Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Fertigungstechnik Technische Kommunikation - Technisches Zeichnen"

Transkript

1 Uwe Rat Eckleinjarten 13a Bremeraven Fertigungstecnik Tecnisce Kommunikation - Tecnisces Zeicnen 11 Projektionszeicnen 11. Körperscnitte und bwicklungen Kegelige Körper Wenn in der Geometrie von einem Kegel gesprocen wird, ist äufig der pezialfall des geraden Kreiskegels gemeint. Unter einem Kreiskegel verstet man einen Körper, der durc einen Kreis (Grundkreis oder Basiskreis) und einen Punkt außeralb der Ebene des Kreises (pitze des Kegels) festgelegt ist. 1 Die Ebene, in welcer der Basiskreis liegt, eißt Basis(kreis)ebene. Unter dem Radius r des Kegels verstet man normalerweise den Radius des Basiskreises. Die Gerade durc den Mittelpunkt des Grundkreises und die pitze nennt man die cse des Kegels. Die Höe des Kegels ist der bstand der pitze von der Basisebene; dieser bstand muss senkrect zur Basisebene gemessen werden. tet die cse senkrect zur Basisebene, so liegt ein gerader Kreiskegel oder Drekegel vor. ndernfalls sprict man von einem sciefen Kreiskegel oder elliptiscen Kegel. Kegelige Werkstücke: Gerader Kegel Die üblicen nsicten eines geraden Kegels besteen aus einem Kreis und zwei gleic großen gleicscenkligen Dreiecken. Es sind aber nur zwei nsicten erforderlic. Die Vorderansict kann auc allein genügen, wenn kein Zweifel darüber bestet, dass es sic um einen geraden Kegel andelt. Mit zwei Maßen, dem Durcmesser d bzw. dem Radius r der Grundfläce und der Körperöe, sind die bmessungen eines geraden Kegels festgelegt. 1 vgl.: ttp://de.wikipedia.org/wiki/kegel_(geometrie) rt. ProjZeicnen_Kegel eite 1

2 Uwe Rat Eckleinjarten 13a Bremeraven bwicklung des Kegelmantels und Mantelfläce Die Mantelfläce eines geraden Kreiskegels ist gekrümmt, aber abwickelbar zu einem Kreisausscnitt (Kreissektor). Der Radius dieses ektors stimmt mit der Länge einer Mantellinie des Kegels ( s ) überein. Den Mittelpunktswinkel α des Kreissektors kann man durc eine Verältnisgleicung ermitteln. Er verält sic zum 360 -Winkel wie die Kreisbogenlänge πr (Umfang des Basiskreises) zum gesamten Umfang eines Kreises mit Radius. Berecnung der Mantelöe (mit dem Lersatz des Pytagoras) + r d + ( 40mm) + ( 0mm) 000mm 44, mm 44,71mm d + 4 Berecnung des Mittelpunktswinkels α (Verätnisgleicung) α b 360 U s b 360 U α U s π r 360 π Grundkreis U 360 r 360 r r 160, ,00 s Der gesucte Fläceninalt der Mantelfläce ergibt sic nun aus der Formel für den Fläceninalt eines Kreissektors α 360 α 360 ( r ) M π π + rt. ProjZeicnen_Kegel eite

3 Uwe Rat Eckleinjarten 13a Bremeraven ufgabe/n: 1. Zeicnen ie die drei nsicten eines geraden Kegels mit den Maßen 100 mm und d 70 mm im Maßstab M 1:1. Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt 1. Berecnen ie für den Kegel.1 den Umfang des Grundkreises,. die Mantelöe,.3 für die bwicklung der Mantelfläce den Mittelpunktswinkel α,.4 die Mantelfläce M,.5 den Umfang der abgewickelten Mantelfläce (Brennscnittlänge) Lösungsvorscläge: s. eite 5 3. Zeicnen ie die bwicklung der Mantelfläce. Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt 4. Vorbereitung für die bwicklung eines scräg gescnittenen Kegels: 4.1 Teilen ie den Grundkreis in 1 gleice Teile. 4. Zeicnen ie von diesen Teilungspunkten in allen 3 nsicten die Mantellinien zur pitze des Kegels. 4.3 Bescriften ie die Teilungspunkte des Grundkreises mit 0, 1, Der Punkt 0 ist der cnittpunkt des Grundkreises mit dem recten bscnitt der waagerecten Mittellinie des Grundkreises. Die Punkte werden entgegen dem Urzeigersinn nummeriert. Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt 3 5. Der Kegel soll in der Vorderansict in 50 mm Höe der cse unter 35 gescnitten werden. Zeicnen ie diesen cnitt in die Vorderansict ein. Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt 4 6. Zeicnen ie die cnittpunkte dieser crägen mit den Mantellinien in der Vorderansict in die eiten- und Draufsict ein. Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt 5 7. Die Lösung zu Punkt 6 gibt nict den cnittpunkt der crägen mit den Mantellinien 3- und 9- in der Draufsict. Diese Punkte müssen über die eitenansict in die Draufsict projiziert werden. Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt 6 8. Der Literatur entnemen wir, dass ein scräger cnitt durc einen Kegels eine Ellipse erzeugt, sofern er beide eitenlinien scneidet. 3 Der cnitt in der Vorderansict ist gleiczeitig eine cse der Ellipse und deren ware Länge. Ermitteln ie die Lage der zweiten cse und deren Breite. vgl. dazu: Tabellenbuc Metall; Haan-Gruiten: Europa Lermittel-Verlag; Kapitel: Geometrisce Grundkonstruktionen ecseck, Zwölfeck im Umkreis 3 vgl. ttp://de.wikipedia.org/wiki/kegelscnitt; ttp://www.mate-online.at/materialien/evelina/files/worksops07_kegelscnitte.pdf rt. ProjZeicnen_Kegel eite 3

4 Uwe Rat Eckleinjarten 13a Bremeraven Lösungsinweis: Die cräge in der Vorderansict wird albiert. Zu diesem cnittpunkt werden die Mantellinien in alle 3 nsicten gezeicnet. Entsprecend ufg.-6 werden die Kurvenpunkte für den crägscnitt in die eitenansict und Draufsict projiziert. Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt 7 9. Die eitenansict und Draufsict werden vervollständigt, indem die Kurvenpunkte der jeweiligen Ellipse verbunden werden (straken). Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt Konstruieren ie die bwicklung für den scräg gescnittenen geraden Kegel. Lösungsinweis: Informieren ie sic über den Kegelstumpf und die Lösung zur bwicklung eines Kegelstumpfs. Die cnittpunkte der Mantellinien des Kegels mit der crägen können auc als die Höen von kleineren Kegeln aufgefasst werden, wenn man durc diese cnittpunkte Parallele zur Grundlinie zeicnet. Diese kleineren Kegel und der usgangskegel aben alle die gemeinsame pitze. uf den eitenlinien lassen sic die Mantellöen abmessen. Das weitere Vorgeen kann dem Lösungsvorsclag entnommen werden. Lösungsvorsclag für die bwicklung des scräg gescnittenen Kegels: nang Zeicnung Gerader Kegel, Blatt Konstruieren ie die ware Größe der Ellipse, die sic als Öffnung in dem Kegel durc den scrägen cnitt ergibt. Lösungsvorsclag: nang Zeicnung Gerader Kegel, Blatt Ermitteln/Berecnen ie 1.1 die Fläce der Ellipse, 1. den Umfang der Ellipse 1.3 die Mantelfläce des scräg gescnittenen Kegels, 1.4 den Umfang des scräg gescnittenen Kegels. Lösungsinweise: Verwenden ie utocd, um die erforderlicen Maße oder die zu berecnenden Werte zu ermitteln. Lösungsvorscläge: eite 8 nang Zeicnung Gerader Kegel, Blatt 10 (Ellipse) nang Zeicnung Gerader Kegel, Blatt 11 (bwicklung Kegelmantel) 13. In der Praxis ist es durcaus üblic, die Länge des Bogens für den Kreisausscnitt des Kegelmantels nict mit Hilfe des Mittelpunktswinkels α zu bestimmen. Nac dem Zeicnen des Bogens mit dem Radius wird auf diesem die enenlänge aus der Draufsict entsprecend der Kreisteilung abgetragen. Die bwicklung des geraden Kegels wird auf die bwicklung einer geraden Pyramide mit n-seitiger Grundfläce zurückgefürt. Wie wirkt sic dieser Lösungsweg auf unseren Kegel aus? Lösungsvorscläge: s. eite 6 rt. ProjZeicnen_Kegel eite 4

5 Uwe Rat Eckleinjarten 13a Bremeraven Lösungen zu ufg :.1 Umfang des Grundkreises eines geraden Kegels ( 100 mm, d 70 mm) U G d π 70 mm π 19, mm 19,9 mm. Mantelöe eines geraden Kegels ( 100 mm, d 70 mm) + r ( 100 mm) + ( 35 mm) 115 mm 105, mm 105,9 mm.3 Mittelpunktswinkel α der abgewickelten Mantelfläce eines geraden Kegels ( 100 mm, d 70 mm) α r r r 35 mm ( 100 mm) + ( 35 mm) 118, , Mantelfläce eines geraden Kegels ( 100 mm, d 70 mm) M π α r ( 10 cm) + ( 3,5 cm) 116,5 cm r π 116, cm π r cm π r π.5 Umfang (Brennscnittlänge) der Mantelfläce eines geraden Kegels ( 100 mm, d 70 mm) U M + U G ( 105, mm + 35 mm π) 431,8 mm + r + r π ( + r + r π) rt. ProjZeicnen_Kegel eite 5

6 Uwe Rat Eckleinjarten 13a Bremeraven Lösung zu ufg. 13: Für den Mittelpunktswinkel α des Kegelmantels ergibt sic: α ' 1 β' Es gilt: l β' sin l β' l arcsin l β' arcsin us der Draufsict entnemen wir l β l sin r r β l r sin Den usdruck l... setzen wir in die Gleicung für β ein: β r sin β' arcsin β r sin arcsin arcsin β r sin + r Bei freier Wal der Kreisteilung in der Draufsict gilt nun: 360 mit β 1 α ' n β' 360 r sin n arcsin n + r 180 r sin n arcsin n + r Für den geraden Kegel ( 100 mm, d 70 mm) ergibt sic für die Einteilung des Grundkreises in 1 Teile rt. ProjZeicnen_Kegel eite 6

7 Uwe Rat Eckleinjarten 13a Bremeraven r sin α ' n arcsin n + r 117, ,7 1 arcsin mm sin 1 ( 100 mm) + ( 35 mm) Gegenüber der Lösung zu ufg..3 ist der Winkel um ca. 1, zu klein. Für die Bogenlänge des Kegelmantels ergibt sic der Wert l ' B π + r ( 100mm) + ( 35mm) 17,7 mm α' 360 π α' , π 360 Diese Bogenlänge ist ca., mm kürzer als der rictige Wert. Der Feler beträgt 1 %. rt. ProjZeicnen_Kegel eite 7

8 Uwe Rat Eckleinjarten 13a Bremeraven Lösung zu ufg. 1: 1. Bestimmung der csen der Ellipse (scräger cnitt in der Vorderansict) Die beiden eiten und der scräge cnitt des geraden Kegels lassen sic in einem Koordinatensystem als drei lineare Funktionen f(x) m x +b darstellen. Da alle für die Bestimmung der Funktionen erforderlicen Maße gegeben sind, können die Funktionsgleicungen ermittelt und der jeweilige cnittpunkt und B (vgl. bb.) der crägen mit den eiten des Kegels berecnet und anscließend auc die Lage des Mittelpunktes M E der Ellipse berecnet werden Bestimmung der Funktionen für die 3 Geraden f(x), g(x) und (x) Z f ( x) x + X 0 x + 0 ( r) r x x x g( x) x + x + r 0 r 0 x Z ( x) x + ' X x tan ρ + ' 0,70008 x Bestimmung der cnittpunkte und B cnittpunkt cnittpunkt B 0 0 f ( x) x ( x) 0,70008 x g ( x) x cnittpunkt 0 7 x 0 7 x 0,70008 x, x f ( x) ( x) ,70008 x x z , , cnittpunkt B 0 7 x B 0 7 x B 0,70008 x 3, x g( x) ( x) ,70008 x x z B B B B , , B + 50 rt. ProjZeicnen_Kegel eite 8

