Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12)"

Transkript

1 Seiten / 7 Gleichungen und Ungleichungen Lösungen Mathematik Dossier 7 Gleichungen 1 a) x x = 4 x 1 2 2x = 48 x 1 = 48 x = x = 7 b) x c) x 18 = x x 114 x = 9x 108 1x = 9x x = x = 4 x = x - 7 2x x = 2x 14 12x x = 14x 14 0 = 1x 0 1 = x d) 2x - < x x - 10 < 9x -7 < x 7 < x e) x x f) < x x 49 4x 1 < x 28 x - < x 8-2 < x 2 < x x - 4 x x x 1 12x x 2-1 x 2-18 x - x 2 a) (x ) ( x 12) = 0 Fall 1: x = 0 x = - Fall 2: x 12 = 0 x = 12 b) x 2 x 28 = 0 (x 4) (x 7) = 0 Fall 1: x - 4 = 0 x = 4 Fall 2: x 7 = 0 x = -7 c) x 2 20x = -7 x 2 20x 7 = 0 (x ) (x 1) = 0 Fall 1: x = 0 x = - Fall 2: x 1 = 0 x = -1 HN (12) --1(x isolieren, da lineare Gleichung) : x = 7 HN (90) - 9x 114 (x isolieren, da lineare Gleichung) : 4 x = 2 oder x = 1. HN () x 14 (x isolieren, da lineare Gleichung) : 1 x = 10 oder x =. HN () -4x (x isolieren, da lineare Ungleichung) : 1 x > 7 HN (28) -x 8 (x isolieren, da lineare Ungleichung) : x > 2 HN (12) - 2 (x isolieren, da lineare Ungleichung) : 1 x x1 = - x2 = 12 quadr. Gleichung in Produkt von Binomen verwandeln x1 = 4 x2 = -7 quadr. Gleichung Alles auf eine Seite (7) Trinom in Produkt von Binomen verwandeln x1 = - x2 = -1 Loesungen Mathematik-Dossier -7 Gleichungen.docx A. Räz / Seite 1

2 Seiten 8 / 9 Gleichungen und Ungleichungen Lösungen Mathematik Dossier 7 Gleichungen 2 d) x 2-4(x 1) = 4(1 x) x 2-4x - 0 = 4-4x x 2-4 = 0 (x 8) ( x 8) = 0 Fall 1: x 8 = 0 x = 8 Fall 2: x 8 = 0 x = - 8 e) (x 7) 2 (x ) = (x ) 2 7(x 1) x 2 x 2 14x 49 x 1 = x 2 x 9 7x 7 x 2 x 2 11x 4 = x 2 x 2 12x 2 = 0 (x 8) ( x 4) = 0 Fall 1: x 8 = 0 x = 8 Fall 2: x - 4 = 0 x = 4 a) Punkte der Verlierer : x Punkte der Sieger : x x = 7x Veränderte Punkte Verlierer : 4 x = 4x Punkte der Sieger (nicht geändert) : 7x Neue Punktedifferenz : Gleichung 7x = 4x x = 24x x = 990 x = 90 Also haben die Verlierer 90 Punkte erzielt. Die Sieger haben x x = 7x = 90 1 = 10 Punkte erzielt. b) Einerziffer = x Zehnerziffer : = Einzerziffer = x Zahl selber = 10 Zehnerziffer Einerziffer = 10(x ) x Quersumme = Zehner- Einerziffer = x x = 2x- Gleichung : 2x = 2 [10(x ) x)] 4x - 9 = [10(x ) x)] 4x - 9 = [10x 0 x] 4x - 9 = 0x 10 x 4x - 9 = x = 9x 9 = x Die Einerziffer ist also die 9, somit ist die Zehnerziffer eine (x = 9- = ) Vereinfachen quadr. Gleichung Alles auf eine Seite (4x - 4). Binomische Formel auflösen x1 = 8 x2 = -8 Vereinfachen Vereinfachen quadr. Gleichung Alles auf eine Seite (-x - 2) Trinom in Produkt von Binomen verwandeln x1 = 8 x2 = 4 IST - Zustand Veränderter Zustand (Hätten die Verlierer nur vier Fünftel ihrer Punkte erzielt )) Gleichung aufstellen: (Verlierer hätten Punkte weniger als Sieger) HN 0-24x (lineare Gleichung, also x isolieren) : 11 Probe (ist Lösung in D?) L = { 90 } Das Resultat lautet 10 : 90 Punkte. Ziffern untereinander vergleichen und Variablen festlegen. Stellenwerte beachten! Gleichung aufstellen: Quersumme = 2 der Zahl selber HN (2) - 4x 10 (x isolieren, weil lineare Gleichung) : 9 L = {9} Die Zahl heisst 9. Loesungen Mathematik-Dossier -7 Gleichungen.docx A. Räz / Seite 2

