Einheiten und physikalische Konstanten

Größe: px
Ab Seite anzeigen:

Download "Einheiten und physikalische Konstanten"

Transkript

1 A1 Anhang A Einheiten und physikalische Konstanten si-einheiten Jolitorax: LesRomains mesurent les distances en pas, nous en pieds. Obélix: En pieds? Jolitorax: Il faut six pieds pour faire un pas. Obélix: Ils sont fous, ces Bretons! (Goscinny/Uderzo: Astérix chez les Bretons) Das international anerkannte Einheitensystem ist das Système International d unités (SI), eine Erweiterung des Meter Kilogramm Sekunde-Systems. Im SI-System sind folgende Basis- Einheiten festgelegt: Physikalische Größe SI-Einheit Symbol Länge Meter m Masse Kilogramm kg Zeit Sekunde s elektrische Stromstärke Ampère A absolute Temperatur Kelvin K Lichtstärke Candela cd Stoffmenge Mol mol Abgeleitete SI-Einheiten mit besonderem Namen sind: Physikalische Größe Name Symbol Definition Frequenz Hertz Hz = s 1 Kraft Newton N = kg m s 2 =Jm 1 Druck Pascal Pa = kg m 1 s 2 =Nm 2 Energie Joule J = kg m 2 s 2 =Nm Leistung Watt W = kg m 2 s 3 =Js 1 elektrische Ladung Coulomb C = s A = J V 1 elektrische Spannung Volt V = kg m 2 s 3 A 1 =JC 1 elektrischer Widerstand Ohm Ω = kg m 2 s 3 A 2 =VA 1 elektrischer Leitwert Siemens S = kg 1 m 2 s 3 A 2 =Ω 1 elektrische Kapazität Farad F = kg 1 m 2 s 4 A 2 =CV 1 magnetische Induktion Tesla T = kg s 2 A 1 =Vsm 2 Hieraus ergibt sich folgende, praktisch wichtige Beziehung zur Umrechnung von Energie-Einheiten: J=Nm=Ws=Pam 3 =CV.

2 A2 ANHANG A: EINHEITEN UND PHYSIKALISCHE KONSTANTEN dezimale vielfache von si-einheiten Dezimale Vielfache von SI-Einheiten mit eigenem Namen (siehe oben) werden durch Vorsilben gekennzeichnet: Vielfaches Vorsilbe Symbol Yotta Y Zetta Z Exa E Peta P Tera T 10 9 Giga G 10 6 Mega M 10 3 Kilo k 10 2 Hekto h 10 1 Deka da Vielfaches Vorsilbe Symbol 10 1 Dezi d 10 2 Zenti c 10 3 Milli m 10 6 Mikro µ 10 9 Nano n Piko p Femto f Atto a Zepto z Yokto y Häufig benutzt werden insbesondere folgende dezimale Vielfache von SI-Einheiten: Physikalische Größe Name Symbol Definition Länge Ångström Å=10 10 m Volumen Liter L = dm 3 =10 3 m 3 Masse Tonne t = 10 3 kg Druck Bar bar = 10 5 Pa = 10 6 dyn cm 2 Konzentration (Molarität) Mol pro Liter M = mol L 1 =10 3 mol m 3 Kraft Dyn dyn = g cm s 2 =10 5 N Energie Erg erg = dyn cm = 10 7 J Die Einheiten Dyn und Erg gehören zu dem in der älteren Literatur beliebten Zentimeter Gramm Sekunde-System (cgs-system). häufig benutzte si-fremde einheiten Physikalische Größe Name Symbol Definition Masse atomare Masseneinheit u = g mol 1 N 1 1, kg Zeit Minute min = 60 s Stunde h = s Tag d = s Jahr a 31, s Kraft Kilopond kp = 9,80665 N Druck Atmosphäre atm = Pa Torr (mm Quecksilber) Torr 1 760,00 Energie Kalorie cal = 4,184 J Elektronenvolt ev = e 1V 1, J elektr. Dipolmoment Debye D = cm 5/2 g 1/2 s 1 [cgs] 3, Cm e 0,2 Å

3 ANHANG A: EINHEITEN UND PHYSIKALISCHE KONSTANTEN A3 spektroskopische energieeinheiten In der Spektroskopie werden Energien in cm 1, den sogenannten Wellenzahlen ν, angegeben. Es handelt sich dabei, salopp gesprochen, um die Anzahl pro Längeneinheit der Wellenberge oder -täler eines Lichtquants der angegebenen Energie. Die Wellenzahl ν ist offensichtlich der Kehrwert der Wellenlänge λ und damit proportional zur Frequenz ν : ν := 1 λ = ν c. Zwischen der Frequenz ν und der Energie E gilt die bekannte Beziehung E = hν ; wobei h das Plancksche Wirkungsquantum bezeichnet. Daraus folgt ν = E hc, woraus ersichtlich ist, daß die Wellenzahl ν proportional zur Energie E ist. Wellenzahlen können leicht in andere Energieeinheiten umgerechnet werden; z. B. gilt: 1cm 1 ˆ= 1, J. In der Molekülstatistik muß man oft Ausdrücke der Form e E/kT berechnen, wobei E eine Energie, T die absolute Temperatur und k die sogenannte Boltzmann-Konstante d. h. die durch die Avogadro-Konstante dividierte Gaskonstante bezeichnet. Dies ist besonders einfach, wenn man statt E die Größe E/k angibt. Da E/k die Dimension einer Temperatur hat, sagt man etwas salopp, daß man die Energie E in Kelvin angibt. Praktisch ist die Beziehung 1cm 1 ˆ= 1,4388 K.

4 A4 ANHANG A: EINHEITEN UND PHYSIKALISCHE KONSTANTEN atomare einheiten Die Theorie und numerische Rechnungen sind oftmals genauer als unsere empirische Kenntnis der Naturkonstanten; daher ist es sinnvoll, die dimensionsbehafteten Naturkonstanten aus der Theorie zu eliminieren. Da SI-Einheiten auf den vier Basiseinheiten m, kg, s, A beruhen, kann man vier Naturkonstanten als Referenzgrößen wählen. Somit definieren wir m e =1atomare Einheit der Masse e = 1atomare Einheit der Ladung ħ = 1atomare Einheit der Wirkung 1/4πε 0 =1atomare Einheit der Dielektrizität. Beispiel. Für die Coulomb-Wechselwirkung V zwischen zwei Kernen mit den Ortsvektoren r 1, r 2 und den Ladungen Z 1e und Z 2e gilt Z 1Z 2e 2 V = 4πε 0 r 1 r 2 = Z1Z2 r 2 r 2 (in Joule), (in atomaren Einheiten). Im Gegensatz zu der sonst üblichen Gepflogenheit betrachtet man beim Rechnen mit atomaren Einheiten alle Größen als dimensionslos. Die Bequemlichkeit der einfacher aussehenden Formeln wird dadurch erkauft, daß keine Möglichkeit mehr besteht, Rechenfehler durch einfache Dimensionsbetrachtungen ausfindig zu machen. Aus den gleich eins gesetzten Naturkonstanten leiten sich dann die übrigen Einheiten ab: Physikalische Größe Atomare Einheit Wert in SI-Einheiten Masse m e = 9, kg Wirkung, Drehimpuls ħ = 1, Js Elektrische Ladung e = 1, C Länge a 0 := 4πε 0 ħ 2 /m e e 2 = 5, m Energie E h := ħ 2 /a 2 0m e = 4, J Zeit ħ/e h = 2, s Geschwindigkeit v 0 := a 0 E h /ħ = 2, ms 1 Impuls m e v 0 = 1, kg m s 1 Kraft E h /a 0 = 8, N Elektrisches Potential E h /e =27,211 V

5 ANHANG A: EINHEITEN UND PHYSIKALISCHE KONSTANTEN A5 Bei den atomaren Einheiten der Länge a 0 (1 Bohr) und der Geschwindigkeit v 0 handelt es sich um den Radius bzw. die Geschwindigkeit der innersten Elektronenbahn des H-Atoms in der alten Bohrschen Quantentheorie. Die atomare Einheit der Energie E h (1 Hartree) ist gleich der doppelten Grundzustandsenergie des Wasserstoffatoms (in der einfachsten Näherung mit unendlicher Kernmasse). Man beachte, daß aus ε 0 µ 0 =1/c 2 und aus der Definition der dimensionslosen Feinstrukturkonstanten α := µ 0 e 2 c/4πħ = 1 137,04 folgt, daß die Lichtgeschwindigkeit in atomaren Einheiten gegeben ist durch c =1/α = 137,04. umrechnungstabellen für energie- und druckeinheiten In der zweiten der drei Tabellen beziehen sich Einheiten ohne den Zusatz mol 1 auf ein einziges Atom oder eine einzige Molekel....J...erg...cal...L atm...kw h 1J= , , , erg = , , , cal =... 4,1840 4, , , Latm = ,325 1, , , kWh=... 3, , , , J mol 1...J...eV...cm 1...E h...k 1Jmol 1 ˆ= , , , , , J ˆ=... 6, , , , , eV ˆ=... 9, , , , , cm 1 ˆ=... 11,963 1, , , ,4388 E h ˆ=... 2, , ,211 2, , K ˆ=... 8,3145 1, , , , Pa...bar...atm...Torr 1Pa= , , bar = , ,06 1 atm =... 1, , ,00 1Torr = ,32 1, ,

6 A6 ANHANG A: EINHEITEN UND PHYSIKALISCHE KONSTANTEN wichtige physikalische konstanten Die Werte von µ 0 und c sind wegen entsprechender Definition der Einheiten exakt. Bei allen anderen Konstanten ist die Standardabweichung um eine Größenordnung kleiner als die letzte angegebene Stelle. Vakuum-Lichtgeschwindigkeit Vakuum-Dielektrizitätskonstante Vakuum-Permeabilität Elementarladung Planck-Konstante c =2, ms 1 ε 0 =8, Fm 1 1/4πε 0 =8, F 1 m µ 0 =4π 10 7 NA 2 e =1, C h =6, Js ħ = h/2π =1, Js Feinstrukturkonstante α = µ 0 e 2 c/2h =1/137, Masse des Elektrons m e =9, kg Masse des Protons m p =1, kg Masse des Neutrons m n =1, kg Massenverhältnis Proton Elektron m p /m e = 1836,15267 Rydberg-Konstante R = m e e 4 /8ε 2 0h 3 c = , cm 1 (unendl. Kernmasse bzw. H-Atom) R H = R /(1 + me m p )= , cm 1 Hartree-Energie E h =2R hc =4, J Bohrscher Radius a 0 =4πε 0 ħ 2 /m e e 2 =0, Å Bohrsches Magneton µ B = eħ/2m e =9, JT 1 Kernmagneton µ N = eħ/2m p =5, JT 1 g-faktor des Elektrons g e =2, Avogadro- oder Loschmidt-Konstante N =6, mol 1 Faraday-Konstante Gaskonstante Boltzmann-Konstante F = N e =96485,34 C mol 1 R =8,3145 J K 1 mol 1 =0, L atm K 1 mol 1 k = R/N =1, JK 1 Stefan Boltzmann-Konstante σ = 2 15 π5 k 4 /h 3 c 2 =5, Wm 2 K 4 Wiensche Konstante λ max T =2, Km Gravitationskonstante G =6, m 3 kg 1 s 2

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Um physikalische Aussagen über das Verhältnis von Messgrößen zu erhalten, ist es notwendig die Größen exakt und nachvollziehbar

Mehr

SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE

SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE (Quelle: EU-Richtlinie 80/181/EWG) 1. SI-Basiseinheiten Größe Name der Einheit Einheitenzeichen Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrische

Mehr

Physik: Größen und Einheiten

Physik: Größen und Einheiten Physik: Größen und Einheiten Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Größen in der Physik Größen Eine physikalische Größe besteht aus: G = m [E] Maßzahl Die (reelle)

Mehr

Carmen Weber DM4EAX. DARC AJW Referat

Carmen Weber DM4EAX. DARC AJW Referat Carmen Weber DM4EAX In der Physik benötigen wir feste Größen und Einheiten, damit Begriffe eindeutig benannt werden können. Diese sind gesetzlich festgelegt. Am 2. Juli 1969 wurde in Deutschland das Gesetz

Mehr

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Anhang B: Einheitensysteme Vorlesung für Studenten der Technischen Physik Helmut Nowotny Technische Universität Wien Institut für Theoretische Physik 7., von A. Rebhan

Mehr

Zusatztutorium PPH #1: Einheiten

Zusatztutorium PPH #1: Einheiten Zusatztutorium PPH #1: Einheiten Alle physikalischen Größen haben eine fest zugeordnete physikalische Einheit, z.b. Weg, Länge, Höhe : Meter (m) Zeit: Sekunde (s) Kraft: Newton (N) Im Allgemeinen werden

Mehr

Vorlesung Theoretische Chemie I

Vorlesung Theoretische Chemie I Institut für Physikalische and Theoretische Chemie, Goethe-Universität, Frankfurt am Main 20. Dezember 2013 Teil I Energieeinheiten Joule E kin = 1 2 mv 2 E pot = mgh [E] = kg m2 s 2 = J Verwendung: Energie/Arbeit

Mehr

Einheiten. 2. Richtlinie 80/181/EWG 1

Einheiten. 2. Richtlinie 80/181/EWG 1 Seite 1/5 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Richtlinie 80/181/EWG 1 3. Quellen 5 1. Allgemeines Die Ingenieurwissenschaften sind eine Untermenge der Naturwissenschaften. Die Tragwerksplanung lässt

Mehr

Physikalisches und Physikalisch-chemisches Praktikum für Pharmazeuten

Physikalisches und Physikalisch-chemisches Praktikum für Pharmazeuten Institut für Physik der Kondensierten Materie Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Physikalisches und Physikalisch-chemisches Praktikum für Pharmazeuten Priv.-Doz. Dr. Dirk

Mehr

Einheiten und Konstanten

Einheiten und Konstanten Einheiten und Konstanten SI-Einheiten Für Grundgrössen und abgeleitete Grössen wurde an der 11. Generalkonferenz für Mass und Gewicht 1960 ein kohärentes Einheitssystem, das Système International d Unités

Mehr

I Physikalische Größen und Gleichungen

I Physikalische Größen und Gleichungen I Physikalische Größen und Gleichungen 1 I Physikalische Größen und Gleichungen 1. i Physikalische Größen Naturvorgänge werden durch ihre Merkmale (Zustände, Eigenschaften, Vorgänge) beschrieben. Merkmal

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische Größen und Einheiten Physikalische Größen und deren Messung Der Begriff physikalische Größe ist in DIN 1313 definiert. Eine physikalische Größe kennzeichnet messbare Eigenschaften und Zustände

Mehr

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Grundlagen der Elektrotechnik I 17 11.01.01 Einführung eines Einheitensystems.1 Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Physikalische Größen: Meßbare,

Mehr

Formelsammlung Physik1 für Wirtschaftsingenieure und PA Stand Additionstheoreme für sinus und cosinus: Darf in der Klausur verwendet werden!

Formelsammlung Physik1 für Wirtschaftsingenieure und PA Stand Additionstheoreme für sinus und cosinus: Darf in der Klausur verwendet werden! Stand Bereich: Mathematik Darf in der Klausur verwendet werden! sin = a c ; cos = b c ; tan = a b sin 2 cos 2 =1 Additionstheoreme für sinus und cosinus: sin ± =sin cos ± cos sin cos ± =cos cos sin sin

Mehr

Mathematische Methoden I (WS 16/17)

Mathematische Methoden I (WS 16/17) Mathematische Methoden I (WS 16/17) Grundlagen Grundgrößen mit Maßeinheiten (SI-Einheiten ( Système International d Unités )) Grundgröße Einheit Formelzeichen Länge m (Meter) l Zeit s (Sekunde) t (time)

Mehr

! -Wärmelehre! -Astrophysik! -E-Lehre! -Festkörperphysik! -Mechanik! -Elemtarteilchenphysik!!! -Optik! -Atomphysik!!! Quantenmechanik!

! -Wärmelehre! -Astrophysik! -E-Lehre! -Festkörperphysik! -Mechanik! -Elemtarteilchenphysik!!! -Optik! -Atomphysik!!! Quantenmechanik! D Definition Physik Physik ist eine Naturwissenschaft, die sich mit der Beschreibung der Naturerscheinungen und mit der Erforschung von deren (mathematischen) Gesetzen befasst. Teilgebiete der Physik -Wärmelehre

Mehr

Physik ist eine messende Wissenschaft

Physik ist eine messende Wissenschaft Physik ist eine messende Wissenschaft 1. Konzept der Physik Experiment Beobachtung Vorhersagen Modell / Theorie Um die Natur zu beschreiben, benötigen wir die Mathematik. Damit einhergehend brauchen wir

Mehr

Einführung in die Physikalische Chemie

Einführung in die Physikalische Chemie Einführung in die Physikalische Chemie 1. Zwischenmolekulare Wechselwirkungen 2. Bau der Materie 3. Struktur der Moleküle 4. Molekülspektroskopie 5. Boltzmann-Statistik 6. Transportphänomene 7. Theorie

Mehr

Probeklausur zur Vorlesung Einführung in die Physikalische Chemie

Probeklausur zur Vorlesung Einführung in die Physikalische Chemie Name: Probeklausur zur Vorlesung Einführung in die Physikalische Chemie Fr. 19. Dezember 2008, 10 15-12 15 Vorbemerkungen - Von den 6 Aufgaben sind 5 zu lösen. - Schreiben Sie die Lösungen auf die Aufgabenblätter.

Mehr

HTW Chur Ingenieurbau/Architektur, Physik 1, T. Borer

HTW Chur Ingenieurbau/Architektur, Physik 1, T. Borer Am Anfang der Zivilisation stand die Messkunst. Unsere Vorfahren lernten die Messtechnik anzuwenden, als sie sesshaft wurden, Häuser bauten und Felder bestellten. Die ersten Masseinheiten waren Naturmasse

Mehr

Das ABC der Schulphysik

Das ABC der Schulphysik Das ABC der Schulphysik Buchstabe Bedeutung Art Herkunft A Ampere SI-Einheit André-Marie Ampère (F, 1775 1836). Die Einheit Ampere wird ohne Akzent geschrieben. A Flächeninhalt Größe lat. area = Grundfläche

Mehr

Das ABC der Schulphysik

Das ABC der Schulphysik Das ABC der Schulphysik Buchstabe Bedeutung Art Herkunft A Ampere SI-Einheit André-Marie Ampère (F, 1775 1836). Die Einheit Ampere wird ohne Akzent geschrieben. A Flächeninhalt Größe lat. area = Grundfläche

Mehr

Hydrostatik. Von Wasser und Luft und anderem 1. OG. Stiftsschule Engelberg, Schuljahr 2016/2017

Hydrostatik. Von Wasser und Luft und anderem 1. OG. Stiftsschule Engelberg, Schuljahr 2016/2017 Hydrostatik Von Wasser und Luft und anderem 1. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Die Dichte Ziele dieses Kapitels Du weisst, was die Dichte ist und wie man sie messen kann. Du kannst Berechnungen

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik 2017/2018 Prof. Dr. A. Strey DHBW Stuttgart, Informatik Email: strey@lehre.dhbw-stuttgart.de Inhalt 1 Physikalische Größen Elektrischer Strom und Stromdichte Elektrische Spannung Widerstand und Leitfähigkeit

Mehr

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900 Was ist Physik? Das Studium der uns umgebenden Welt vom Universum bis zum Atomkern, bzw. vom Urknall bis weit in die Zukunft, mit Hilfe von wenigen Grundprinzipien. Diese gesetzmäßigen Grundprinzipien

Mehr

Formelsammlung Physik1 für Technische Informatiker Erstellt im SS06

Formelsammlung Physik1 für Technische Informatiker Erstellt im SS06 Darf in der Klausur verwendet werden! Bereich: Mathematik sin = a c ; cos = b c ; tan = a b sin 2 cos 2 =1 Additionstheoreme für sinus und cosinus: sin ± =sin cos ±cos sin cos ± =cos cos sin sin Geometrie:

Mehr

Maßeinheiten der Mechanik

Maßeinheiten der Mechanik Maßeinheiten der Mechanik Einheiten der Masse m Kilogramm kg 1 kg ist die Masse des internationalen Kilogrammprototyps. (Gültig seit 1901) Statt Megagramm wird die allgemein gültige SI-fremde Einheit Tonne

Mehr

Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler

Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler UNIVERSELLE KONSTANTEN Vakuumlichtgeschwindigkeit c, c 0 299 792 458 m s 1 (exact) Magnetische Feldkonstante des Vakuums µ 0 4π 10 7 N A 2 (exact) =12.566 370 614... 10 7 N A 2 (exact) Elektrische Feldkonstante

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Kurs-Skript http://www.uni-due.de/ adb297b

Mehr

Physikalische Chemie 4

Physikalische Chemie 4 Physikalische Chemie 4 Statistische hermodynamik - Grundlagen und Anwendungen in Chemie und Biowissenschaften: Grundlagen der klassischen statistischen Mechanik, klassische Ensembletheorie, Boltzmannstatistik,

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische Größen und Einheiten 4 März 2010 I Physikalische Größen Alle Gleichungen in den Versuchsanleitungen sind mathematische Verknüpfungen physikalischer Größen (siehe auch DIN 1313) Jede physikalische

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

vom 23. November 1994 (Stand am 1. Januar 2013)

vom 23. November 1994 (Stand am 1. Januar 2013) Einheitenverordnung 1 941.202 vom 23. November 1994 (Stand am 1. Januar 2013) Der Schweizerische Bundesrat, gestützt auf die Artikel 2 Absatz 2 und 3 Absatz 2 des Messgesetzes vom 17. Juni 2011 2, 3 verordnet:

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen Lehr- und Lernmaterial / Physik für M-Kurse am Landesstudienkolleg Halle / Jörg Thurm Physikalische Grundlagen 1. Physikalische Grundlagen 1.1. Grundgrößen und ihre Einheiten Vorlesung Zusammenfassung

Mehr

1 Einführung Ziel der Vorlesung:

1 Einführung Ziel der Vorlesung: Interdisziplinäre Kenntnisse werden immer wichtiger um die komplexen Zusammenhänge in den verschiedenen wissenschaftlichen Teilbereichen zu erfassen. Die Physik, als eine der Grundlagenwissenschaften reicht

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

AfuTUB-Kurs Einleitung

AfuTUB-Kurs Einleitung Technik Klasse E 01: Mathematische Grundlagen und Abgeleitete Amateurfunkgruppe der TU Berlin https://dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

Das ABC der Physik. a Beschleunigung Größe lat. accelerare = beschleunigen lat. celer = schnell

Das ABC der Physik. a Beschleunigung Größe lat. accelerare = beschleunigen lat. celer = schnell Das ABC der Physik Buchstabe Bedeutung Art Herkunft A Ampere SI-Einheit André-Marie Ampère (F, 1775 1836). Die Einheit Ampere wird ohne Akzent geschrieben. A Flächeninhalt Größe lat. area = Grundfläche

Mehr

Naturwissenschaften Teil 1

Naturwissenschaften Teil 1 Naturwissenschaften Teil Auswertung von Messreihen Grafische Darstellung Die nachfolgende Tabelle enthält die Messwerte zur Aufnahme einer Abkühlungskurve für reines Zinn. Stelle die Messwerte in einem

Mehr

Physik für Studierende der Biologie, Lehramt Chemie und Landschaftsökologie

Physik für Studierende der Biologie, Lehramt Chemie und Landschaftsökologie VAK 5.04.900 Physik für Studierende der Biologie, Lehramt Chemie und Landschaftsökologie Mo 14-16 Uhr Jesko L. Verhey (Sprechstunde Di 14-15 Uhr) Zusätzlich: begleitendes Praktikum VAK 5.04.900, WS03/04

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 01: Mathematische Grundlagen und Einheiten. Amateurfunkgruppe der TU Berlin.

AFu-Kurs nach DJ4UF. Technik Klasse E 01: Mathematische Grundlagen und Einheiten. Amateurfunkgruppe der TU Berlin. Technik Klasse E 01: Mathematische Grundlagen und Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 22.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Mehr

Gedankengänge eines PhysikersimZoo (I)

Gedankengänge eines PhysikersimZoo (I) Gedankengänge eines PhysikersimZoo (I) 1. BeobachtungeinesPhänomens einelefanthat relativdickebeineimvergleichzueinem eh.versuch derverallgemeinerung jegrößer einsäugetier,destodicker seinebeine relativzumkörper.grübeln

Mehr

Rechnen in der Physik Selbstlernmaterial

Rechnen in der Physik Selbstlernmaterial Rechnen in der Physik Selbstlernmaterial 1 Physikalische Größen Wie lang ist der Tisch? Die Frage kann man auf verschiedene Weisen beantworten: Der Tisch ist halb so lang wie das Bett. Der Tisch ist so

Mehr

Inhalt der Vorlesung Physik A2 / B2

Inhalt der Vorlesung Physik A2 / B2 Inhalt der Vorlesung Physik A2 / B2 1. Einführung Einleitende Bemerkungen Messung physikalischer Größen 2. Mechanik Kinematik Die Newtonschen Gesetze Anwendung der Newtonschen Gesetze Koordinaten und Bezugssysteme

Mehr

LOSEBLATTSAMMLUNG FS AKU EMPFEHLUNGEN ZUR ÜBERWACHUNG DER UMWELTRADIOAKTIVITÄT

LOSEBLATTSAMMLUNG FS AKU EMPFEHLUNGEN ZUR ÜBERWACHUNG DER UMWELTRADIOAKTIVITÄT Seite: 1 von 6 Zusammenstellung von Messgrößen in den Bereichen Radioaktivität und Dosismessung Bearbeiter: J.-W. Vahlbruch, Gottfried Wilhelm Leibniz Universität, Hannover H. Wershofen, Physikalisch-Technische

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische n Physikalisches Praktikum für Anfänger (Hauptfach) Grundlagen Physikalische n und en Alle Gleichungen in den Versuchsanleitungen sind mathematische Verknüpfungen physikalischer n (siehe

Mehr

ANHANG: Deutsche Maße und Gewichte APPENDIX: British and American Weights and Measures

ANHANG: Deutsche Maße und Gewichte APPENDIX: British and American Weights and Measures ANHANG: Deutsche Maße und Gewichte APPENDIX: British and American Weights and Measures Deutsche Maße und Gewichte 1. Längenmaße 1 mm Millimeter, millimeter (US), millimetre (GB) = 1/1000 meter, metre =

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische n Physikalisches Praktikum für Anfänger (Hauptfach) Grundlagen Physikalische n und Einheiten Alle Gleichungen in den Versuchsanleitungen sind mathematische Verknüpfungen physikalischer n

Mehr

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand 7.5.016 Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik:

Mehr

Prof. W. Dünnweber und Prof. M.Faessler. Studenten der (Tier)Medizin, des Lehramtes (nicht vertieft), der Naturwissenschaften mit Physik als Nebenfach

Prof. W. Dünnweber und Prof. M.Faessler. Studenten der (Tier)Medizin, des Lehramtes (nicht vertieft), der Naturwissenschaften mit Physik als Nebenfach EP1: Experimental Physik - Einführung in die Physik Dozenten: Versuche: Prof. W. Dünnweber und Prof. M.Faessler P. Koza Hörer: Studenten der (Tier)Medizin, des Lehramtes (nicht vertieft), der Naturwissenschaften

Mehr

Grundlagen der Werkstoffe

Grundlagen der Werkstoffe Institut für Grundlagen der Werkstoffe 2005 Prof. Setzer 1 Übersicht Institut für Vorlesung Dienstag Mittwoch 08:30-10:00 08:30-10:00 S05 T00 B71 S03 V00 E33 Fragen an die Studenten! Übung Donnerstag 08:30-10:00

Mehr

Kurzbeschreibung des Faches Elektrotechnik

Kurzbeschreibung des Faches Elektrotechnik Kurzbeschreibung des Faches Elektrotechnik Elektrotechnik ist die Anwendung der Energieform Elektrizität. Teilgebiete der Elektrotechnik: Klassische Energietechnik/Starkstromtechnik: Erzeugung Verteilung

Mehr

Learn4Med. 1. Größen und Einheiten

Learn4Med. 1. Größen und Einheiten 1. Größen und Einheiten Eine physikalische Größe beschreibt, was man misst (z.b. den Druck, die Zeit). Eine physikalische Einheit beschreibt, wie man die Größe misst (z.b. in bar, in Sekunden). Man darf

Mehr

RFH Rheinische Fachhochschule Köln

RFH Rheinische Fachhochschule Köln 1. SI-Einheitensystem Das Messen ist eine der wichtigsten Aufgaben in der Technik sowie im täglichen Leben. Damit Meßergebnisse bewertet und interpretiert werden können, werden Einheiten benötigt. Ein

Mehr

Biophysik für Pharmazeuten I.

Biophysik für Pharmazeuten I. Thematik Biophysik für Pharmazeuten I. Woche Vorlesungen: Thema Einführung Mechanik Struktur der Materie Vortragende Tölgyesi Woche Praktika: Thema Einführung, Sicherheitsvorschriften Refraktometer Mikroskop

Mehr

III. Messen und Prüfen

III. Messen und Prüfen III. Messen und Prüfen Das Um und Auf beim Arbeiten ist das ständige Messen und Prüfen des Werkstücks, um Fehler zu vermeiden. Die verwendeten Maße und Einheiten sind genau festgelegt, das heißt sie sind

Mehr

Von den kleinsten zu den größten Dimensionen in der Physik. Andreas Wipf

Von den kleinsten zu den größten Dimensionen in der Physik. Andreas Wipf Von den kleinsten zu den größten Dimensionen in der Physik Theoretisch-Physikalisches Institut Physikalisch-Astronomische Fakulät Friedrich-Schiller-Universität Jena Bausteine des Universums Der Beginn

Mehr

O. Grulke. Tel: / pg. Web:

O. Grulke. Tel: / pg. Web: WILLKOMMEN Experimentalphysik I Mechanik / Wärme O. Grulke Tel: 03834 / 88 2514. Email: grulke@ipp.mpg.de pg. Web: www.ipp.mpg.de/~grulke organisatorisches Termine: Di. 8:00ct 10:00 12.10. 04.01. 19.1010

Mehr

Studenten der Tiermedizin ( 300) und Geowissenschaften ( 200) mit Physik als Nebenfach (1-semestrige Einführung)

Studenten der Tiermedizin ( 300) und Geowissenschaften ( 200) mit Physik als Nebenfach (1-semestrige Einführung) EP EP: ExperimentalPhysik - Einführung in die Physik Dozenten: Versuche: Hörer: Prof. W. Dünnweber und Prof. M. Faessler P. Koza Studenten der Tiermedizin ( 300) und Geowissenschaften ( 200) mit Physik

Mehr

Begleitendes Seminar. Praktischen Übungen in Physik. Humanmediziner, Zahnmediziner, Molekulare Biomediziner und Pharmazeuten

Begleitendes Seminar. Praktischen Übungen in Physik. Humanmediziner, Zahnmediziner, Molekulare Biomediziner und Pharmazeuten Dr. Christoph Wendel Begleitendes Seminar zu den Praktischen Übungen in Physik für Humanmediziner, Zahnmediziner, Molekulare Biomediziner und Pharmazeuten Übersicht Praktikum Vorbereitung und Durchführung

Mehr

Biophysik für Pharmazeuten I.

Biophysik für Pharmazeuten I. Biophysik für Pharmazeuten I. Prof. László Smeller laszlo.smeller@eok.sote.hu Dr. Attila Bérces attila.berces@eok.sote.hu Dr. Pál Gróf pal.grof@eok.sote.hu 1 Thematik 13 Vorlesungen: Woche Thema Vortragende

Mehr

Grundlagen der medizinischen Physik

Grundlagen der medizinischen Physik Thematik Grundlagen der medizinischen Physik Dr. László Smeller laszlo.smeller@eok.sote.hu Dr. Ferenc Tölgyesi ferenc.tolgyesi@eok.sote.hu Dr. Attila Bérces attila.berces@eok.sote.hu Woche Vorlesungen:

Mehr

Das internationale Einheitensystem Ein Überblick mit Links zu weiterführenden Dokumenten

Das internationale Einheitensystem Ein Überblick mit Links zu weiterführenden Dokumenten 1 Das internationale Einheitensystem Ein Überblick mit Links zu weiterführenden Dokumenten Peter Ryder, Mai 2003 Inhaltsverzeichnis Einleitung Basiseinheiten Definitionen der Basiseinheiten Abgeleitete

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Studentenmitteilung 1. Semester - WS 2007

Studentenmitteilung 1. Semester - WS 2007 NIVERSITÄT LEIPZIG Institut für Informatik Studentenmitteilung. Semester - WS 2007 bt. Technische Informatik Dr. rer.nat. Hans-Joachim Lieske Tel.: [49]-034-97 3223 Johannisgasse 26 - Zimmer: Jo 04-47

Mehr

Allgemeine Chemie (Teil physikalische Chemie) an der Eidgenössischen Technischen Hochschule Zürich

Allgemeine Chemie (Teil physikalische Chemie) an der Eidgenössischen Technischen Hochschule Zürich M. Sommavilla U. Hollenstein F. Merkt H. J. Wörner Vorlesungsskript zur Lehrveranstaltung Allgemeine Chemie (Teil physikalische Chemie) an der Eidgenössischen Technischen Hochschule Zürich Herbstsemester

Mehr

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik Kompressionsfaktor z,00 1,75 1,50 1,5 1,00 0,75 0,50 0,5 H CH 4 CO 0 0 0 40 60 80 Druck in MPa ideales Gas Nach dem idealen Gasgesetz gilt: pv nrt = pv m RT = 1 (z) Nennenswerte Abweichungen vom idealen

Mehr

Lösungsvorschlag Übung 1

Lösungsvorschlag Übung 1 Lösungsvorschlag Übung Aufgabe : Physikalische Einheiten a) Es existieren insgesamt sieben Basisgrössen im SI-System. Diese sind mit der zugehörigen physikalischen Einheit und dem Einheitenzeichen in der

Mehr

Beim Messen vergleicht man die gegebene Größe mit der gewählten Maßeinheit. Man stellt fest, welches Vielfache der Einheit vorliegt.

Beim Messen vergleicht man die gegebene Größe mit der gewählten Maßeinheit. Man stellt fest, welches Vielfache der Einheit vorliegt. D Sachrechnen 1 Messen von Größen Beispiele für Größen und ihre Maßeinheiten: Länge (Meter); Masse (Kilogramm); Zeitspanne (Sekunde), Elektrische Stromstärke (Ampere), Temperatur (Grad Celsius), Geldbetrag

Mehr

Formeln für Metallberufe

Formeln für Metallberufe Formeln für Metallberufe Bearbeitet von Roland Gomeringer, Max Heinzler, Roland Kilgus, Volker Menges, Friedrich Näher, Stefan Oesterle, Claudius Scholer, Andreas Stephan, Falko Wieneke. Auflage 204. Broschüren

Mehr

Medientechnik WS 2012/13. Medientechnik WS 2012/13 Manfred Jackel Universität Koblenz-Landau

Medientechnik WS 2012/13. Medientechnik WS 2012/13 Manfred Jackel Universität Koblenz-Landau Medientechnik WS 2012/13 Medientechnik WS 2012/13 Manfred Jackel Universität Koblenz-Landau 1 Medientechnik WS 2012/13 Manfred Jackel Universität Koblenz-Landau 2 media type image representation Farbmodelle

Mehr

Messen in der Chemie

Messen in der Chemie Dr. Roman Flesch Physikalisch-Chemische Praktika Fachbereich Biologie, Chemie, Pharmazie Takustr. 3, 14195 Berlin rflesch@zedat.fu-berlin.de Messen in der Chemie Sommersemester 2017 1 Messprozesse in der

Mehr

MESSTECHNIK. Veranstaltung Wasserbauliches Versuchswesen Vertiefungsrichtung Umwelttechnik

MESSTECHNIK. Veranstaltung Wasserbauliches Versuchswesen Vertiefungsrichtung Umwelttechnik MESSTECHNIK Veranstaltung Wasserbauliches Versuchswesen Vertiefungsrichtung Umwelttechnik Dr.-Ing. Mario Oertel Oberingenieur Akademischer Rat Lehr- und Forschungsgebiet Wasserwirtschaft und Wasserbau

Mehr

Waren die Naturkonstanten immer gleich?

Waren die Naturkonstanten immer gleich? Waren die Naturkonstanten immer gleich? Naturkonstanten Was kann variieren? Was kann man messen? Messungen Resultate Naturkonstanten und deren Einheiten Größe Symbol Einheit Lichtgeschwindigkeit c m/s

Mehr

Stellenwertsysteme 1. I für Eins, II für zwei III für drei.

Stellenwertsysteme 1. I für Eins, II für zwei III für drei. Stellenwertsysteme 1 Ältere Kulturen haben die Zahlen stets durch Wiederholungen und mit diversen größeren Paketzahlensymbolen dargestellt. So benutzten die alten Römer (wie jeder Gefängnishäftling noch

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

Studentenmitteilung 1. Semester - WS 2000/2001

Studentenmitteilung 1. Semester - WS 2000/2001 UNIVERSITÄT LEIPZIG Institut für Informatik Studentenmitteilung 1. Semester - WS 2000/2001 Abt. Technische Informatik Gerätebeauftragter Dr. rer.nat. Hans-Joachim Lieske Tel.: [49]-0341-97 32213 Zimmer:

Mehr

Physik. Formelsammlung

Physik. Formelsammlung Physik Formelsammlung Inhaltsangabe Grundlagen Grössen Umrechnen 4 Griechisches Alphabet 6 Mengenlehre 7 Physikalische Grössen 8 SI-Einheiten und Vorsätze 9 Skalen und Vektoren 10 Zerlegen von Vektoren

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik Physik I im Studiengang Elektrotechnik - Einführung in die Physik - Prof. Dr. Ulrich Hahn WS 2015/2016 Physik eine Naturwissenschaft Natur leblos lebendig Physik Chemie anorganisch Chemie organisch Biochemie

Mehr

Physikalische Übungen für Pharmazeuten

Physikalische Übungen für Pharmazeuten Helmholtz-Institut für Strahlen- und Kernphysik Seminar Physikalische Übungen für Pharmazeuten K. Koop Max Becker Karsten Koop Dr. Christoph Wendel Übersicht Inhalt des Seminars Praktikum - Vorbereitung

Mehr

Institut für Informatik. Aufgaben zu Übung Grundlagen der Technischen Informatik 1

Institut für Informatik. Aufgaben zu Übung Grundlagen der Technischen Informatik 1 UNIVERSITÄT LEIPZIG Institut für Informatik Studentenmitteilung 1. Semester - WS 2006 bt. Technische Informatik Gerätebeauftragter Dr. rer.nat. Hans-Joachim Lieske Tel.: [49]-0341-97 32213 Zimmer: HG 02-37

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

Elektrotechnik Formelsammlung v1.2

Elektrotechnik Formelsammlung v1.2 Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3

Mehr

Einführung in die Physikalische Chemie: Inhalt

Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Woche Kapitel Dozent 1 1. Intermolecular Interactions CP 2,3 2. States of Matter SW 3,4 3. Structure of Molecules SW 5,6 4. Molecular Spectroscopy CP 6 5.

Mehr

Formelsammlung für den Brückenkurs Physik

Formelsammlung für den Brückenkurs Physik Formelsammlung für den Brückenkurs Physik keine Garantie für Richtigkeit oder Vollständigkeit Kritik / Korrekturen an tobias.mollnow@rwth-aachen.de 1. Allgemeines SI-Einheiten Die sieben Einheiten des

Mehr

Messtechnik. 1 Grundlagen. 2 Messsysteme. 3 Messung elektrischer Größen. 4 Messung nichtelektrischer Größen. 5 Analyseverfahren

Messtechnik. 1 Grundlagen. 2 Messsysteme. 3 Messung elektrischer Größen. 4 Messung nichtelektrischer Größen. 5 Analyseverfahren Messtechnik 1 Vorlesung Messtechnik 2 Roland Harig, Prof. Dr.-Ing. Institut für Messtechnik Harburger Schloßstr. 20 4. Stock 1 Grundlagen 2 Messsysteme Telefon: 2378 Email: harig@tuhh.de http://www.et1.tu-harburg.de/ftir/index-courses.htm

Mehr

2. Aufgabenkomplex. Übung und Seminar zur Vorlesung. Grundlagen der Technischen Informatik 1

2. Aufgabenkomplex. Übung und Seminar zur Vorlesung. Grundlagen der Technischen Informatik 1 . Aufgabenkoplex Übung zur orlesung Grundlagen der Technischen Inforatik Winterseester 9 Übung und Seinar zur orlesung Grundlagen der Technischen Inforatik. Aufgabenkoplex..9 Johannisgasse 6 43 Leipzig

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen STR ING Elektrotechnik 10-1 - 1 1 Übungen und Lösungen 1.1 Übungen 1. LADUNG KRAFTWIRKUNG a) Wieviele Elementarladungen e ergeben die Ladung 5 nc (NanoCoulomb)? b) Mit welcher Kraft F ziehen sich zwei

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

SMS. Schnell-Merk-System. 5. bis 10. Klasse. Kompaktwissen Testfragen. Physik

SMS. Schnell-Merk-System. 5. bis 10. Klasse. Kompaktwissen Testfragen. Physik 5. bis 10. Klasse SMS Schnell-Merk-System Physik Kompaktwissen Testfragen Teste dein Wissen mit rund 100 Testfragen! Am Ende des Buches findest du auf den eingefärbten Seiten Multiple-Choice-Fragen zu

Mehr

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Sommersemester 2008

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Sommersemester 2008 Name: Gruppennummer: Nummer: Aufgabe 1 2 3 4 5 6 7 8 9 10 insgesamt erreichte Punkte erreichte Punkte Aufgabe 11 12 13 14 15 16 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

47 cm. Maßzahl. Einheit. G Giga 1 000 000 000 = 10 9 9. M Mega 1 000 000 = 10 6 6. k Kilo 1 000 = 10 3 3. c centi. m milli. n nano.

47 cm. Maßzahl. Einheit. G Giga 1 000 000 000 = 10 9 9. M Mega 1 000 000 = 10 6 6. k Kilo 1 000 = 10 3 3. c centi. m milli. n nano. Einheiten umrechnen Grundbegriffe Worum geht s? Die so genannten Grundeinheiten Meter, Kilogramm, Sekunde, Ampère,... wurden so definiert, dass sie zum Messen alltäglicher Dinge geeignet sind. In der Wissenschaft

Mehr

Naturbeobachtung Schlussfolgerung (z.b. Gesetze der Planetenbewegung)

Naturbeobachtung Schlussfolgerung (z.b. Gesetze der Planetenbewegung) 1. 1.1. Was ist Physik ϕυσιζ = Ursprung, Naturordnung, das Geschaffene lt. den griechischen Naturphilosophen, z.b. Aristoteles (384-3 v.d.z.) im Gegensatz zur Metaphysik (das, was im Aristoteleschen System

Mehr

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson

Integrierter Kurs P1a im WiSe 2009/10. Skript Experimentalphysik. Prof. Dr. Oliver Benson Integrierter Kurs P1a im WiSe 2009/10 Skript Experimentalphysik Prof. Dr. Oliver Benson I. Einleitung 1. Das physikalische Weltbild Die Physik beschäftigt sich mit den Grundbausteinen der wahrnehmbaren

Mehr

1. ÄP Physik für Mediziner

1. ÄP Physik für Mediziner Schwarze Reihe 1. ÄP Physik für Mediziner Original Prüfungsfragen mit Kommentar Bearbeitet von Andreas Jerrentrup 20. Auflage 2011. Buch. 238 S. Kartoniert ISBN 978 3 13 114940 4 Format (B x L): 17 x 24

Mehr

1.Klasse ANGEWANDTE MATHEMATIK. Ing. Thomas Gratzl (EIT, EBP, EIP, EBP, EET) Lehrmittel: Rechenbuch Elektrotechnik Europaverlag

1.Klasse ANGEWANDTE MATHEMATIK. Ing. Thomas Gratzl (EIT, EBP, EIP, EBP, EET) Lehrmittel: Rechenbuch Elektrotechnik Europaverlag ANGEWANDTE MATHEMATIK (EIT, EBP, EIP, EBP, EET) Ing. Thomas Gratzl Lehrmittel: Rechenbuch Elektrotechnik Europaverlag Methodische Lösungswege zum Rechenbuch Elektrotechnik. GT - - Lehrstoffübersicht: Grundlagen

Mehr