9 Uwe Rat Eckleinjarten 13a Bremeraven Berecnung der Länge B ( der Ellipse) Mit Hilfe des Lersatzes des Pytagoras ergibt sic für die Länge l ( X ) + ( Z ) ( X X ) + ( Z Z ) B ( 14,05540 ( 3,18104) ) + ( 59, ,768451) 45, B 1,4 Bestimmung der Lage des Mittelpunktes M E der Ellipse X M E x + xb 3, , ,568 Z M E z + z B 33, , ,80508 M E (-4,568 / 0 / 46,80508). Bestimmung der durc M E verlaufenden Mantellinie Um die Breite der Ellipse bestimmen zu können, benötigen wir die Mantellinie z(x), die in der Vorderansict von durc M E zur Grundlinie verläuft. z( x) m x + b Z x + b X ,80508 x ( 4,568) 11, x Der cnittpunkt dieser Linearen mit der x-cse liegt bei z(x) 0, also 11, x N z( x) xn 11, , rt. ProjZeicnen_Kegel eite 9

10 Uwe Rat Eckleinjarten 13a Bremeraven Bestimmung der Breite der Ellipse 3.1 Zeicnerisce Ermittlung der Breite der Ellipse Die nebensteende bbildung zeigt, wie die Breite der Ellipse zeicnerisc mit Hilfe3 der Draufsict ermittelt wird: - Zeicnen der Mantellinie von durc M E zur Grundlinie. Wir eralten den cnittpunkt C. - Projektion dieses Punktes in die Draufsict (Punkte C und C auf dem Kreisumfang). - Mantellinien C' und C" in die Draufsict einzeicnen. - Mittelpunkt M E der Ellipse aus der Vorderansict auf die zugeörigen Mantellinien in die Draufsict projizieren. - Die trecke DE die Breite für die Ellipse. Der bstand DE kann nun gemessen werden. 3. Berecnung der Breite DE der Ellipse In der Draufsict sind bekannt: - Radius r - x-koordinate von C - x-koordiante von D ( x-koordinate von M E ) F Mit Hilfe des rectwinkligen Dreiecks FC' lässt sic die y-koordinate des Punktes D berecnen: y y D C' y D x x x x x x D C' D C' y C' M E r xc' C' 4,568 8, ± 18, Der negative Wert von y D ist die y-koordinate des Punktes E. Für die trecke DE ergibt sic: DE y 18, , D 35 ( 8,577548) rt. ProjZeicnen_Kegel eite 10

11 Uwe Rat Eckleinjarten 13a Bremeraven Berecnung Umfang und Fläce der Ellipse (cnitt B in der Vorderansict) uszug aus dem Tabellenbuc Metall; Haan-Gruiten: Europa Lermittel-Verlag; 1999, 41. ufl., 5; IBN Fläcen. Volumen, Oberfläcen Für unsere Ellipse gelten die Werte D 45, mm und d 36, mm. ufg. 1. π 18,111 mm Umfang U ( 45, mm + 36, mm) ufg. 1.1 Fläce π 4, cm 3, cm 4 1,889 cm ufg. 1.4 Umfang der Mantelabwicklung (Brennscnittlänge) Der cnitt für die bwicklung wird in die kürzeste Mantellinie gelegt, ier die trecke P 6 : U U U Grundkreis Grundkreis + U + U Ellipse, crägscnitt Ellipse, crägscnitt + P + 70 mm π + 18,111 mm + 35,777 mm 419,576 mm 6 ( x x ) + ( y y ) P6 P6 ufg. 1.3 Mantelfläce des scräg gescnittenen Kegels Die Fläcenberecnung ist mit einfacen geometriscen Mitteln nict möglic. Hier müssten wir auf eine Integralrecnung zurückgreifen und der Darstellung des Kegels als Rotationskörper, der von einer Ebene gescnitten wird. Weitere Hinweise im Unterrict. rt. ProjZeicnen_Kegel eite 11

12

13

14

15

16

17

18

19

20

21

22

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

5. PLANIMETRIE, STEREOMETRIE

5. PLANIMETRIE, STEREOMETRIE 5. PLANIMETRIE, STEREOMETRIE 5.1. Planimetrie Die Planimetrie oder auc ebene Geometrie bescäftigt sic mit den in einer Ebene liegenden geometriscen Figuren. Im folgenden Abscnitt sollen die wictigsten

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

2.7. Aufgaben zu Ähnlichkeitsabbildungen

2.7. Aufgaben zu Ähnlichkeitsabbildungen .7. Aufaben zu Änlickeitsabbildunen Aufabe 1 Strecke das Dreieck AB mit A(3 1), B( 3) und ( ) an Z(1 1) um die Streckfaktoren k 1 =, k = 1, k 3 = 1, k 4 = und k =. Aufabe Strecke das Dreieck AB mit A(

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Eckleinjarten 13a. 7580 Bremerhaven 0471 3416 rath-u@t-online.de Fertigungstechnik Technische Kommunikation - Technisches Zeichnen 11 Projektionszeichnen 11. Körperschnitte und Abwicklungen 11..4 Kegelige

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Wochenplan Woche vom...