3 Seite 1 Seite 9 Gleichungen und Ungleichungen Lösungen Mathematik Dossier 7 Gleichungen c) x Teil 1 : Teil 2 : = Teil : x - 8 Einzelteile der Aufgabenstellung: Dividiert man eine Zahl durch erhält man gleich viel wie wenn man : eine Zahl, die um kleiner ist als die Unbekannte, durch 8 dividiert. Gleichung : x = x - 8 8x = (x ) 8x = x 0 x = - 0 x = = x HN 40 -x (x isolieren, da lineare Gleichung) : x = - 10 Die Zahl heisst a) Gerade zeichnen: 1. Achsenabschnitt (-) Schnittpunkt mit y-achse eintragen (0/(-)) Danach die Steigung abtragen: in y-richtung in x-richtung y b) Schnittpunkt mit der 4 -Gerade (deren Gleichung lautet x y = x Es entsteht ein Gleichungssystem: y = x y = x (-) Anwenden des Gleichsetzungsverfahrens (z.b.): x = x (-) x = x (-1) -x 2x = (-1) : 2 x = (-7.) Dieses x eingesetzt in die Gleichung 1 ergibt den Schnittpunkt Koordinaten des Schnittpunktes: P S ( (-7.) / (-7.) ) c) Schnittpunkt mit der x-achse (deren Gleichung lautet x y = 0. Es entsteht ein Gleichungssystem: 1 P (0/(-)) 1 x y = 0 y = x (-) Anwenden des Gleichsetzungsverfahrens (z.b.): x = Schnittpunkt 0 = x (-) 0 = x (-1) -x (-x) = (-1) : (-) Dieses x eingesetzt in die Gleichung 1 ergibt den Koordinaten des Schnittpunktes: P S ( / 0 ) Loesungen Mathematik-Dossier -7 Gleichungen.docx A. Räz / Seite

4 Seiten 1 / 17 Lösungen Mathematik Dossier 7 Gleichungen d) Schnittpunkt mit der gegebenen Gerade mit der Gleichung lautet x y = x 1.4. Wieder entsteht ein Gleichungssystem: y = x 1.4 y = x (-) Anwenden des Gleichsetzungsverfahrens (z.b.): x 1.4 = x (-) HN () 2x 7 = x (-1) -x 22x 7 = (-1) x = (-22) : 22 x = (-1) Dieses x eingesetzt in die Gleichung 1 ergibt für den Schnittpunkt: y = (-1) 1.4 v y = (-) 1.4 v y = (-.) Lösung: x = -1, y = -. 2 a) x 2y = 7 8x 2y = 0 Die Koordinaten des Schnittpunktes sind also: P S ( (-1) / (-.) ) Koeffizienten von y sind gleich (2y), Vorzeichen verschieden Addition 1x = 117 : 1 x = 9 Einsetzen in Gleichung z.b. 1: 9 2y = 7 4 2y = 7 2y = 12 y = Lösung: x = 9 ; y = P S = ( 9 / ) b) 4x y = 4 20x 1y = 20 x 2y = x 8y =204 - Gleiche Koeffizienten schaffen (Multiplikation) Danach Subtraktion (weil gleiche Vorzeichen) Einsetzen in Gleichung z.b. 1: 4x (-8) = 4 4x - 24 = 4 4x = 28 x = 7 2y = (-184) : 2 Achtung: 1y-(-8y)!!! y = (-8) 2 c) Lösung x = 7 ; y = (-8) P S = ( 7 / (-8) ) 4x y = 0 4x y = 0 y = x - 1 4, umstellen (-4x) 12y = (-4) Gleiche Koeffizienten schaffen (Multiplikation) Danach Addition (weil verschiedene VZ) 1y = 2 : 1 y = 2 Einsetzen in Gleichung z.b. 2: 2 = x - 1 = x 1 7 = x x = 7 ; y = 2 L = { 7 / 2 } d) (-4x) y = 4 (-12x) 18y = 12 y x = 2 4, umstellen (-12x) 4y = 8 Einsetzen in Gleichung z.b. 2: Lösung x = ( 4 7 ) ; y = 2 7 PS = ( ( 4 7 ) / 2 7 ) 14y = 4 : 14 y = 4 14 = 2 7 Gleiche Koeffizienten schaffen (Multiplikation) Danach Subtraktion (weil gleiche VZ) 2 7 x = x = 14 (-21x) = 12 x = ( )=( 4 7 ) Loesungen Mathematik-Dossier -7 Gleichungen.docx A. Räz / Seite 4

5 Seite 18 Lösungen Mathematik Dossier 7 Gleichungen a) b) 4x y = 2 1 (Nenner weg) 12x y = (-0) x 0y = (-00) y x = 0 (Nenner weg) 10 0y -9x = 990 umstellen (-9x) 0y = x = (-1290) :129 x =(-10) Einsetzen in (nennerfreie) Gleichung z.b. Gl.1: 12 (-10) y = (-0) (-120) y = (-0) y = 90 y = 18 Lösung x = (-10) ; y = 18 PS = ( (-10) / 18 ) 4x y = ( 2 ) (Nenner weg) 24x - y = (-4) 72x - 1y = (-12) - 2x y = 2 (Nenner weg) 2x 1y = 10 2x 1y = 10 74x = 148 :74 x = 2 Einsetzen in (nennerfreie) Gleichung z.b. Gl.2: 2 2 1y = y = 10 1y = 1 y = 1 1 =2 x = 2 ; y = 2 PS = ( 2 / 10.4 ) c) x - 2 = y x - 2 = y 4 12x - 8 = 20y 2y = 4x - 1 Umstellen (-4x) 1 = (-2y) (-12x) = (-y) (-) = 14y :14 (- 14 )= y Einsetzen in (nennerfreie) Gleichung z.b. Gl.1: x 2 = (- 14 ) 42x 28 = (-2) Lösung x = 1 14 ; y = (- 14 ) PS = ( 1 14 / (- 14 ) ) d) 2.4x = y x = y y = x y = x x = x = 42 = 1 14 Hier verwende ich für einmal das Einsetzungsverfahren (also für y schreiben wir x 2) die 1. Gleichung heisst also neu: 2.4x = x-2 2 v 2.4x = x x = 0x x (-x) = (- 40) : (-) x = 40 = 10 9 Einsetzen in (nennerfreie) Gleichung z.b. Gl.2: y = y =0 9 Lösung x = 10 9 ; y = 14 9 PS = { 10 9 / 14 9 } y = y = 42 y = = 14 9 Loesungen Mathematik-Dossier -7 Gleichungen.docx A. Räz / Seite

6 Seiten 19 / 20 Lösungen Mathematik Dossier 7 Gleichungen 4 a) 1. Gleichung erstellen: Zwei Zahlen unterscheiden sich um (-4) x y = (-4) 2. Gleichung erstellen: ergeben die Summe von (-12) x y = (-12) Gleichungen addieren (versch. Vorzeichen bei y) 2x = (-1) : 2 x = (-8) In eine Gleichung einsetzen: (-8) y = (-12) y = (-4) Die beiden Zahlen heissen (-4) und (-8) b) 1. Gleichung erstellen: Erste Zahl ist 2. mal die Zweite x = 2.y 2. Gleichung erstellen: Zusammen ergeben sie x y = umstellen der ersten Gleichung: x 2.y = 0 x y = Gleichungen subtrahieren (gleiche Vorzeichen bei x) (-.y) = (-) : (-.) y = 18 In eine Gleichung einsetzen: x = x = 4 Die beiden Zahlen heissen 4 und 18 c) 1. Gleichung erstellen: Doppelte Summe ist 2(x y) = 2. Gleichung erstellen: Neunfache Differenz ist 9(x y) = vereinfachen der Gleichungen: 2x 2y = 9x 9y = Gleiche Koeffizienten schaffen (z.b. vor x): 1. Gleichung mit 9 multiplizieren 18x 18y = Gleichung mit 2 multiplizieren 18x 18y = 72 Gleichungen z.b. subtrahieren (gleiche Vorzeichen bei x) y = 22 y = 7 In eine Gleichung einsetzen: 2x 2 7 = 2x 14 = 2x = 22 x = 11 Die beiden Zahlen heissen 7 und 11 d) 1. Gleichung:..zum Sechsfachen der einen das Dreifache der zweiten = 4 x y = 4 2. Gleichung: Dreifaches der zweiten minus gleich erste Zahl y = x Einsetzungsverfahren verwenden: ( x = y ) In eine Gleichung einsetzen: x = 4 - = x = 12 - x = 7 Die beiden Zahlen heissen 7 und 4 (y-) y = 4 v 18y 0 y = 4 v 21y 0 = y = 84 : 21 y = 4 Hinweis: Jedes Gleichungssystem kann mit jedem der drei Verfahren (Gleichsetzung, Einsetzung, Addition) aufgelöst werden. Man kann sich also auf eines konzentrieren, wenn man will. Ich habe hier versucht, alle Verfahren anzuwenden, um etwas geistige Abwechslung zu haben. Auch das schadet nicht. Die Ergebnisse sind aber nach allen Verfahren die Gleichen. Somit ist die Überprüfbarkeit gegeben. Loesungen Mathematik-Dossier -7 Gleichungen.docx A. Räz / Seite

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Mathematik-Dossier 7 Gleichungen (angepasst an das Lehrmittel Mathematik 3)

Mathematik-Dossier 7 Gleichungen (angepasst an das Lehrmittel Mathematik 3) Name: Mathematik-Dossier 7 Gleichungen (angepasst an das Lehrmittel Mathematik 3) Inhalt: Quadratische Gleichungen Gleichungen und Ungleichungen Lineare Gleichungssysteme Lineare Ungleichungssysteme Verwendung:

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Mathematik-Dossier. Algebra in der Menge Q

Mathematik-Dossier. Algebra in der Menge Q Name: Mathematik-Dossier Algebra in der Menge Q Inhalt: Das Produkt von Binomen Die Biomischen Formeln Erweitern, Kürzen, Addieren, Subtrahieren, Multiplizieren und Dividieren von Bruchtermen Gleichungen

Mehr

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum:

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum: Name: Klasse: Datum: 1) Welches Zahlenpaar ist eine Lösung der linearen Gleichung mit zwei Variablen? Ordne richtig zu. 2x + y = 2 5x 2y = 11 2x + y = 10 A(2 6) A(1,2 0) A(1 5) -x 2y = 4 A(0,5 1) 5x 0,6y

Mehr

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 - - Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

Lineare Gleichungssysteme mit zwei Variablen

Lineare Gleichungssysteme mit zwei Variablen Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

Kapitel 7: Gleichungen

Kapitel 7: Gleichungen 1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

Welche Nullstellen hat der Graph der Funktion a)

Welche Nullstellen hat der Graph der Funktion a) Aufgabe 1 Welche Nullstellen hat der Graph der Funktion a) f (x)= (x 7)² (x+3)² Die Nullstellen sind 7 und -3. Beide Nullstellen sind doppelt, d.h. der Graph wechselt nicht die Seite der x-achse. b) Multipliziere

Mehr

Lösen linearer Gleichungssysteme

Lösen linearer Gleichungssysteme Lösen linearer Gleichungssysteme W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Die beschriebenen Verfahren 2 2 Einsetzungsverfahren 3 3 Additions-/Subtraktionsverfahren 5 4 Gleichsetzungsverfahren 8

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN 1. Kürzen von Bruchtermen Zunächst einmal müssen wir klären, was wir unter einem Bruchterm verstehen. Definition:

Mehr

Gleichungen und Gleichungssysteme 5. Klasse

Gleichungen und Gleichungssysteme 5. Klasse Gleichungen und Gleichungssysteme 5. Klasse Andrea Berger, Martina Graner, Nadine Pacher Inhaltlichen Grundlagen zur standardisierten schriftlichen Reifeprüfung Inhaltsbereich Algebra und Geometrie (AG)

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr

Grundlagen Algebra Aufgaben und Lösungen

Grundlagen Algebra Aufgaben und Lösungen Grundlagen Algebra Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 201 Inhaltsverzeichnis 1 Primfaktoren - ggt - kgv 2 1.1 ggt (a, b) kgv (a, b)...............................................

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

Anleitung für dengleichungsrahmen

Anleitung für dengleichungsrahmen Anleitung für dengleichungsrahmen - 1 Einerstab +1 linke Seite der Gleichung - 10 Zehnerstab +10 Gleichheitszeichen - rechte Seite der Gleichung -1 Einerstab +1-10 Zehnerstab +10 Mit den roten Kugeln und

Mehr

Fit in Mathe. August Klassenstufe 10 Lineare Gleichungssysteme

Fit in Mathe. August Klassenstufe 10 Lineare Gleichungssysteme Thema Musterlösung 1 Lineare Gleichungssysteme Zeichne die Geraden g i i=1,...6 in ein kartesisches Koordinatensystem, deren Koordinaten folgende Bedingungen erfüllen: 1) y = x 1 ) y = x 1 3) x y = 1 4)

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Basistext: Gleichungen lösen

Basistext: Gleichungen lösen Basistext: Gleichungen lösen Was versteht man unter der Lösung einer Gleichung? Lösen einer linearen Gleichung Lösen einer quadratischen Gleichung Lösen einer Gleichung vom Grad 3 Andere Fälle Übungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Lösungen. z4q62k Lösungen. z4q62k. Name: Klasse: Datum:

Lösungen. z4q62k Lösungen. z4q62k. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Martin kauft im Supermarkt drei Liter Milch um je m, zwei Packungen Toastbrot um t und eine Packung Butter um b. Stelle eine Formel für den Gesamtpreis P auf.

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Lineare Gleichungssysteme Basis

Lineare Gleichungssysteme Basis Lineare Gleichungssysteme Basis Graphische Lösung von Gleichungen Regel Gegeben sind zwei Gleichungen von zwei Funktionen. Die Lösung dieses Systems ist gleich dem Schnittpunkt beider Graphen. Verlaufen

Mehr

1 Das Einsetzungsverfahren

1 Das Einsetzungsverfahren 1 Das Einsetzungsverfahren Es wird empfohlen, das Dokument über das Gleichsetzungsverfahren gelesen zu haben, bevor dieses Dokument gelesen wird. Zur Erklärung dieses Verfahrens benutzen wir das gleiche

Mehr

Direkt und indirekt proportionale Größen

Direkt und indirekt proportionale Größen 8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen?

Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Information zur Aufnahmeprüfung WO Mathematik Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Musterprüfung: Lösen von linearen Gleichungen Aufgabe 1 Lösen von quadratischen Gleichungen

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geradengleichungen und lineare Funktionen Lese- und Lerntext für Anfänger Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geraden schneiden Auch über lineare Gleichungssystem

Mehr

Lösen von linearen Gleichungen und Gleichungssystemen

Lösen von linearen Gleichungen und Gleichungssystemen - 1 - VB 2004 Lösen von linearen Gleichungen und Gleichungssystemen Inhaltsverzeichnis Lösen von linearen Gleichungen und Gleichungssystemen... 1 Inhaltsverzeichnis... 1 Einführung... 2 Lösen einfacher

Mehr

Kapitel 4: Variable und Term

Kapitel 4: Variable und Term 1. Klammerregeln Steht ein Plus -Zeichen vor einer Klammer, so bleiben beim Auflösen der Klammern die Vorzeichen erhalten. Bei einem Minus -Zeichen werden die Vorzeichen gewechselt. a + ( b + c ) = a +

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

1) Martin kauft im Supermarkt drei Liter Milch um je m, zwei Packungen Toastbrot um t und eine Packung Butter um b.

1) Martin kauft im Supermarkt drei Liter Milch um je m, zwei Packungen Toastbrot um t und eine Packung Butter um b. 1) Martin kauft im Supermarkt drei Liter Milch um je m, zwei Packungen Toastbrot um t und eine Packung Butter um b. Stelle eine Formel für den Gesamtpreis P auf. P = 3m + 2t + b Berechne den Gesamtpreis,

Mehr

Knackt die Box. Zum Boxenfüllen könnt ihr Streichholzschachteln. verwenden. Markiert sie mit unterschiedlichen Symbolen.

Knackt die Box. Zum Boxenfüllen könnt ihr Streichholzschachteln. verwenden. Markiert sie mit unterschiedlichen Symbolen. I Lineare Gleichungssysteme Knackt die Box In Klasse 7 hast du bereits Boxen geknackt. Jetzt wird die Ausgangssituation etwas komplizierter: Es gibt verschiedenfarbige Boxen (rot blau) außerdem sind immer

Mehr

Seiten 4 / 5. Lösungen Mathematik-Dossier 8 Rechnen mit Variablen

Seiten 4 / 5. Lösungen Mathematik-Dossier 8 Rechnen mit Variablen Seiten 4 / 5 Distributivgesetz Multiplikation Division - Verbindung v. Operationen versch. Stufe 1 a) 15a : 5 = 15 a : 5 = 15 : 5 a = 3a b) 7x 3 = 7 x 3 = 7 3 x = 21x c) 8x 3y = 8 x 3 y = 8 3 x y = 24xy

Mehr

Inhaltsverzeichnis. Teil I Einmal ganz von vorne 27. Einführung 21. Kapitel 1 Sich zum Rechnen rüsten 29. Inhaltsverzeichnis

Inhaltsverzeichnis. Teil I Einmal ganz von vorne 27. Einführung 21. Kapitel 1 Sich zum Rechnen rüsten 29. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Über die Autorin 7 Widmung 7 Danksagung 7 Einführung 21 Über dieses Buch 21 Konventionen in diesem Buch 22 Was Sie nicht lesen müssen 22 Törichte Annahme über den

Mehr

3 a) ( 2; 3_ 2 ) ; (0; 3) ; ( 3; 3_ 4 ) b) (1; 2) ; ( 2; 8_ 3 ) ; (4; 4)

3 a) ( 2; 3_ 2 ) ; (0; 3) ; ( 3; 3_ 4 ) b) (1; 2) ; ( 2; 8_ 3 ) ; (4; 4) Schülerbuchseite 08 09 1 Lineare Gleichungssysteme 1 Lineare Gleichungssysteme Standpunkt Seite 6 Die Lösungen zum Standpunkt befinden sich am Ende des Schülerbuches. Was kostet der Führerschein? Seite

