( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern"

Transkript

1 GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik: Kräfte und ihre Anwendungen, Arbeit Energie und mech. Leistung 15 L. Energielehre: Energieformen und konkrete Umwandlungsbeispiele 5 L Wärmelehre: Temperatur und Wärme, Wärme als Energie, Aggregatszustände 10 L Elektrizitätslehre: elektrische Ladung, Spannung und Stromstärke, der Stromkreis 10 L Geltende Ziffern Zahl Geltende Ziffern Faustregel Runden Eine Aufgabe wird exakt gerechnet und am Schluss auf drei geltende Ziffern gerundet. Physikalische Grössen Grösse = Zahlenwert Einheit Bsp: Ortsfaktor g = 9.81 N/kg Symbol: g Zahlenwert: 9.81 Einheit: N kg Einheiten umrechnen 1 g cm = 1 10 kg kg 1 10 m m = kg m = kg m ( ) = 1 10 Zehnerpotenzen, SI Vorsätze Faktor Vorsatz Zeichen Faktor Vorsatz Zeichen Atto a 10 Kilo k Femto f 10 6 Mega M 10-1 Pico p 10 9 Giga G 10-9 Nano n 10 1 Tera T 10-6 Mikro µ Peta P 10 - Milli m Exa E 10 - Zenti c 10-1 Dezi d

2 Wärmelehre Temperatur = ϑ + 7K Die absolute Temperatur T wird in Kelvin angegeben Das Symbol ϑ steht für Temperaturen in Grad Celsius ( C) Beispiel flüssiger Stickstoff: -196 C = 77 K Temperaturdifferenzen in C und Kelvin sind gleich: ΔT = Δϑ Beispiel: Gefrorenes auftauen: ΔT = ϑ Ende ϑanfang = C ( 18 C) = + 40 K T Erwärmung und Ausdehnung Längenänderung feste Stoffe l = l 0 + Δl l 0 Anfangslänge m Δl = l0 α ΔT l Gesamtlänge m Δl Längenänderung m α linearer Ausdehnungskoeffizient 1/ K = K 1 Volumenänderung Flüssigkeiten V = V 0 + ΔV V 0 Anfangsvolumen m ΔV = V0 γ ΔT l Gesamtvolumen m ΔV Volumenänderung m γ Volumen Ausdehnungskoeffizient 1/ K = K 1 Ideale Gase Die Gasgleichung p1 V1 p V p = 1, p Druck absolut bar T T V 1,V Volumen m 1 T 1, T Temperatur absolut K Absoluter Druck Der Luftdruck Normbedingungen p = p + p absolut relativ Luft p Luft 1.0 bar p N = Pa = 1.01 bar Normdruck T N = 0 C = 7K Normtemperatur Druck p = F A p Druck Pa (Pascal) 1 N / m = 1 Pa F G Kraft N (Newton) A Fläche m Einheiten: 1 bar = 10 5 Pa = 100 kpa Kraft und Fläche können als gerichtete Grössen betrachtet werden. Druck hat keine Richtung. Der Luftdruck beträgt knapp 1 bar.

3 BMS Physik GESO Formelsammlung Wärme spezifische Wärmekapazität Q Wärmemenge J (Joule) Q = m c ΔT m Masse kg c spezifische Wärmekapazität J kg K ΔT Temperaturänderung K 1kJ = 1 10 Eis:.1 kj/(kg Wasser: 4.18 kj/(kg K) J Zustandsänderung: spezifische Schmelz- und Siedewärme Q Q = m L F L F Schmelzwärme J /kg H O: L F =.8 kj/kg = m L V L V Siedewärme J /kg H O: L V = 56 kj/kg Beispiel Wasser H O Diagramm für m = 1 kg Schmelztemperatur: 0 C Siedetemperatur: 100 C Temp [ C] Aggregatszustand Wasser Q [kj] Wärmeleistung P = ΔQ Δt Umrechnung: P (Wärme) Leistung W (Watt) 1kW = 1 10 ΔQ zugeführte Wärmemenge J (Joule) 1 J = 1W s Δ t benötigte Zeit s 1kWh = 1000 W 600 s = Ws =.6 MJ W FoSa_Geso.docx

