aufgaben Reflexionsgesetz und Brechungsgesetz

Aufgaben Reflexionsgesetz und Brechungsgesetz Aufgabe Reflexiosgesetz ud Brechugsgesetz 24. Zeiche zwei Spiegel, die sekrecht zueiader stehe. Utersuche mit zwei verschiede eifallede Strahle, welche Eigeschafte die reflektierte Strahle habe, die acheiader

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A.0 Daphe plat eie Teilahme bei Juged forscht. Für ihre Beitrag

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 1 Die ebestehede Skizze zeigt das Dracheviereck D ABD

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 1 Die ebestehede Skizze zeigt de Pla C eies dreieckige

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 202 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die Pukte A(2 0), B(5 ) ud C bilde das gleichseitige Dreieck

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

Potenzen und Wurzeln

Potenzen und Wurzeln Poteze ud Wurzel.) Poteze mit türliche ud gze Epoete: Epoet Potez: Bsis Ei Produkt us gleiche Fktore lässt sich ls Potez schreie er: ( ) ( ) ( ) ( ) 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) 0 (

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Fachbereich Mathematik

Fachbereich Mathematik OSZ Kfz-Techik Berufsoberschule Mthemtik Oberstufezetrum Krftfhrzeugtechik Berufsschule, Berufsfchschule, Fchoberschule ud Berufsoberschule Berli, Bezirk Chrlotteburg-Wilmersdorf Fchbereich Mthemtik Arbeits-

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

Vektorrechnung und Analytische Geometrie : Punkt, Gerade, Ebene, Projektionen und Schnitte

Vektorrechnung und Analytische Geometrie : Punkt, Gerade, Ebene, Projektionen und Schnitte Vektrrechug ud Alytische Gemetrie : ukt, Gerde, Eee, rjektie ud Schitte Siehe : de.wikipedi.rg, drt ises.: http://de.wikipedi.rg/w/idex.php?titlegerdegleichug http://de.wikipedi.rg/wiki/vektrrechug http://de.wikipedi.rg/wiki/alytische_gemetrie

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Mekhilfe Mthemtik m Gymsium Ihlte de Mittelstufe Lösugsfomel fü qudtische Gleichuge c / 4c Poteze m m s s s s s s Logithme logc log logc log

Mehr

Formelsammlung WS 2005/06

Formelsammlung WS 2005/06 Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze

Mehr

Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen

Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen Die Berechug des Flächeihlts krummliig egrezter Fläche Eiführug i die Itegrlrechug Teil : Die Fläche zwische der Normlprel y = x ud der x-achse im Bereich 0 x Die Fläche sieht us wie ei Dreieck, ei dem

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Übungsheft Realschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013

Übungsheft Realschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013 Miisterium für Bildug ud Wisseschaft des Lades Schleswig-Holstei Zetrale Abschlussarbeit Übugsheft Realschulabschluss Mathematik Korrekturaweisug Herausgeber Miisterium für Bildug ud Wisseschaft des Lades

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

2 Mathematische Grundlagen

2 Mathematische Grundlagen Mthemtische Grudlge. Mthemtische Grudbegriffe.. Grudgesetze Kommuttivgesetze + b b + b b ssozitivgesetze ( + b) + c + (b + c) ( b) c (b c) Distributivgesetz (b + c) b + c.. Gesetze der ordug < b b > (b

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Formen der Arbeit mit mathematisch begabten Schülern in Russland 1

Formen der Arbeit mit mathematisch begabten Schülern in Russland 1 Boris Averboukh Forme der Arbeit mit mthemtisch begbte Schüler i Russld Eie Ursche der mthemtische ud techische Erfolge i Russld des 0. Jhrhuderts wr die ktive Arbeit mit mthemtisch begbte Kider, der viele

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Lösugsmuster ud ewertug bschlussprüfug 0 a de Realschule i ayer Mathematik I ufgabe 3 Nachtermi RUMGEOMETRIE 6. ta 56,3 L. PS( ) P sis 3 P si 56,3 si 80 56,3 P si56,3 cm si(56,3 ) ]0 ; 90 ] si56,3 3 (

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Formelsammlung Chemietechnik

Formelsammlung Chemietechnik EUROPA-FACHBUCHREIHE für Chemieberufe Wlter Bierwerth Formelsmmlug Chemietechik. Auflge VERLAG EUROPA-LEHRMITTEL Nourey, Vollmer GmbH & Co. KG Düsselberger Strße 23 4278 H-Gruite Euro-Nr.: 763 Autor Wlter

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

wwwmathe-aufgabecom Abitupüfug Mathematik Bae-Wüttembeg (ohe CAS) Wahlteil Aufgabe Aalytische Geometie II, Aufgabe II Gegebe si ie Pukte A(//), B(//) u C(//) a) Zeige Sie, ass as Deieck ABC gleichscheklig

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen.

Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen. Mthemtikiformtio Vom Potezreche zum Logrithmus Nr. Zweite korrigierte Auflge. Jur 00 ISSN -9 Mthemtikiformtio ist eie Zeitschrift vo Begbteförderug Mthemtik e.v. Herusgbe ud Redktio: Professor Dr. Hrld

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr