2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

Größe: px
Ab Seite anzeigen:

Download "2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay"

Transkript

1 ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y + ( x P x ) Koordinaten: 0=v x =x (y y ) 0=v y =y + ( x x ) } y y = x x x = y Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

2 Der Vektor steht senkrecht auf dem Geschwindigkeitsvektor : y x / =( x x )x +(y y )y = y x + x y =0 α x α -y / x Für den Betrag gilt: = v 2 2 x +y = y = tan (α)= x y Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

3 Ergebnisse: Die augenblickliche Bewegung ist eine reine Drehung um den Punkt. Dieser Punkt wird als Momentanpol bezeichnet. Der Momentanpol kann sich außerhalb des Körpers befinden. Er ist kein ortsfester Punkt. Die Bahn, die der Momentanpol durchläuft, wird als Rastpolbahn bezeichnet. Bei einer reinen Translation ( = 0) liegt der Momentanpol im Unendlichen. Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

4 Zeichnerische Ermittlung des Momentanpols: Der Geschwindigkeitsvektor in jedem Punkt P des starren Körpers ist senkrecht auf der Geraden durch den Momentanpol und den Punkt P. Sind die Richtungen der Geschwindigkeiten an zwei Punkten des starren Körpers bekannt, dann ist der Momentanpol der Schnittpunkt der beiden Geraden durch diese Punkte, die senkrecht auf den Geschwindigkeiten stehen. Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

5 Für die Geschwindigkeiten gilt: v Q v P = r P, v Q =r Q r Q Q v P P Die Winkelgeschwindigkeit lässt sich ermitteln, wenn von einem der beiden Punkte auch der Betrag der Geschwindigkeit bekannt ist: r P = v P r P = v Q r Q v P v Q = r P r Q Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

6 Beispiel: Rollendes Rad Der Mittelpunkt des Rades bewegt sich mit der Geschwindigkeit v M. Der Punkt des Rades, der den Boden berührt, ist im Moment der Berührung in Ruhe. Dieser Punkt ist der Momentanpol. B M r v M Rollbedingung: v M = r = v M r = 2r=2 v M Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

7 Beispiel: Kurbeltrieb Bekannt ist die Geschwindigkeit = R des Punktes sowie die Richtung der Geschwindigkeit des Kolbens. Damit lässt sich die Lage des Momentanpols des Pleuels zeichnerisch ermitteln. O K v K Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

8 γ δ r K α R L β ε O K v K Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

9 Winkel im Dreieck K: ϵ=90 β, γ=90 α, δ=α+β Sinussatz im Dreieck K: r K sin (δ) = sin (ϵ) r K sin (δ) sin (α+β) (α+β) = = =sin sin (ϵ) sin (90 β) cos (β) Geschwindigkeit des Kolbens: v K = r K r K sin (α+β) v K = = v cos(β) Mit sin (α+β)=sin(α)cos(β)+ cos(α)sin (β) folgt: v K = (sin (α)+cos(α)tan (β)) Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

10 Spezialfall: Die Geschwindigkeitsvektoren stehen senkrecht auf der Geraden durch die beiden Punkte. B Dann liegt der Momentanpol auf dieser Geraden. r B Es gilt: = = r B = r B r B B Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

11 Beispiel: Die Rolle 1 ist von einem Seil umschlungen, das in den Punkten und B abgespult wird und über die gelenkig gelagerte Rolle 2 umgelenkt wird. Punkt P hängt an einem Seil, das im Punkt C von der Rolle 1 abgespult wird. Beide Seile sind dehnstarr. 2 Rolle 1 B Rolle 2 S 1 v S C v P P r B r C Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

12 Gegeben: Geschwindigkeit vs Gesucht: Momentanpol der Rolle 1 Geschwindigkeit vp und Winkelgeschwindigkeiten 1 und 2 B r S v S C v C r B r C Geometrie: Radius von Rolle 2: r 2 = 1 2 ( r B ) Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

13 Rolle 2: Rolle 1: Der Momentanpol liegt in der Mitte zwischen den Punkten und B. Daher gilt: r = 1 2 ( +r B ) = = 2 r 2 Für die Geschwindigkeiten folgt: v S = 1 r 1 = 2v S +r B v P =v C =(r +r C ) 1 = +r B +2 r C 2 v S 2 +r B = +r B +2 r C +r B =(r r B ) 1 v S = r B 2v S = r B v 2 +r B +r S B 2 = r 2 = 2 r B = 2 v S +r B = 1 Prof. Dr. Wandinger 3. Kinematik des starren Körpers TM

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

2. Zentrale Kraftsysteme

2. Zentrale Kraftsysteme 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

3 Kinematik des Körpers

3 Kinematik des Körpers 22 3 Kinematik des Körpers 3. Ebene Bewegung eines starren Körpers Liegen die Bahnkurven aller Punkte eines starren Körpers in parallelen Ebenen, so spricht man von einer ebenen Bewegung. Solche Bewegungen

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

2. Allgemeine ebene Bewegung

2. Allgemeine ebene Bewegung 2. Allgemeine ebene Bewegung 2.2 Arbeit und Energie Prof. Dr. Wandinger 4. Kinetik des starren Körpers TM 3 4.2-1 chwerpunktsatz: Aus dem chwerpunktsatz für Massenpunktsysteme folgt unmittelbar der chwerpunktsatz

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt

Mehr

2. Exzentrischer Stoß

2. Exzentrischer Stoß 2. Exzentrischer Stoß 2.1 Ebener Stoß zwischen freien Körpern 2.2 Ebener Stoß auf gelagerten Körper 3.2-1 2.1 Ebener Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander.

Mehr

3. Seilhaftung und Seilreibung

3. Seilhaftung und Seilreibung 3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge Lösungen der Trainingsaufgaben aus Toolbox Mathematik für MINT-Studiengänge 1 Geometrie mit Sinus, Cosinus und Tangens Version 22. Dezember 2016 Lösung zu Aufgabe 1.1 Gemäß Abbildung 1.1 und der Definition

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.2-1 Prof. Dr. Wandinger Aufgabe 1 1.2 Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Physikalische Anwendungen Kinematik

Physikalische Anwendungen Kinematik Physikalische Anwendungen Kinematik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die Anwendung

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Übung zu Mechanik 3 Seite 61

Übung zu Mechanik 3 Seite 61 Übung zu Mechanik 3 Seite 61 ufgabe 105 Ein Massenpunkt om Gewicht G fällt aus der Höhe h auf eine federnd gestützte Masse om Gewicht G. Um welchen etrag h wird die Feder (Federkonstante c) maximal zusammengedrückt

Mehr

Brückenkurs Höhere Mathematik

Brückenkurs Höhere Mathematik Vorkurse der Hochschule Aalen Brückenkurs Höhere Mathematik Aufgabensammlung März 209 Das Grundlagenzentrum (GLZ) wird aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) unter dem Förderkennzeichen

Mehr

5 Kinematik der Starrkörperbewegung

5 Kinematik der Starrkörperbewegung 35 Ein starrer Körper ist eine Idealisierung eines Maschinenteils, bei der man Verformungen vernachlässigt. Verbindet man mit dem Körper in einem beliebigen Beugspunkt ein körperfestes Koordinatensstem,

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion Y(T) beschreiben, die zu jedem Zeitpunkt T (Stunden oder Sekunden)

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 09. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 2014 Prüfungsdauer: 150 Minuten Diese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht und Kultus. ufgaben

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

c) Am Punkt R( ) ändert das U-Boot seine Fahrtrichtung und fährt in Richtung des Vektors w = 13

c) Am Punkt R( ) ändert das U-Boot seine Fahrtrichtung und fährt in Richtung des Vektors w = 13 Lineare Algebra / Analytische Geometrie Grundkurs Aufgabe 9 U-Boot Während einer Forschungsfahrt tritt ein U-Boot am Punkt P(100 0 540) alle Angaben in m in den Überwachungsbereich seines Begleitschiffes

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Mathematik Tutorium. x 2

Mathematik Tutorium. x 2 Mathematik Tutorium Fakultät Grundlagen Termin Algebra Aufgabe : Vereinfachen Sie die folgenden Ausdrücke: a) 5 ) : ) 5 b) n+ n c) an+ a n a n+ + a n d) ) ) : ) ) e) 5 f) 5 z + z 5 Aufgabe : Berechnen

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Sinus- und Kosinussatz

Sinus- und Kosinussatz Sinus- und Kosinussatz Aufgabe 1 Bestimme für 0 α 360 die zwei Winkel, für die gilt a) sin α = 0,2 b) sin α = -0,74 c) cos α = 0,84 d) cos α = -0,05 e) tan α = 21 f) tan α = -0,51 g) cos α = -0,9 h) tan

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten "Zwischenwert"

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten Zwischenwert Kreis - Übungen Wenn die "Kreisgleichung" gesucht ist, sind der Mittelpunkt und der Radius anzugeben. Es ist möglich, dass mehrere Kreise eine Aufgabenstellung erfüllen. 1) Ein Kreis berührt die y-achse

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

1. Prinzip der virtuellen Leistung

1. Prinzip der virtuellen Leistung 1. Prinzip der virtuellen Leistung 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung 4.1-1 1.1 Freiheitsgrade Definition: Die unabhängigen Bewegungsmöglichkeiten

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Kinematik eines Massenpunktes

Kinematik eines Massenpunktes 12 Kinematik eines Massenpunktes Technische Mechanik Kinematik eines Massenpunktes http://wikipedia.org Relevanz von Dynamik in der Freizeit Beschleunigung: 0-172km/h in 1.8s Technische Mechanik Kinematik

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie VI

Abitur 2011 G8 Abitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen

Mehr

Rudolf Brinkmann Seite und W = {x 3 x 6}

Rudolf Brinkmann Seite und W = {x 3 x 6} Rudolf Brinkmann Seite 0.0.008 Lineare Funktionen Es soll der Graph der Funktion f = {,y y = f() = } in den Bereichen D { } = und W = { 6} - - 0 f() = -6-0 6 9 erstellt werden. 6 6 5 0 Definition Eine

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L.

Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L. Kugeldreieck 1. Berechnen Sie die Fläche des vom Äquator, vom Nullmeridian und dem Längenkreis durch den angegebenen Ort begrenzten Kugeldreiecks. Geben Sie den sphärischen Exzeß des Dreiecks im Grad-

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann, Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Aufgabe: a) Zeige, dass das Viereck ABCD mit

Mehr

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik KG-Oberkurs 011 Vorlesungen: Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon 1 Allgemeines Biomechanik Biologie Mechanik Ziel der Vorlesung: Mechanische Grundlagen in anschaulicher Form aufzufrischen.

Mehr

Elementare Geometrie Vorlesung 18

Elementare Geometrie Vorlesung 18 Elementare Geometrie Vorlesung 18 Thomas Zink 26.6.2017 1.Bild eines Vektors bei einer affinen Abbildung Es sei f : E E eine affine Abbildung von Ebenen. Es sei v ein Vektor der Ebene E, d.h. eine Translation.

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

10.3. Krümmung ebener Kurven

10.3. Krümmung ebener Kurven 0.3. Krümmung ebener Kurven Jeder der einmal beim Durchfahren einer Kurve bremsen oder beschleunigen mußte hat im wahrsten Sinne des Wortes erfahren daß die lokale Krümmung einen ganz wesentlichen Einfluß

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Ingenieurmathematik I Lernstandserhebung 2 24./

Ingenieurmathematik I Lernstandserhebung 2 24./ Ingenieurmathematik I Lernstandserhebung 4./5..7 Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:............................................................................ Vorname:.........................................................................

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Matr.-Nummer Fachrichtung

Matr.-Nummer Fachrichtung Institut für Technische und Num. Mechanik Technische Mechanik II+III Profs. P. Eberhard, M. Hanss WS 2015/16 P 1 18. Februar 2016 Bachelor-Prüfung in Technischer Mechanik II+III Nachname, Vorname E-Mail-Adresse

Mehr

Theoretische Einleitung Fachwerkbrücken Parabelbrücken

Theoretische Einleitung Fachwerkbrücken Parabelbrücken Quellen: www.1000steine.com, www.professorbeaker.com, http://andrea2007.files.wordpress.com, www.zum.de, www.morgenweb.de, www1.pictures.gi.zimbio.com Quellen: www.1000steine.com, www.professorbeaker.com,

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.-1 Prof. Dr. Wandinger Aufgabe 1 1. Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht mit

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b Blatt Nr 1906 Mathematik Online - Übungen Blatt 19 Dreieck Geometrie Nummer: 41 0 2009010074 Kl: 9X Aufgabe 1911: (Mit GTR) In einem allgemeinen Dreieck ABC sind a = 18782, c = 1511 und β = 33229 gegeben

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

KORREKTURANLEITUNGEN zum Testheft A1

KORREKTURANLEITUNGEN zum Testheft A1 Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Hausaufgaben und Lösungen

Hausaufgaben und Lösungen Hausaufgaben und Lösungen Die folgenden Seiten sind nicht thematisch, sondern chronologisch geordnet. Die Lösungen der Hausaufgaben werden hier erst nach der Besprechung der Hausaufgaben veröffentlicht.

Mehr

Kinematik des Viergelenk-Koppelgetriebes

Kinematik des Viergelenk-Koppelgetriebes HTL-LiTec Viergelenk - Koppelgetriebe Seite 1 von 7 Dipl.-Ing. Paul MOHR email: p.mohr@eduhi.at Kinematik des Viergelenk-Koppelgetriebes Mathematische / Fachliche Inhalte in Stichworten: Kinematik; Getriebelehre;

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 1999, Typus AB Be/Sw Mathematik Lösungen Sw / 2003 Lösung der Aufgabe a) Nullstelle: : = Ableitungen: f () = : - = : = a f (a) = - e < : ist Stelle eines Maimums f () = : = : = a f (a) = e - : ist Wendestelle b) = e unabhängig von a tan = e ; = 69,8...

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie I Markus Götze Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Polygone ccw Pick's Theorem Konvexe Hülle Hallo Welt für Fortgeschrittene

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

Aufgaben zum Skalarprodukt

Aufgaben zum Skalarprodukt Aufgaben zum Skalarprodukt 3 1.0 Gegeben ist der Vektor a= 4. 5 0 0 1.1 Berechnen Sie a und a. 1.2 Berechnen Sie denjenigen Vektor der Länge 5 LE, der dieselbe Orientierung hat wie der Gegenvektor von

Mehr