4 Kräfte Die Gewichtskraft F G = m g F G Gewichtskraft N, Newton m Masse kg g Ortsfaktor N/kg Erde: Die Gewichtskraft einer Masse ist ortsabhängig. Die Gewichtskraft zeigt zum Erdmittelpunkt. An einer Masse von 100 g wirkt eine Gewichtskraft von N. Die folgenden Einheiten sind gleich: 1 N / kg = 1m/s Die Normalkraft Die Normalkraft stützt und wirkt senkrecht zur Unterlage. Auf waagrechter Unterlage sind die Normal- und die Gewichtskraft gleich gross. Sie heben sich zu null auf. Das Trägheitsgesetz 1. Newton sches Gesetz g = 9.81 N / kg Wenn keine Gesamtkraft auf einen Körper einwirkt, so ändert sich seine Geschwindigkeit nicht. Alle Körper sind träge, d.h. ihre Geschwindigkeit Betrag und Richtung ändert sich nur, wenn ein anderer Körper einwirkt. Das Bewegungsgesetz. Newton sches Gesetz Die wirkende Gesamtkraft auf einen Körper ist das Produkt aus Masse mal Beschleunigung. F gesamt = m a F gesamt Gesamtkraft N, Newton m Masse kg a Beschleunigung m/s Die Gesamtkraft ist die Summe aller wirkenden Kräfte. Vorgehen: Alle wirkenden Kräfte einzeichnen, zur Gesamtkraft summieren. Die Beschleunigung a und die Gesamtkraft F gesamt haben immer dieselbe Richtung. Normalkraft Gewichtskraft Die Beschleunigung a = Δv Δt a Beschleunigung m/s Δv Änderung der Geschwindigkeit m/s Δt Zeitdifferenz s Geschwindigkeiten umrechnen: 1m/s =.6 km / h bzw. 1km / h = 1.6 m/s Aktion und Reaktion. Newton sches Gesetz Eine Kraft (Aktion) tritt nie allein auf, sie hat immer eine Gegenkraft (Reaktion), die an einem anderen Körper angreift. Kraft und Gegenkraft sind entgegengesetzt gleich gross. Unabhängig davon wer am Seil zieht gilt immer: Die beiden Kräfte sind entgegengesetzt und gleich gross. 4

5 BMS Physik GESO Formelsammlung Arbeit, Energie und Leistung Die mechanische Arbeit W = F s W Arbeit (work) J, Joule F Kraft (parallel zur Wegstrecke) N, Newton s Wegstrecke m Einheiten: 1 J = 1 Nm = 1 Ws Eine Wattsekunde ist das Produkt Watt mal Sekunde Mit Zufuhr von Arbeit oder Wärme kann die Energie eines Systems erhöht werden. Energie und Energieerhaltung Energie ist gespeicherte Arbeitsfähigkeit eines Systems. Energie kann weder erzeugt noch vernichtet werden. In einem abgeschlossenen System bleibt die Summe der Energie erhalten. Die Einheiten von Arbeit und Energie sind gleich: Joule Die mechanische Leistung P = W Δt = ΔE Δt 1 J = 1 Nm = 1 Ws P Leistung (power) W, Watt W mechanische Arbeit J, Joule ΔE Energiedifferenz J, Joule Δt benötigte Zeit s Energiemenge mit der Leistung berechnen: ΔE = P Δt 1 kwh = 1000 W 600 s =.6 Energie-Einheiten: 1J = 1 Ws und MJ Leistungs-Einheiten: Wirkungsgrad 1 W = 1 J s alt, aber immer noch anzutreffen 1 PS 76 W Wirkungsgrad wird als Nutzen pro Aufwand berechnet, Symbol η eta Nutzen Output η = = dimensionslos, übliche Angabe in % Aufwand Input Energieerhaltung In einem abgeschlossenen System bleibt die Summe der Energie erhalten. Darstellung der Energieerhaltung mit verschiedenen Energieformen in einer Tabelle: Die Summe jeder Spalte ist gleich gross. Es werden mindestens zwei Zustände verglichen Die Zeit kommt nicht vor. Energieform Zustand 1 Zustand Potentielle Energie Kinetische Energie m m v m 1 v g h 1 m g h Summe, Total Summe 1 = Summe FoSa_Geso.docx 5

6 Elektrizität elektrische Ladung Q Symbol Q, Einheit C (Coulomb), oft auch Mikro-Coulomb: 1µC = C Ein Elektron hat eine negative Elementarladung von e = C elektrische Spannung U Eine Spannungsquelle hat einen Pluspol (Elektronenmangel) und einen Minuspol (Elektronenüberschuss) Eine Spannungsquelle liefert (speichert) elektrische Energie. Symbol U, Einheit V (Volt) elektrische Stromstärke I I = Q Δt Einheiten: 1C/s = 1 A Die elektrische Stromstärke wird als Ladung pro Zeit berechnet. Die technische Stromrichtung zeigt vom Plus- zum Minuspol. Negativ geladene Elektronen fliessen vom Minus- zum Pluspol. I Stromstärke A, Ampere Q Ladungsmenge C, Coulomb Δt benötigte Zeit s Transportierte Ladungsmenge Q = I Δt, Einheit 1As = 1 C oder : 1mAh = 1 10 A 600s =.6 C Die elektrische Leistung und Energie P = U I E el. = U I Δt Einheiten 1 V A = 1 W P Leistung (power) W, Watt U elektrische Spannung V, Volt I elektrische Stromstärke A, Ampere E el. elektrische Energie J, Joule Δt Zeit s Energie-Einheiten: 1 VAs = 1 Ws = 1 J und 1 kwh = 1000 W 600 s =.6 MJ 6

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1.

Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1. Physik Inhaltsverzeichnis 1. Mechanik...1 1.1 Mechanische Grössen...1 1.1.1 Kraft (F) und Masse (m)...1 1.1.2 Die Masse m...1 1.1.3 Die Kraft F...1 1.1.4 Die Geschwindigkeit (v) und die Beschleunigung

Mehr

Name, Vorname:... Klasse:...

Name, Vorname:... Klasse:... Berufsmaturitätsschule BMS Physik Berufsmatur 2013 Name, Vorname:... Klasse:... Zeit: 120 Minuten Hilfsmittel: Hinweise: Taschenrechner, Formelsammlung nach eigener Wahl. Die Formelsammlung darf mit persönlichen

Mehr

Maßeinheiten der Wärmelehre

Maßeinheiten der Wärmelehre Maßeinheiten der Wärmelehre Temperatur (thermodynamisch) Benennung der Einheit: Einheitenzeichen: T für Temp.-punkte, ΔT für Temp.-differenzen Kelvin K 1 K ist der 273,16te Teil der (thermodynamischen)

Mehr

SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE

SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE SI-EINHEITEN UND IHRE DEZIMALEN VIELFACHEN UND TEILE (Quelle: EU-Richtlinie 80/181/EWG) 1. SI-Basiseinheiten Größe Name der Einheit Einheitenzeichen Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrische

Mehr

Einheiten. 2. Richtlinie 80/181/EWG 1

Einheiten. 2. Richtlinie 80/181/EWG 1 Seite 1/5 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Richtlinie 80/181/EWG 1 3. Quellen 5 1. Allgemeines Die Ingenieurwissenschaften sind eine Untermenge der Naturwissenschaften. Die Tragwerksplanung lässt

Mehr

Grundwissen Physik 8. Klasse Schuljahr 2011/12

Grundwissen Physik 8. Klasse Schuljahr 2011/12 1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Biophysik für Pharmazeuten I.

Biophysik für Pharmazeuten I. Biophysik für Pharmazeuten I. Prof. László Smeller laszlo.smeller@eok.sote.hu Dr. Attila Bérces attila.berces@eok.sote.hu Dr. Pál Gróf pal.grof@eok.sote.hu 1 Thematik 13 Vorlesungen: Woche Thema Vortragende

Mehr

Grundwissen Physik 8. Klasse II

Grundwissen Physik 8. Klasse II Grundwissen Physik 8. Klasse II Größen in der Physik Physikalische Größen sind alle messbare Eigenschaften eines Körpers. Dabei gibt es Grundgrößen, deren Einheit der Mensch willkürlich, also beliebig

Mehr

Grundwissen. Physik. Jahrgangsstufe 7

Grundwissen. Physik. Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #10 30/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Thermisches Gleichgewicht Soll die Temperatur geändert werden, so muss dem System Wärme (kinetische

Mehr

Kurzbeschreibung des Faches Elektrotechnik

Kurzbeschreibung des Faches Elektrotechnik Kurzbeschreibung des Faches Elektrotechnik Elektrotechnik ist die Anwendung der Energieform Elektrizität. Teilgebiete der Elektrotechnik: Klassische Energietechnik/Starkstromtechnik: Erzeugung Verteilung

Mehr

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Grundlagen der Elektrotechnik I 17 11.01.01 Einführung eines Einheitensystems.1 Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Physikalische Größen: Meßbare,

Mehr

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de

Mehr

Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik

Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik Fachlehrer: Schmidt Folgende Themen sind vorgesehen: Mechanik - Geradlinig gleichförmige Bewegung, Geschwindigkeit - Masse, Volumen, Dichte

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

1. Elektrischer Stromkreis

1. Elektrischer Stromkreis 1. Elektrischer Stromkreis Strom kann nur in einem geschlossenen Kreis fließen. Kurzschluss: Der Strom kann direkt vom einen Pol der Energiequelle (Batterie) zum anderen Pol fließen. Gefahr: Die Stromstärke

Mehr

Höhenenergie: Bewegungsenergie: Spannenergie: = ½ m v 2

Höhenenergie: Bewegungsenergie: Spannenergie: = ½ m v 2 Seite 1 von 5 Energieformen in der Mechanik Höhenenergie: Bewegungenergie: Spannenergie: E h maximal, E h maximal, Δh = m g E H = m g Δh N Ortfaktor: g = 9,81 bzw. kg m Fallbechleunigung: g = 9,81 2 maximal,

Mehr

D = F s. F A = ρ V g. ρ = m V. Q = c m T. Φ - Lern- und Übungskarten zur Physik. Federhärte - Hookesches Gesetz

D = F s. F A = ρ V g. ρ = m V. Q = c m T. Φ - Lern- und Übungskarten zur Physik. Federhärte - Hookesches Gesetz D = F s Federhärte - Hookesches Gesetz Wenn man eine Spiralfeder aufhängt und mit verschiedenen Gewichten belastet, stellt man fest, das die Längenzunahme s zum angehängten Gewicht bzw. zur Zugkraft F

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Fachrichtung Klima- und Kälteanlagenbauer

Fachrichtung Klima- und Kälteanlagenbauer Fachrichtung Klima- und Kälteanlagenbauer 1-7 Schüler Datum: 1. Titel der L.E. : 2. Fach / Klasse : Fachrechnen, 3. Ausbildungsjahr 3. Themen der Unterrichtsabschnitte : 1. Zustandsänderung 2. Schmelzen

Mehr

Ausdehnung und Temperatur

Ausdehnung und Temperatur Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Physik 4 (Wärmelehre) Dozent: - Brückenkurs Mathematik / Physik 2016 Modul: Physik

Mehr

1.Klasse ANGEWANDTE MATHEMATIK. Ing. Thomas Gratzl (EIT, EBP, EIP, EBP, EET) Lehrmittel: Rechenbuch Elektrotechnik Europaverlag

1.Klasse ANGEWANDTE MATHEMATIK. Ing. Thomas Gratzl (EIT, EBP, EIP, EBP, EET) Lehrmittel: Rechenbuch Elektrotechnik Europaverlag ANGEWANDTE MATHEMATIK (EIT, EBP, EIP, EBP, EET) Ing. Thomas Gratzl Lehrmittel: Rechenbuch Elektrotechnik Europaverlag Methodische Lösungswege zum Rechenbuch Elektrotechnik. GT - - Lehrstoffübersicht: Grundlagen

Mehr

Dom-Gymnasium Freising Grundwissen Natur und Technik Jahrgangsstufe 7. 1 Grundwissen Optik

Dom-Gymnasium Freising Grundwissen Natur und Technik Jahrgangsstufe 7. 1 Grundwissen Optik 1.1 Geradlinige Ausbreitung des Lichts Licht breitet sich geradlinig aus. 1 Grundwissen Optik Sein Weg kann durch Lichtstrahlen veranschaulicht werden. Lichtstrahlen sind ein Modell für die Ausbreitung

Mehr

Grundwissen Physik 9. Klasse II

Grundwissen Physik 9. Klasse II Grundwissen Physik 9. Klasse II 1. Wärmelehre Die innere Energie eines Körpers enthält die Summe der kinetischen Energien und der potentiellen Energien aller seiner Teilchen, sie ist eine Speichergröße.

Mehr

Strom kann nur in einem geschlossenen Kreis fließen.

Strom kann nur in einem geschlossenen Kreis fließen. 1. Elektrischer Stromkreis Strom kann nur in einem geschlossenen Kreis fließen. Kurzschluss: Der Strom kann direkt vom einen Pol der Energiequelle (Batterie) zum anderen Pol fließen. Gefahr: Die Stromstärke

Mehr

Orientierungshilfen für die Zugangsprüfung Physik

Orientierungshilfen für die Zugangsprüfung Physik Orientierungshilfen für die Zugangsprüfung Physik Anliegen der Prüfung Die Zugangsprüfung dient dem Herausstellen der Fähigkeiten des Prüflings, physikalische Zusammenhänge zu erkennen. Das physikalische

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Entropie und Temperatur. Entropie von Anfang an

Entropie und Temperatur. Entropie von Anfang an Entropie und Temperatur Entropie von Anfang an Wärmelehre: physikalische Größen Temperatur (zunächst in C - bekannt) Um zu beschreiben, wie viel Wärme ein Körper enthält, braucht man eine zweite Größe:

Mehr

Teil I - Pflichtaufgaben Lösung Aufgabe 1 Elektrizitätslehre. Lösung Aufgabe 2 Mechanische Schwingungen

Teil I - Pflichtaufgaben Lösung Aufgabe 1 Elektrizitätslehre. Lösung Aufgabe 2 Mechanische Schwingungen Teil I - Pflichtaufgaben Lösung Aufgabe 1 Elektrizitätslehre 1.1 Experiment 1: Es leuchtet nur Lampe 1 Experiment 2: Es leuchten Lampen 1 und 2 1.2 Experiment 1: Gleichspannung Bei Gleichspannung kann

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

Elektrotechnik Formelsammlung v1.2

Elektrotechnik Formelsammlung v1.2 Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3

Mehr

Übungsaufgaben Energie und Energieerhaltung

Übungsaufgaben Energie und Energieerhaltung Übungsaufgaben Energie und Energieerhaltung 1. Ein Körper wird mit der Kraft 230 N eine Strecke von 120 Metern geschoben. a) Berechne die dafür notwendige Arbeit. Es handelt sich um eine waagerechte Strecke

Mehr

Maßeinheiten der Mechanik

Maßeinheiten der Mechanik Maßeinheiten der Mechanik Einheiten der Masse m Kilogramm kg 1 kg ist die Masse des internationalen Kilogrammprototyps. (Gültig seit 1901) Statt Megagramm wird die allgemein gültige SI-fremde Einheit Tonne

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Immer kleiner als 1 η = Pab Pzu

Immer kleiner als 1 η = Pab Pzu 1.1 Energie 1.2 Technische Systeme 1.1 Energie 1.2 Technische Systeme Energieformen Elektrische Energie Mechanische Energie Chemische Energie Thermische Energie Strahlende Energie Energieeinheiten 1 J

Mehr

Wie erzeugt man Energie? Physik kompakt für Anfänger in 30 min Priv. Doz. Dr. W. Doster, Physik TUM

Wie erzeugt man Energie? Physik kompakt für Anfänger in 30 min Priv. Doz. Dr. W. Doster, Physik TUM Wie erzeugt man Energie? Physik kompakt für Anfänger in 30 min Priv. Doz. Dr. W. Doster, Physik TUM Garchinger Trichter Energie kann nicht erzeugt werden, man kann Energie nur übertragen. Sie kann fließen

Mehr

Elektrische Ladung und elektrischer Strom

Elektrische Ladung und elektrischer Strom Elektrische Ladung und elektrischer Strom Es gibt positive und negative elektrische Ladungen. Elektron Atomhülle Atomkern Der Aufbau eines Atoms Alle Körper sind aus Atomen aufgebaut. Ein Atom besteht

Mehr

47 cm. Maßzahl. Einheit. G Giga 1 000 000 000 = 10 9 9. M Mega 1 000 000 = 10 6 6. k Kilo 1 000 = 10 3 3. c centi. m milli. n nano.

47 cm. Maßzahl. Einheit. G Giga 1 000 000 000 = 10 9 9. M Mega 1 000 000 = 10 6 6. k Kilo 1 000 = 10 3 3. c centi. m milli. n nano. Einheiten umrechnen Grundbegriffe Worum geht s? Die so genannten Grundeinheiten Meter, Kilogramm, Sekunde, Ampère,... wurden so definiert, dass sie zum Messen alltäglicher Dinge geeignet sind. In der Wissenschaft

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

Spezifische Wärme fester Körper

Spezifische Wärme fester Körper 1 Spezifische ärme fester Körper Die spezifische, sowie die molare ärme von Kupfer und Aluminium sollen bestimmt werden. Anhand der molaren ärme von Kupfer bei der Temperatur von flüssigem Stickstoff soll

Mehr

Typische Fragen. Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische Energien 2. Gasgesetze 3. Innere Energie 4. Aggregatszustandsänderungen

Typische Fragen. Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische Energien 2. Gasgesetze 3. Innere Energie 4. Aggregatszustandsänderungen 28.05.2004 - Seite 1 von 7 Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische nergien 2. Gasgesetze 3. Innere nergie 4. Aggregatszustandsänderungen Typische Fragen F1. Mechanische nergien 1. Welche

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Grundlagen Physik für 9 II/III

Grundlagen Physik für 9 II/III Grundlagen Physik für 9 II/III Wärmelehre Innere Energie Die innere Energie eines Körpers kann als Summe der kinetischen und der poten- ziellen Energien aller seiner Teilchen betrachtet werden. Sie kann

Mehr

Beispielfragen und ein alter Test zur Zusatzprüfung Physik 1

Beispielfragen und ein alter Test zur Zusatzprüfung Physik 1 Beispielfragen und ein alter Test zur Zusatzprüfung Physik 1 FH Vorarlberg Klaus Rheinberger Die folgenden Seiten enthalten Beispiele, die Ihnen angeben, Fragen welchen Typs der Physiktest bei der Aufnahmeprüfung

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Solare Energieversorgung - Photovoltaik. Information zur Solarzelle Neutraler Gegenstand Positive Ladung Negative Ladung

Solare Energieversorgung - Photovoltaik. Information zur Solarzelle Neutraler Gegenstand Positive Ladung Negative Ladung 1 Solare Energieversorgung Photovoltaik Information zur Solarzelle STM BLK Hart gearbeitet Grundbegriffe zur Elektrizität Alle Gegenstände bestehen aus positiver und negativer Elektrizität. Überwiegt die

Mehr

Grundwissen Physik 9. Klasse I

Grundwissen Physik 9. Klasse I Grundwissen Physik 9. Klasse I. Wärmelehre Die innere Energie eines Körpers enthält die Summe der kinetischen Energien und der potentiellen Energien aller seiner Teilchen, sie ist eine Speichergröße. Sie

Mehr

Freiwillige Feuerwehr Rosenheim. Wärmelehre. Hans Meyrl. Stadt Rosenheim Sachgebiet III/323 Brand- und Katastrophenschutz, ILS

Freiwillige Feuerwehr Rosenheim. Wärmelehre. Hans Meyrl. Stadt Rosenheim Sachgebiet III/323 Brand- und Katastrophenschutz, ILS Freiwillige Feuerwehr Rosenheim Wärmelehre Hans Meyrl Stadt Rosenheim Sachgebiet III/323 Brand- und Katastrophenschutz, ILS Wärmelehre physikalische Grundlagen Inhalt Begriffe, Größen, Einheiten Physikalische

Mehr

Versuch HP 300. Modul II: KWK Wirkungsgradmessung BHKW Teststände. Dipl. Ing. (FH) Peter Pioch

Versuch HP 300. Modul II: KWK Wirkungsgradmessung BHKW Teststände. Dipl. Ing. (FH) Peter Pioch Modul II: KWK Wirkungsgradmessung BHKW Teststände Dipl. Ing. (FH) Peter Pioch 5.3.05 Weiterbildungszentrum für innovative Energietechnologien der Handwerkskammer Ulm (WBZU) ersuch HP 300 Quelle: WBZU Energieumwandlung

Mehr

Experimentalphysik EP, WS 2013/14

Experimentalphysik EP, WS 2013/14 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

2.2 Spezifische und latente Wärmen

2.2 Spezifische und latente Wärmen 1 Einleitung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 2 Wärmelehre 2.2 Spezifische und latente Wärmen Die spezifische Wärme von Wasser gibt an, wieviel Energie man zu 1 kg Wasser zuführen

Mehr

Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz:

Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz: Schnellkurs Ohmsches Gesetz eihen- und Parallelschaltung von Widerständen Jeder kennt aus der Schule das Ohmsche Gesetz: = Aber was bedeutet es? Strom (el. Stromstärke) Spannung Widerstand Vorbemerkung:

Mehr

Grundlagen Physik für 9 I

Grundlagen Physik für 9 I Grundlagen Physik für 9 I Wärmelehre Innere Energie Die innere Energie eines Körpers kann als Summe der kinetischen und der poten- ziellen Energien aller seiner Teilchen betrachtet werden. Sie kann durch

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik Physik I im Studiengang Elektrotechnik - Einführung in die Physik - Prof. Dr. Ulrich Hahn WS 2015/2016 Physik eine Naturwissenschaft Natur leblos lebendig Physik Chemie anorganisch Chemie organisch Biochemie

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Prüfungsvorbereitung Physik: Elektrischer Strom

Prüfungsvorbereitung Physik: Elektrischer Strom Prüfungsvorbereitung Physik: Elektrischer Strom Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen Sie auswendig in

Mehr

Rechnen in der Physik Selbstlernmaterial

Rechnen in der Physik Selbstlernmaterial Rechnen in der Physik Selbstlernmaterial 1 Physikalische Größen Wie lang ist der Tisch? Die Frage kann man auf verschiedene Weisen beantworten: Der Tisch ist halb so lang wie das Bett. Der Tisch ist so

Mehr

Elektro výuková prezentace. Střední průmyslová škola Ostrov

Elektro výuková prezentace. Střední průmyslová škola Ostrov Elektro výuková prezentace Střední průmyslová škola Ostrov 1. r Strom 2. r Widderstand 3. e Ladung 4. e Spannung 5. e Stromstärke 6. e Stromrichtung 7. s Feld 8. e Stromquelle 9. s Gesetz náboj proud pole

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben Physiker

Mehr

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik Kompressionsfaktor z,00 1,75 1,50 1,5 1,00 0,75 0,50 0,5 H CH 4 CO 0 0 0 40 60 80 Druck in MPa ideales Gas Nach dem idealen Gasgesetz gilt: pv nrt = pv m RT = 1 (z) Nennenswerte Abweichungen vom idealen

Mehr

GW 7 Physikalische Grundlagen

GW 7 Physikalische Grundlagen eite 1 von 6 GW 7 Physikalische Grundlagen RMG Ein physikalisches Experiment ist eine Frage an die atur. Es wird unter festgelegten Voraussetzungen durchgeführt und muss reproduzierbar sein. Die Ergebnisse

Mehr

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung Kern-Hülle-Modell Ein Atom ist in der Regel elektrisch neutral: das heißt, es besitzt gleich viele Elektronen in der Hülle wie positive Ladungen im Kern Modellvorstellung zum elektrischen Strom - Strom

Mehr

M316 Spannung und Strom messen und interpretieren

M316 Spannung und Strom messen und interpretieren M316 Spannung und Strom messen und interpretieren 1 Einstieg... 2 1.1 Hardwarekomponenten eines PCs... 2 1.2 Elektrische Spannung (U in Volt)... 2 1.3 Elektrische Stromstärke (I in Ampere)... 3 1.4 Elektrischer

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 01: Mathematische Grundlagen und Einheiten. Amateurfunkgruppe der TU Berlin.

AFu-Kurs nach DJ4UF. Technik Klasse E 01: Mathematische Grundlagen und Einheiten. Amateurfunkgruppe der TU Berlin. Technik Klasse E 01: Mathematische Grundlagen und Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 22.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Mehr

13.1 NORMEN, RICHTLINIEN UND MASSEINHEITEN

13.1 NORMEN, RICHTLINIEN UND MASSEINHEITEN .6 EINHEITEN UND UMRECHNUNGSFAKTOREN Grundeinheiten des SI-Systems Länge Meter m Masse Kilogramm kg Zeit Sekunde s Elektrischer Strom Ampere A Temperatur Kelvin K Lichtstärke Candela cd Umrechnungsfaktoren

Mehr

vom 23. November 1994 (Stand am 1. Januar 2013)

vom 23. November 1994 (Stand am 1. Januar 2013) Einheitenverordnung 1 941.202 vom 23. November 1994 (Stand am 1. Januar 2013) Der Schweizerische Bundesrat, gestützt auf die Artikel 2 Absatz 2 und 3 Absatz 2 des Messgesetzes vom 17. Juni 2011 2, 3 verordnet:

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

Bewertung: Jede Aufgabe wird mit 4 Punkten bewertet.

Bewertung: Jede Aufgabe wird mit 4 Punkten bewertet. gibb / BMS Physik Berufsmatur 2007 Seite 1 Name, Vorname: Klasse: Zeit: 120 Minuten Hilfsmittel: Taschenrechner und Formelsammlung nach eigener Wahl. Die Formelsammlung darf mit persönlichen Notizen ergänzt

Mehr

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit Wärme Ob etwas warm oder kalt ist können wir fühlen. Wenn etwas wärmer ist, so hat es eine höhere Temperatur. Temperaturen können wir im Bereich von etwa 15 Grad Celsius bis etwa 45 Grad Celsius recht

Mehr

Schweredruck von Flüssigkeiten

Schweredruck von Flüssigkeiten Schweredruck von Flüssigkeiten Flüssigkeiten sind nahezu inkompressibel. Kompressibilität κ: Typische Werte: Wasser: 4.6 10-5 1/bar @ 0ºC Quecksilber: 4 10-6 1/bar @ 0ºC Pentan: 4. 10-6 1/bar @ 0ºC Dichte

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 1. Klausur in K1 am 19. 10. 010 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben:

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Thermodynamik (Wärmelehre) I Die Temperatur

Thermodynamik (Wärmelehre) I Die Temperatur Physik A VL24 (04.12.2012) hermodynamik (Wärmelehre) I Die emperatur emperatur thermische Ausdehnung Festkörper und Flüssigkeiten Gase Das ideale Gas 1 Die emperatur Der Wärmezustand ist nicht mit bisherigen

Mehr

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900 Was ist Physik? Das Studium der uns umgebenden Welt vom Universum bis zum Atomkern, bzw. vom Urknall bis weit in die Zukunft, mit Hilfe von wenigen Grundprinzipien. Diese gesetzmäßigen Grundprinzipien

Mehr

3. Veranstaltung. 14. November 2014

3. Veranstaltung. 14. November 2014 3. Veranstaltung 14. November 2014 Heute Nachtrag Wiederholung Experimente mit der Leiterschaukel Elektroauto Klimaschutzüberraschung zum Fortfahren auf de Seite klicken 450 Scenario: +2 C bis 2030 In

Mehr

Physikalische Größen und Einheiten

Physikalische Größen und Einheiten Physikalische Größen und Einheiten Physikalische Größen und deren Messung Der Begriff physikalische Größe ist in DIN 1313 definiert. Eine physikalische Größe kennzeichnet messbare Eigenschaften und Zustände

Mehr

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand? 1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die

Mehr

Eine Erhaltungsgröße ist eine physikalische Größe, die.. s...

Eine Erhaltungsgröße ist eine physikalische Größe, die.. s... Eine Erhaltungsgröße ist eine physikalische Größe, die.... Die drei mechanischen Erhaltungsgrößen sind:.. Ein abgeschlossenes System ist ein Bereich, in dem.. Ein Beispiel für ein abgeschlossenes System

Mehr

Kristallgitter von Metallen

Kristallgitter von Metallen R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 I. Elektronik 10. Wiederholung wichtiger Grundsachverhalte aus der Elektrik 10.1 Leiter und Nichtleiter. 10.1.1 Metallische Leiter und Nichtleiter.

Mehr

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg Mensch und Energie Kurs: CWK/ A 41/ E-Phase /PH 2 Datum: 19.03.2012 im 2.Block Dozent: Herr Winkowski Protokollantin: Saviana Theiss Themen der

Mehr

Lehrbrief Mathematische und naturwissenschaftliche Grundlagen. Lehrbrief. Mathematische und naturwissenschaftliche. BSA-Akademie v4.

Lehrbrief Mathematische und naturwissenschaftliche Grundlagen. Lehrbrief. Mathematische und naturwissenschaftliche. BSA-Akademie v4. Lehrbrief Mathematische und naturwissenschaftliche Grundlagen BSA-Akademie v4.0 Inhaltsverzeichnis NOMENKLATUR... 9 1 GRUNDKENNTNISSE... 10 1.1 Zahlensysteme und deren Aufbau... 10 1.2 Einheitensysteme

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Begriffe zur Elektrik und Elektrochemie

Begriffe zur Elektrik und Elektrochemie Staatsinstitut für Schulqualität und Bildungsforschung Begriffe zur Elektrik und Elektrochemie Akkumulator Atom Atomkern Batterie Ein Akkumulator ist eine Energiequelle, die wie eine Batterie Gleichstrom

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

Lehrplan Physik Sekundarstufe I Mataré-Gymnasium

Lehrplan Physik Sekundarstufe I Mataré-Gymnasium Lehrplan Physik G8 Sekundarstufe I Mataré-Gymnasium ab Schuljahr 2008/2009 er und Fachliche Kontexte Klasse 6 Elektrizität - Sicherer Umgang mit Elektrizität, - Stromkreise, - Leiter und Isolatoren, -

Mehr