Wochenplan Woche vom... Wocenplan Woce vom... Temenübersict Arbeitsblatt 1 Holzylinder Inalt, Scwerpunkte des Temas Volumenberecnungen und Masseberecnung für den Holzylinder Kontrolle Arbeitsblatt Netze von, Oberfläcenberecnung,

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

KtMMC923.doc (Word97-Format) Modul 4: Sicherung des Basiswissens durch Übung von Sachaufgaben

KtMMC923.doc (Word97-Format) Modul 4: Sicherung des Basiswissens durch Übung von Sachaufgaben Datei: KtMMC923doc (Word97-Format) Scule: Marie-Curie-Mittelcule Dona E-Mail: croetercuriem@-t-onlinede utor/ nprecpartner: Marlie Scönerr Quelle/Literaturinweie: eigene Entwicklungen Sytematice Einordnung:

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn

Ausbildungsberuf KonstruktionsmechanikerIn KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Grundwissen Ebene Geometrie

Grundwissen Ebene Geometrie Micael Körner Grundwissen bene Geometrie 5.0. Klasse eredorfer Kopiervorlaen Zu diesem Material: Was ist ein Stufenwinkel? Wie findet man die Höen von reiecken eraus? Wie werden Fläceninalt und Umfan bei

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

Raumgeometrie - Zylinder, Kegel

Raumgeometrie - Zylinder, Kegel Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung.

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung. Steigung 4 6 Arbeitseft+ Teste dic selbst Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berecne die Steigung. a a a Keil Keil 2 Keil 3 Keil Keil 2 Keil 3 Horizontale

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

14. Landeswettbewerb Mathematik Bayern

14. Landeswettbewerb Mathematik Bayern 4. Landeswettbewerb Matematik Bayern Lösungsbeispiele für die Aufgaben der. Runde / Aufgabe David wirft einen besnderen Würfel und screibt jeweils die ben liegende Zal auf. Die Abbildung zeigt ein Netz

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

Aufgaben zur Quantenphysik

Aufgaben zur Quantenphysik ufgaben zur Quantenpysik 187. In eine Nactsictgerät wird eine Fotozelle aus der Legierung gcso verwendet, das eine ustrittsarbeit von 1,04 ev at. a) b welcer Wellenlänge werden bei Bestralen it Lict aus

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe www.mate-aufgaben.com Matematik - Oberstufe Aufgaben und Musterlösungen zu Ableitungen, Tangenten, Normalen Zielgruppe: Oberstufe Gymnasium Scwerpunkt: Differenzenquotient, Differenzialquotient, Ableitung,

Mehr

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen 2.6. Anwendung- und eweiufgben zu Kongruenzätzen Aufgbe ) Ermittle zeicneric die Längen der drei Fläcendigonlen d b, d c und d bc und der Rumdigonlen d de bgebildeten Quder mit den Abmeungen = 4 cm, b

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterrict im 9. Sculjar Matematik II Serie H9 Gymnasien des Kantons Bern Matematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beacten:

Mehr

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I Institut für Angewndte und Eperimentelle Mecni Tecnisce Mecni I ZÜ. Aufgbe. F 4 O F F F In den Knten einer gleicseitigen Prmide wiren 4 Kräfte gemäß nebensteender Sie. Für die Beträge der Kräfte gilt:

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

5.2 Von der durchschnittlichen zur momentanen Änderungsrate

5.2 Von der durchschnittlichen zur momentanen Änderungsrate 5.2 Von der durcscnittlicen zur momentanen Änderungsrate Was dic erwartet Kommt Zeit, kommt Rat, Die Zeit eilt alle Wunden. Fast alles ändert sic mit der Zeit. Nict immer ist der gerade vorliegende Zustand

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler Aufträge Modellieren mitilfe der Ableitung. Modellieren mit Parabeln Auftrag Tennis Ein Spieler stet beim Training 5 m inter dem Netz. Er muss einscätzen, ob er den von einer Ballmascine gescossenen Ball

Mehr

R4/R6. Seite 1 von 6 Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern.

R4/R6. Seite 1 von 6 Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Seite 1 von 6 Prüfungsdauer: bschlussprüfung 007 150 Minuten an den Realschulen in ayern R4/R6 Mathematik II Nachtermin ufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1 Nebenstehende Skizze zeigt

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Heizung Pumpen-Auslegung Seite 1 von 5

Heizung Pumpen-Auslegung Seite 1 von 5 Heizung Pumpen-Auslegung Seite 1 von 5 Aus der Heizlastberecnung ergab sic für das gesamte Gebäude ein Wert von 25 kw. Die Vorlauftemperatur ist mit 70 C und die Rücklauftemperatur mit 50 C geplant. Die

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Kein Anspruch auf Vollständigkeit und Fehlerfreiheit

Kein Anspruch auf Vollständigkeit und Fehlerfreiheit Kein nspuc auf Vollständigkeit 8. Geometisce Köpe 8.1. as geade Pisma 8.1.1. Netz und Obefläce des geaden Pismas 8.1.1.1. Ezeugung eines Quades duc Paallelvesciebung Einen Quade kann man duc Paallelvesciebung

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Demo-Text für  Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr. 1111 Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK www.mate-cd.de Inalt 1. Dreunen durc Winkel messen

Mehr

1. Zulassungsklausur in "Technischer Thermodynamik 2" am im Sommersemester Teil

1. Zulassungsklausur in Technischer Thermodynamik 2 am im Sommersemester Teil Zulassungsklausur in "Tecniscer Termodynamik " am 6998 im Sommersemester 98 Teil Es sind keine Hilfsmittel zugelassen Rictige Antworten sind mit dokumentenectem Stift anzukreuzen Falsc beantwortete Aufgaben

Mehr

Solche Abbildungen nennt man ZENTRISCHE STRECKUNGEN. DEFINITION:

Solche Abbildungen nennt man ZENTRISCHE STRECKUNGEN. DEFINITION: ZENTRICHE TRECKUNG DER TORCHENCHNABEL ol Farstift Zeicenstift ol, Farstift und Zeicenstift lieen immer auf einer Geraden! Früer at man den torcenscnabel (antorap) benutzt um Bilder maßstäblic zu verrößern,

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Neue GuideLed Sicherheitsleuchten

Neue GuideLed Sicherheitsleuchten CEAG GuideLed Sicereitsleucten Neue GuideLed Sicereitsleucten Geradliniges Design kombiniert mit oer Wirtscaftlickeit C-C8 C-C GuideLed SL., 2. CG-S Deckeneinbau EN 838 LED * GuideLed SL. CG-S IP GuideLed

Mehr

2.10. Prüfungsaufgaben zu Pyramiden

2.10. Prüfungsaufgaben zu Pyramiden .0. Prüfungufgben zu Pyrmiden Aufgbe : Pyrmiden Berecne die Fläceninlte und Volumin der unten bgebildeten Däcer, wobei ll Mße in m ngegeben ind: Zeltdc Wlmdc Krüppelwlmdc Gekreuzte Giebeldc en Zeltdc:

Mehr

Geometrische Grundkonstruktionen

Geometrische Grundkonstruktionen Geometrische Grundkonstruktionen Strecken...2 Halbierung einer Strecke und Mittelsenkrechte...2 Teilung einer Strecke in eine bestimmte Anzahl gleicher Teile...2 Halbierung eines Winkels...3 Tangente an

Mehr

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung 1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenbur-Gymnasium Wunsiedel Grundwissen für das Fac Matematik Jaransstufe 5 Natürlice und anze Zalen 1;2;3;4;5;6; ist die Mene der natürlicen Zalen. ; 4; 3; 2; 1;0;1;2;3;4; ist die Mene der anzen Zalen.

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena Das Goete-Barometer uftdruckmessungen mit einem istoriscen Gerät von Helmut Jena Das Goete-Barometer als attraktiver und istoriscer uftdruck- Anzeiger fasziniert besonders den naturwissenscaftlic interessierten

Mehr

Die Grundfigur der Trigonometrie ist das rechtwinklige Dreieck. Mit ihm fangen wir an.

Die Grundfigur der Trigonometrie ist das rechtwinklige Dreieck. Mit ihm fangen wir an. TRIGONOMETRIE [ J. Möller, WS Üerlingen] TRIGON = Dreieck Die Trigonometrie ist der Zweig der Mtemtik, der sic mit der Berecnung von Seiten und Winkeln in rectwinkligen und llgemeinen Dreiecken efsst.

Mehr

Kreis Kreisabschnitt Kreissegment Kreisbogen

Kreis Kreisabschnitt Kreissegment Kreisbogen Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt)

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Mathematik für Molekulare Biologen

Mathematik für Molekulare Biologen Skriptum zur Vorlesung Matematik für Molekulare Biologen Cristian Scmeiser 1 Contents 1 Einleitung 1 2 Zalensysteme, Grundrecnungsarten 2 3 Komplexe Zalen, Polynome 5 4 Die Polardarstellung, Winkelfunktionen

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Aufgaben zur Physikschulaufgabe ==================================================================

Aufgaben zur Physikschulaufgabe ================================================================== Aufgaben zur Pyikculaufgabe ================================================================== 1. Ein LKW-Farer bremt von 108 km gleicmäßig über eine Entfernung von 10m auf Null erunter. a) Berecne die

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2005 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2005 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Pflichtaufgaben Pflichtaufgabe 1 1 a) Berechnen Sie das Quadrat der Summe aus 8 und 4. b)

Mehr

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2 Der Auftrieb Diese Aufgabe wird vom Facbereic Pysik der eibniz Universität annover gestellt. Weitere Informationen zum Studiengang der Pysik findet ir unter ttp://www.pysik.uniannover.de/ CUB APOO 13,

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Beweis des Kugelvolumens und -oberfläche nach Archimedes

Beweis des Kugelvolumens und -oberfläche nach Archimedes 1 Thomas Rupp, 17. April 1999 Beweis des Kugelvolumens und -oberfläche nach Archimedes Vorbereitung zum Proseminar unter Professor Lang 1 Kugeloberfläche Bild1 Bild1 zeigt einen Gorsskreis einer Kugel,

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Pysik Department, Tecnisce Universität Müncen, PD Dr. W. Scinler Übungen zu Experimentalpysik 2 SS 13 - Lösungen zu Übungsblatt 2 1 Kapazitive Füllstansmessung Zur Messung es Füllstan eines Heizöltanks

Mehr

Abbildungen mit Brechzahländerung

Abbildungen mit Brechzahländerung bbildungen mit Breczaländerung Moving Um ein Bild im gesamtmöglicen bbildungsraum zu bewegen (es vor unserem geistigen uge vorbeizieen zu lassen), ist es nac unserer biserigen, in Mikroprozessoren praktizierten

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Fertigen mit Werkzeugmaschinen

Fertigen mit Werkzeugmaschinen a p χ r b f ie spezifisce Scnittkraft k c ist die Kraft, die benötigt wird, um einen Span mit dem Spannungsquerscnitt von = 1 mm 2 vom Werkstück zu trennen. f = Vorscub in mm a p = Scnitttiefe in mm =

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. STEREOMETRIE I Grundlagen 1. Punkte, Geraden und Ebenen Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. a) Gerade Axiom:

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - Areitslätter 3 M Wiederolung 3 6 7 8 38 Reelle Zlen 3 6 Stzgruppe des Ptgors 3 6 7 8 9 Terme 3 6 6 Gleicungen und Ungleicungen 3 6 7 8 9 7 Körpererecnungen

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Arbeit - nergie - eibung Die ncfolgenden Aufgben und Definitionen sind ein erster instieg in dieses Tem. Hier wird unterscieden zwiscen den Begriffen Arbeit und nergie. Verwendete ormelzeicen sind in der

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben

Mehr

4 Funktionen und Änderungsraten

4 Funktionen und Änderungsraten 4.1 Änderungsraten grafisc erfasst Was dic erwartet Mit Funktionen und Grapen lassen sic viele Situationen und Vorgänge bescreiben bzw. modellieren. Bei der Interpretation der Grapen spielt oft das Änderungsveralten

Mehr