Mehr

Repetitionsaufgaben: Bruchtermgleichungen

Repetitionsaufgaben: Bruchtermgleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Bruchtermgleichungen Zusammengestellt von Caroline Schaepman, KSR Lernziele: - Eine Bruchgleichung erkennen und durch Multiplikation mit dem Hauptnenner

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN Prinzipiell kennen wir die Vorgangsweise beim Lösen von Textaufgaben bereits. Neu ist hingegen, dass wir nun immer zwei Variable

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Einführung 17. Teil I Am Anfang anfangen grundlegende Operationen 23. Kapitel 1 Zeichen bei Zahlen entschlüsseln 25

Einführung 17. Teil I Am Anfang anfangen grundlegende Operationen 23. Kapitel 1 Zeichen bei Zahlen entschlüsseln 25 Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Konventionen in diesem Buch 18 Törichte Annahmen über den Leser 18 Wie dieses Buch aufgebaut ist 19 Teil I: Grundlegende Elemente und Operationen 19

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Vorbereitungsmappe Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Liebe Schülerinnen und Schüler, vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS stellt sich vor allem im Fach

Mehr

Lösungen Kapitel A: Zuordnungen

Lösungen Kapitel A: Zuordnungen Windgeschwindigkeiten Lösungen Kapitel A: Zuordnungen Arbeitsblatt 01: Graphen einer Zuordnung 5 4 3 2 1 0 1 2 3 4 5 6 Tage Strandabschnitte 1 2 3 4 5 6 Muscheln 4,2 2,1 0,7 1,2 7,3 0,5 Arbeitsblatt 02:

Mehr

(a+1) = a+12 12(b+6) 36. = 12b (a+4) 12(a-2) = 12a+48. 3a b a. kürzen mit 19 (=ggt) k)

(a+1) = a+12 12(b+6) 36. = 12b (a+4) 12(a-2) = 12a+48. 3a b a. kürzen mit 19 (=ggt) k) Lösungen Mathematik Dossier Rechnen mit Varilen a) Erweitern mit Bruch (-) (-) 6 a+ b+6 a+ a- 6 (a+) 6 a+ (b+6) b+ (a+) (a-) a+ a-6 6 0 (a+) a+ (b+6) 6 b+ 6 (a+) (a-) a+ a- (-0) (-0) (-) (-) (-0) (-)(a+)

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten von helmut hinder gießen 2012-15 Lineare Gleichungssysteme mit 2 Unbekannten Problem: Die Dekorationsabteilung eines Kaufhauses bestellt beim Fachhandel 50

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

4 Ganzrationale Funktionen

4 Ganzrationale Funktionen FOS, Jahrgangsstufe (technisch) 4 Ganzrationale Funktionen 4 Polynomfunktionen Eine Funktion, die man auf die Form f : x a n x n + a n x n + + a 2 x 2 + a x + a 0 mit x R bringen kann, heißt ganzrationale

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom. Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform

Mehr

Alqebra kompakt für öummies

Alqebra kompakt für öummies Mary Jane Stertinq Alqebra kompakt für öummies Übersetzung aus dem Amerikanischen von Eva Steffen fachkorrektur Von Gerl'mde Kurz und Katrin Baun WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte (c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de S 1 Dr. Beate Bathe-Peters, Berlin Käseteller Muffins backen Fotos im gesamten

Mehr

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7 Musterlösungen Lehrbrief 0 Technik (Mathematische Grundlagen) Seite von 7 Bei diesen, wie auch bei allen folgenden Musterlösungen, zeigen wir in der egel nur einen Weg zum Ziel. Alle anderen Wege, die

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

6 Gleichungen und Gleichungssysteme

6 Gleichungen und Gleichungssysteme 03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr