Mehmet Maraz. MechanikNachhilfe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mehmet Maraz. MechanikNachhilfe"

Transkript

1 Mehmet Maraz MechanikNachhilfe 1. Auflage 015

2 Inhaltsverzeichnis 1 Statik Lagerungen und Lagerreaktionen Kräftegleichgewichte Drehmoment D-Systeme Streckenlast Schwerpunkt Haftreibung Schnittgrößen Berechnung von Schnittgrößen durch Intergration Ebene achwerke Elastostatik 67.1 Dehnung lächenträgheitsmoment Biegung Normalspannung Torsion Kinematik Satz von Euler Momentanpol Kinetik Massenträgheitsmoment Impuls- und Drehimpulssatz Energieerhaltungssatz

3 6 1 Statik 1..1 Drehmoment Kräfte können neben geradlinige Bewegungen auch Drehbewegungen verursachen. Diese Drehwirkung, auch Drehmoment bezeichnet, bezieht sich immer auf einen bestimmten Punkt (in D) bzw. eine Achse (in 3D). Als Beispiel hierzu schauen wir uns das estziehen einer Schrauben mithilfe eines Schraubenschlüssels an. Um die in der Abb. gezeigte Schraube festzuziehen wird am Ende des Schraubenschlüssels eine Kraft aufgewendet. Durch diese Kraft wird die Schraube rechts herum gedreht. Die Drehung findet genau um den Mittelpunkt der Schraube statt. Dies ist der sogenannte Momentenbezugspunkt. Also der Punkt, um den die Schraube gedreht wird. Das durch die Kraft auf die Schraube übertragene Moment ist definiert als Moment M = l M l Moment Kraft Hebelarm Der in der ormel angegebene Hebelarm ist in unserem oben gezeigten Beispiel der Abstand zwischen dem Kraftangriffspunkt und dem Mittelpunkt der Schraube. Das Moment einer Kraft bezüglich eines bestimmten Punktes (Momentenbezugspunkt) kann man wie folgt bestimmen. Vorgehensweise Momente 1. Momentenbezugspunkt wählen.. Wirkungslinie der Kraft einzeichnen. 3. Den kürzesten Abstand zwischen Momentenbezugspunkt und Wirkungslinie der Kraft bestimmen. Dies ist der Hebelarm. Der kürzeste Abstand zwischen einem Punkt und einer Linie ist immer der senkrechte Abstand. 4. Drehsinn bestimmen (siehe Rechte-Hand-Regel unten).

4 8 1 Statik z y x Um den Drehsinn bezüglich einer Achse zu erkennen, muss man in einem nächsten Schritt mit der rechten Hand nun die gewünschte Achse, bspw.z-achse umgreifen, wobei der Daumen in die positive z-richtung zeigen muss. Nun zeigen die inger die positive Drehrichtung bezüglich der gewünschten Achse. z y ür die Bestimmung des Drehsinns für Momente um die x-achse muss dementsprechend analog die rechte Hand die x-achse mit dem Daumen in die positive Richtung umfassen. Die inger zeigen auch hier wieder die positive Drehrichtung an. x

5 10 1 Statik Aufgabe 1..1 Ein Balken wird wie dargestellt durch eine Einzelkraft belastet. Man ermittle alle Lagerreaktionen. a a Gegeben a, Vorgehensweise Kräftegleichgewichte 1. Koordinatensystem festlegen.. Körper freischneiden (reikörperbild). 3. Kräfte einzeichnen. 4. Gleichgewichtsbedingungen aufstellen ( Kräftesummen, 1 Momentensumme). Den Momentenbezugspunkt so wählen, dass möglichst viele unbekannte Kräfte wegfallen. 5. Nach Unbekannten auflösen.

6 1. Kräftegleichgewichte 11 Lösung 1..1 Als erstes wird das Koordinatensystem festgelegt. Wir verwenden das x, y-koordinatensystem. Im darauffolgenden reikörperbild wird der Balken als Ganzes freigeschnitten, da es sich dabei um ein einzelnes, zusammenhängendes Bauteil handelt. Bei der Eintragung der Lagerreaktionen (A x, A y und B) werden diese in einer beliebigen Richtung angenommen, da sie noch unbekannt sind. Die Kraft jedoch muss so eingetragen werden, wie sie auch vorgegeben ist, da es sich dabei um eine eingeprägte bzw. von außen wirkende Kraft handelt. Das bedeutet, man weiß wie diese Kraft wirkt. y x A x A y B Nun werden die Kräftesummen und die Momentensumme aufgestellt Aus der Gleichung (1.1) folgt x = 0 = A x (1.1) y = 0 = A y + B (1.) M A = 0 = ab 3a (1.3) A x = 0 Aus Gleichung (1.3) ergibt sich durch Umstellung und Auflösung nach der gesuchten Größe B ab = 3a B = 3 B in Gleichung (1.) eingesetzt und nach der gesuchten Größe A y umgeformt ergibt schließlich 0 = A y + B 0 = A y + 3 A y = 3 A y = 1 Damit sind alle Unbekannten Kräfte (Lagerreaktionen A x, A y und B) berechnet und die Aufgabe gelöst.

7 1 1 Statik Aufgabe 1.. Das System wird wie dargestellt durch eine Einzelkraft belastet. Man ermittle alle Lagerreaktionen. a a a Gegeben a,

8 1. Kräftegleichgewichte 13 Lösung 1.. Das System muss in zwei Teile zerlegt werden, da es sich hierbei um zwei Bauteile handelt, die über ein Gelenk miteinander verbunden sind. Diese werden am Gelenk getrennt. Hierbei ist zu beachten, die Gelenkkräfte einzutragen. Die Richtungen der Gelenkkräfte sind an den beiden Bauteilen jeweils entgegengesetzt. I II M B G x G x B x A G y G y B y ür den Körper I lauten die Gleichgewichtsbedingungen x = 0 = G x G x = 0 (1.4) y = 0 = A +G y (1.5) M A = 0 = a+ag y G y = 1 (1.6) Der Momentbezugspunkt wurde am linken Stabende angenommen. Aus der Gleichung (1.5) folgt mit G y = 1 A = G y = 1 = 1 = A ür den Körper I I lauten die Gleichgewichtsbedingungen y = 0 = G x + B x Da wir wissen, dass G x = 0 ist, folgt hier sofort B x = 0 Durch die beiden übrigen Summen können die verbleibenden Unbekannten aufgelöst werden y = 0 = G y + B y B y = G y = 1 = B y M B = 0 = M B + ag y M B = ag y = a 1 = M B Der Momentenbezugspunkt wurde am rechten Stabende angenommen.

9 14 1 Statik 1.. 3D-Systeme Die vorherigen Aufgaben waren zweidimensional. Nun schauen wir uns dreidimensionale Systeme an. Bei 3D-Systemen kommt eine zusätzliche Koordinatenachse hinzu. In diesem all die z-achse. Zu den bestehenden Kräftegleichgewichten ( x und y ) kommt nun eine weitere Gleichung ( z ) hinzu. Bei den Momentengleichgewichten müssen zwei weitere Gleichungen aufgestellt werden. Vorgehensweise Kräftegleichgewichte in 3D-Systemen 1. Koordinatensystem festlegen (dreidimensional).. Körper freischneiden (reikörperbild). 3. Kräfte einzeichnen. 4. Gleichgewichtsbedingungen aufstellen (3 Kräftesummen, 3 Momentensumme). Den Momentenbezugspunkt so wählen, dass möglichst viele unbekannte Kräfte wegfallen. 5. Nach Unbekannten auflösen.

10 1. Kräftegleichgewichte 15 Aufgabe 1..3 Eine in die Wand fest eingespannte rechtwinklinge Stange wird wie dargestellt belastet. Man ermittle alle Lagerreaktionen. Gegeben a, b, c, a b c Gegeben a, b, c,

11 16 1 Statik Lösung 1..3 Die rechtwinklige Stange wird von der festen Einspannung freigeschnitten. Da es sich um ein dreidimensionales System handelt, müssen nun drei Koordinatenachsen betrachtet werden. Neben den Kräften, die entlang der x- und y-koordinate auftreten, müssen nun auch die Kräfte entlang der z-koordinate berücksichtigt werden. Bei den zweidimensionalen Aufgaben wurden in festen Einspannung bisher nur zwei Kräfte und ein mögliches Moment eingetragen. Im dreidimensionalen tragen wir nun neben drei Kräften auch alle drei möglichen Momente ein, die auftreten können. Momente um eine bestimmte Achse stellen wir auf dem zweidimensionalen Blatt als Doppelpfeile dar, um die Übersicht zu behalten. Die Pfeilrichtung zeigt dabei an, ob das Moment positiv oder negativ ist. Mit der oben besprochenen Rechte-Hand-Regel ist dadurch die Drehrichtung nachvollziehbar. M Ay y A y x M Ax A x a z A z b M Az c Die Gleichgewichtsbedingungen lauten, wobei der Momentenbezugspunkt sich bei Punkt A (Einspannung) befindet x = 0 = A x A x = 0 (1.7) y = 0 = A y + A y = (1.8) z = 0 = A z A z = 0 (1.9) M A x = 0 = M Ax b M Ax = b (1.10) M A y = 0 = M Ay M Ay = 0 (1.11) M A z = 0 = M Az + a M Az = a (1.1) Der Drehsinn des Moments a, welches in der Summe für M A x auftritt, kann nach der Rechte-Hand-Regel wie folgt erklärt werden. Man umgreift mit der rechten Hand die x-achse, so dass der Daumen in die positive Koordinatenrichtung zeigt. Nun prüft man, in welcher Weise die Kraft die

12 1. Kräftegleichgewichte 17 rechte Hand um die x-achse drehen würde. Da die Kraft von uns aus gesehen weiter vorne liegt und nach oben zeigt, resultiert eine Drehbewegung, die den gekrümmten ingern der rechten Hand entgegenwirkt. Dadurch erhält man das negative Vorzeichen bzw. den Drehsinn des Moments. Postiv wäre das Moment, wenn die Drehbewegung in Richtung der gekrümmten inger zeigen würde. positive Drehrichtung bzgl. der x-achse y x z Der Hebelarm ist der senkrechte Abstand zwischen der Drehachse (in diesem all die grüne x-koordinatenachse) und der Wirkungslinie (rot gestrichelt) der Kraft. y x z Hebelarm = b Der Drehsinn des Moments a, dass in der Summe für Mz A auftritt, kann nach der Rechte-Hand-Regel wie folgt erklärt werden. Man umgreift mit der rechten Hand die z-achse, so dass der Daumen in die positive Koordinatenrichtung zeigt. Nun prüft man, in welcher Weise die Kraft die rechte Hand drehen würde. Da die Kraft von uns aus gesehen rechts von der z-achse liegt und nach oben zeigt, resultiert eine Drehbewegung, die der Richtung der gekrümmten ingern der rechten Hand entspricht. Dadurch erhält man das positive Vorzeichen bzw. den Drehsinn des Moments.

13 18 1 Statik positive Drehrichtung bzgl. der z-achse y x z Drehbewegung durch die Kraft Der Hebelarm ist der senkrechte Abstand zwischen der Drehachse (in diesem all die grüne z-koordinatenachse) und der Wirkungslinie (rot gestrichelt) der Kraft. y x Hebelarm = a z

14 1. Kräftegleichgewichte 19 Aufgabe 1..4 Eine in die Wand fest eingespannte abgewinkelte Stange wird wie dargestellt durch zwei Kräfte und ein Moment belastet. Man ermittle alle Lagerreaktionen. Gegeben a, b, c, 1,, M 1 a 1 b M 1 c

15 64 1 Statik x = 0 = A x + S 4 + y = 0 = A y + S 1 + S 3 (1.47) S 3 (1.48) Hier können noch keine Stabkräfte konkret berechnet werden, da es noch zu viele Unbekannte gibt. Wir betrachten daher den nächsten Knoten. Knoten II B S II S 1 x = 0 = B+S S = B = (1.49) y = 0 = S 1 S 1 = 0 (1.50) S 1 ist ein Nullstab. Eingesetzt in (1.48) ergibt S 3 in (1.47) ergibt Knoten III 0 = + 0 = +S 4 + S 3 S 3 = ( ) S 4 = S S 6 III S 3 S 5 x = 0 = S + S 6 y = 0 = S 5 S 3 (1.51) S 3 (1.5)

16 1.7 Ebene achwerke 65 Mit S = und S 3 = folgt für S6 in (1.51) 0 = +S 6 Mit S 3 = folgt für S 5 in (1.5) 0 = S 5 ( ) S 6 = ( ) S 5 = Knoten IV S 6 IV S 7 S 8 Mit S 6 = folgt für S 7 in (1.53) x = 0 = S 6 y = 0 = S 8 0 = Mit S 7 = folgt für S 8 in (1.54) S 8 ist ein Nullstab. 0 = S 8 S 7 (1.53) S 7 S 7 = S 7 (1.54) ( ) S 8 = 0 Knoten V V S 8 S 9 x = 0 = S 9 S 9 = 0 S 9 ist ebenfalls ein Nullstab. Somit ergeben sich folgende Ergebnisse:

17 4. Impuls- und Drehimpulssatz 131 Aufgabe 4..1 Auf einem Band (Masse vernachlässigbar), das in A befestigt ist und über eine massebehaftete Umlenkrolle (Radius r, Masse m, Massenträgheitsmoment Θ ) und eine masselose Umlenkrolle geführt wird, liegt ein Hohlzylinder (Radien r 1, r 1, Masse m 1, Massenträgheitsmoment Θ 1 ). Mit Hilfe des Gegengewichtes (Masse m 3 ) wird der Hohlzylinder angehoben. Die Massenträgheitsmomente sind bezüglich des jeweiligen Schwerpunktes anzunehmen. A ϕ y C r x S 3 D g y 1 S 1 S r 1 m, Θ m 3 B r 1 y 3 m 1, Θ 1 ϕ 1 Gegeben g, m 1, m, m 3, r 1, r, Θ 1, Θ a) Stellen Sie alle Gleichgewichtsbedingungen der massebehafteten Körper (bezüglich deren Schwerpunkte) auf. Verwenden Sie hierzu die angegebenen Koordinaten. b) Bestimmen Sie die Gleichungen für die kinematischen Bindungen (Beziehung zwischen ÿ 1, ϕ 1 und ϕ in Abhängigkeit von ÿ 3 ). c) Berechnen Sie die Massenträgheitsmomente Θ 1 und Θ bezüglich deren Schwerpunkte für den Hohlzylinder und die Umlenkrolle.

18 13 4 Kinetik Lösung 4..1 a) Körper I Zunächst erfolgt der reischnitt für Körper I. Es werden in das reikörperbild alle Kräfte eingezeichnet. Die Koordinatensysteme sind ebenfalls eingetragen worden, sind jedoch nicht zwingend erforderlich. I y 1 S 1 S m 1 g ϕ 1 Nun werden die Impulssätze und der Drallsatz für Körper I aufgestellt. Der Drallsatz wurde bezüglich des Mittelpunktes gebildet. m 1 ẍ 1 = 0 m 1 ÿ 1 = S 1 + S m 1 g Θ 1 ϕ 1 = S r 1 S 1 r 1 Körper I I Analog zu Körper I wird auch hier zunächst das reikörperbild erstellt und alle Kräfte eingetragen. II y ϕ S 3 C y S C x m g x Analog folgen hier die Impulssätze und der Drallsatz. Auch hier wurde der Drallsatz bezüglich des Mittelpunktes gebildet. m ẍ = S 3 + C x m ÿ = S m g+c y Θ ϕ = S 3 r S r

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Schnittgrößen und Vorzeichenkonvention

Schnittgrößen und Vorzeichenkonvention Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Physikalische Anwendungen Statik

Physikalische Anwendungen Statik Physikalische Anwendungen Statik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die Anwendung

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE 1) Kräfte greifen in einem Punkt an a) Zusammensetzen (Reduktion) von Kräften -

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Technische Mechanik. Skript zur Vorlesung. für den Studiengang Elektrotechnik. M. Mehrafza

Technische Mechanik. Skript zur Vorlesung. für den Studiengang Elektrotechnik. M. Mehrafza Technische Mechanik Skript zur Vorlesung für den Studiengang Elektrotechnik M. Mehrafza März. 2004 i ii Einleitung Die Aufgabe der Mechanik ist die Beschreibung und die Vorherbestimmung der Bewegung von

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Technische Mechanik 1. Einleitung 2. Statik des starren Körpers 3. Statik von Systemen starrer Körper 3.1 Gleichgewichtsbedingungen, das Erstarrungsprinzip 3.2 Lager 3.2.1 Lagerung in der Ebene 3.2.2 Allgemeiner

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur. Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur.  Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen Kräfte Vorlesung und Übungen 1. Semester BA Architektur Institut Entwerfen und Bautechnik, / KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Mechanik 1. Übungsaufgaben

Mechanik 1. Übungsaufgaben Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe

Mehr

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist.

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist. und Experimentelle Mechani Technische Mechani III aer, ee ZÜ 8. Aufgabe 8. B ω Bei einer Wirbelstrombremse wird das chwungrad Masse m, adius r durch einen Bremsmagnet B verzögert. Das hierbei wirende Bremsmoment

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik KG-Oberkurs 011 Vorlesungen: Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon 1 Allgemeines Biomechanik Biologie Mechanik Ziel der Vorlesung: Mechanische Grundlagen in anschaulicher Form aufzufrischen.

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken:

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken: UNIVERITÄT IEGEN B 10 Lehrstuhl für Baustatik - chiefe Biegung - chiefe Biegung Kommt es bei einem Balken nicht nur u Durchbiegungen w in -Richtung, sondern auch u Durchbiegungen v in -Richtung, so spricht

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten Inhalt (Abschnitte, die mit * gekennzeichnet sind, enthalten Übungsaufgaben) 1 Einführung... 1 1.1 Begriffe und Aufgaben der Statik... 2 1.1.1 Allgemeine Begriffe 1.1.2 Begriffe für Einwirkungen... 4 1.1.3

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

Vektorrechnung Raumgeometrie

Vektorrechnung Raumgeometrie Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Kinematik der geradlinigen Bewegung eines Punktes Grundbegriffe und Formeln... 1

Inhaltsverzeichnis. 0 Einleitung 1. 1 Kinematik der geradlinigen Bewegung eines Punktes Grundbegriffe und Formeln... 1 Inhaltsverzeichnis 0 Einleitung 1 1 Kinematik der geradlinigen Bewegung eines Punktes 1 1.1 Grundbegriffe und Formeln... 1 1.1.1 Ort, Geschwindigkeit, Beschleunigung... 1 1.1.2 Kinematische Diagramme...

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Den Mittelpunkt zwischen zwei Punkten kannst du mithilfe der Ortsvektoren und Verbindungsvektoren berechnen.

Den Mittelpunkt zwischen zwei Punkten kannst du mithilfe der Ortsvektoren und Verbindungsvektoren berechnen. Wahlteil B2 Mathe > Abitur (GTR) > 2016 > Wahlteil B2 Aufgaben PLUS Tipps PLUS Lösungen TI PLUS Lösungen Casio PLUS Aufgabe 2.1. a) Darstellung der Pyramide der Schnittfläche im Koordinatensystem Der Aufgabenstellung

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

2 Skalarprodukt, Vektorprodukt

2 Skalarprodukt, Vektorprodukt 37 2 Skalarprodukt, Vektorprodukt Es gibt zwei verschiedene Verknüpfungsregeln für das Produkt von Vektoren. Die mechanische Arbeit ist definiert als Produkt aus Kraft und Weg. 1 Vorausgesetzt wird dabei,

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

8 HEBEL UND DREHMOMENT

8 HEBEL UND DREHMOMENT 10PS/TG - MECHANIK P. Renduli 2009 HEBEL UND DREHMOMENT 53 8 HEBEL UND DREHMOMENT 8.1 Hebel Ein Hebel ist ein Kraftwandler, bestehend aus einer steifen Stange, die um einen Drehpunkt bewegt werden kann.

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

6. Knappstein Kinematik und Kinetik

6. Knappstein Kinematik und Kinetik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. 6. Knappstein Kinematik und Kinetik Inhaltsverzeichnis 0 Einleitung

Mehr

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b,

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b, TM I Aufgabe 1.1 Gegeben sind die Spaltenvektoren 3 2 a = 1, b = 6 7 Man berechne a) die Summe a + b, 2 b) das Skalarprodukt a b,, c = 3 5 c) die Koordinate c z für den Fall, dass a c ist, d) das Kreuzprodukt

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter 8 3. Darstellung der Geraden im Raum 3.. Parametergleichung der Geraden Die naheliegende Vermutung, dass eine Gerade des Raumes durch eine Gleichung der Form ax + by + cz +d = 0 beschrieben werden kann

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auszug aus dem Lernmaterial ortbildungslehrgang Staatlich geprüfte Techniker Auszug aus dem Lernmaterial Maschinenbautechnische Grundlagen DAA-Technikum Essen / www.daa-technikum.de, Infoline: 001 83 16

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Fachhochschule Flensburg. Torsionsschwingungen

Fachhochschule Flensburg. Torsionsschwingungen Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der

Mehr

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk Übung 2: Fachwerke Aufgabe Musterlösung Das Rahmenwerk in Abb. besteht aus biegesteifen Stäben und Knoten. Es wird auf seiner Unterseite mittig mit einer abwärts gerichteten, vertikalen Kraft belastet

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Euklidischer Raum Kartesisches Koordinatensystem. 1 E Ma 1 Lubov Vassilevskaya

Euklidischer Raum Kartesisches Koordinatensystem. 1 E Ma 1 Lubov Vassilevskaya Euklidischer Raum Kartesisches Koordinatensystem 1 E Ma 1 Lubov Vassilevskaya Algebra und Geometrie Man zerlegt die Mathematik in Teildisziplinen: Arithmetik, Algebra, Geometrie und so weiter, doch diese

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Prof. Dr. K. Melzer IWB 1 Blatt 1 Vektorrechnung Aufgaben

Prof. Dr. K. Melzer IWB 1 Blatt 1 Vektorrechnung Aufgaben Prof. Dr. K. Melzer IWB Blatt Vektorrechnung Aufgaben Aufgabe : Ermitteln Sie die Koordinatendarstellung der skizzierten Vektoren a und b. Aufgabe 2: Ein Vektor r mit r = 7 und dem Anfangspunkt (2 ) hat

Mehr

Statik von Fachwerken

Statik von Fachwerken 41 Harald Löwe Statik von Fachwerken Statische Berechnungen auch kleinerer so genannter Fachwerke führen bereits auf größere lineare Gleichungsssteme, die den Nutzen des Gaußalgorithmus belegen können

Mehr

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgabenstellungen der Dynamik.... 1 1.2 Einige Meilensteine in der Geschichte der Dynamik... 3 1.3 EinteilungundInhaltedesBuches... 5 1.4 ZieledesBuches... 6 2

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

In einem kartesischen Koordinatensystem ist der Körper ABCDPQRS mit A(28 0 0),

In einem kartesischen Koordinatensystem ist der Körper ABCDPQRS mit A(28 0 0), IQB-Aufgabe Analytische Geometrie I In einem kartesischen Koordinatensystem ist der Körper ABCDPQRS mit A(28 0 0), B(28 10 0), C(0 10 0), D(0 0 0) und P(20 0 6) gegeben. Der Körper ist ein schiefes Prisma,

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I

Baustatik und Holzbau. Übungen Technische Mechanik I Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische Mechanik I Wintersemester 216/217 Inhalt Inhaltsverzeichnis der Übungsaufgaben 2 Zentrale Kraftsysteme Übungen... 2 2.1

Mehr

Kurven. Mathematik-Repetitorium

Kurven. Mathematik-Repetitorium Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem

Mehr

Aufgaben zur Festigkeit

Aufgaben zur Festigkeit Aufgaben zur estigkeit : Maimale Länge eines Drahtes l Wie lang darf ein Stahldraht mit R m =40 N/mm maimal sein, damit er nicht abreißt? Dichte von Stahl ρ=7850 kg/m 3 Lösung: = G A R m G = A l g l= G

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II

12. Flächenmomente. Umwelt-Campus Birkenfeld Technische Mechanik II Technische Mechanik 1. Flächenmomente Prof. Dr.-ng. T. Preußler Flächenmomente werden in der tatik ur Berechnung von pannungen infolge Biegung, chub und Torsion sowie bei tabilitätsuntersuchungen (Knicken,

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

2. Eulersche Knickfälle

2. Eulersche Knickfälle Das Stabilitätsversagen von Balken unter Druckbelastung wird als Knicken bezeichnet. Linear-elastisches Knicken wurde bereits von Euler untersucht. Je nach Randbedingungen lassen sich verschiedene so genannte

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Aufgabenkatalog ET2 - v12.2. σ 1 σ 2

Aufgabenkatalog ET2 - v12.2. σ 1 σ 2 2 Strömungsfeld 2.1 Geschichtetes Medium Gegeben ist ein geschichteter Widerstand (Länge 2a) mit quadratischen Platten der Kantenlänge a, der vom Strom durchflossen wird. Der Zwischenraum habe wie eingezeichnet

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr