Mehmet Maraz. MechanikNachhilfe

Größe: px
Ab Seite anzeigen:

Download "Mehmet Maraz. MechanikNachhilfe"

Transkript

1 Mehmet Maraz MechanikNachhilfe 1. Auflage 015

2 Inhaltsverzeichnis 1 Statik Lagerungen und Lagerreaktionen Kräftegleichgewichte Drehmoment D-Systeme Streckenlast Schwerpunkt Haftreibung Schnittgrößen Berechnung von Schnittgrößen durch Intergration Ebene achwerke Elastostatik 67.1 Dehnung lächenträgheitsmoment Biegung Normalspannung Torsion Kinematik Satz von Euler Momentanpol Kinetik Massenträgheitsmoment Impuls- und Drehimpulssatz Energieerhaltungssatz

3 6 1 Statik 1..1 Drehmoment Kräfte können neben geradlinige Bewegungen auch Drehbewegungen verursachen. Diese Drehwirkung, auch Drehmoment bezeichnet, bezieht sich immer auf einen bestimmten Punkt (in D) bzw. eine Achse (in 3D). Als Beispiel hierzu schauen wir uns das estziehen einer Schrauben mithilfe eines Schraubenschlüssels an. Um die in der Abb. gezeigte Schraube festzuziehen wird am Ende des Schraubenschlüssels eine Kraft aufgewendet. Durch diese Kraft wird die Schraube rechts herum gedreht. Die Drehung findet genau um den Mittelpunkt der Schraube statt. Dies ist der sogenannte Momentenbezugspunkt. Also der Punkt, um den die Schraube gedreht wird. Das durch die Kraft auf die Schraube übertragene Moment ist definiert als Moment M = l M l Moment Kraft Hebelarm Der in der ormel angegebene Hebelarm ist in unserem oben gezeigten Beispiel der Abstand zwischen dem Kraftangriffspunkt und dem Mittelpunkt der Schraube. Das Moment einer Kraft bezüglich eines bestimmten Punktes (Momentenbezugspunkt) kann man wie folgt bestimmen. Vorgehensweise Momente 1. Momentenbezugspunkt wählen.. Wirkungslinie der Kraft einzeichnen. 3. Den kürzesten Abstand zwischen Momentenbezugspunkt und Wirkungslinie der Kraft bestimmen. Dies ist der Hebelarm. Der kürzeste Abstand zwischen einem Punkt und einer Linie ist immer der senkrechte Abstand. 4. Drehsinn bestimmen (siehe Rechte-Hand-Regel unten).

4 8 1 Statik z y x Um den Drehsinn bezüglich einer Achse zu erkennen, muss man in einem nächsten Schritt mit der rechten Hand nun die gewünschte Achse, bspw.z-achse umgreifen, wobei der Daumen in die positive z-richtung zeigen muss. Nun zeigen die inger die positive Drehrichtung bezüglich der gewünschten Achse. z y ür die Bestimmung des Drehsinns für Momente um die x-achse muss dementsprechend analog die rechte Hand die x-achse mit dem Daumen in die positive Richtung umfassen. Die inger zeigen auch hier wieder die positive Drehrichtung an. x

5 10 1 Statik Aufgabe 1..1 Ein Balken wird wie dargestellt durch eine Einzelkraft belastet. Man ermittle alle Lagerreaktionen. a a Gegeben a, Vorgehensweise Kräftegleichgewichte 1. Koordinatensystem festlegen.. Körper freischneiden (reikörperbild). 3. Kräfte einzeichnen. 4. Gleichgewichtsbedingungen aufstellen ( Kräftesummen, 1 Momentensumme). Den Momentenbezugspunkt so wählen, dass möglichst viele unbekannte Kräfte wegfallen. 5. Nach Unbekannten auflösen.

6 1. Kräftegleichgewichte 11 Lösung 1..1 Als erstes wird das Koordinatensystem festgelegt. Wir verwenden das x, y-koordinatensystem. Im darauffolgenden reikörperbild wird der Balken als Ganzes freigeschnitten, da es sich dabei um ein einzelnes, zusammenhängendes Bauteil handelt. Bei der Eintragung der Lagerreaktionen (A x, A y und B) werden diese in einer beliebigen Richtung angenommen, da sie noch unbekannt sind. Die Kraft jedoch muss so eingetragen werden, wie sie auch vorgegeben ist, da es sich dabei um eine eingeprägte bzw. von außen wirkende Kraft handelt. Das bedeutet, man weiß wie diese Kraft wirkt. y x A x A y B Nun werden die Kräftesummen und die Momentensumme aufgestellt Aus der Gleichung (1.1) folgt x = 0 = A x (1.1) y = 0 = A y + B (1.) M A = 0 = ab 3a (1.3) A x = 0 Aus Gleichung (1.3) ergibt sich durch Umstellung und Auflösung nach der gesuchten Größe B ab = 3a B = 3 B in Gleichung (1.) eingesetzt und nach der gesuchten Größe A y umgeformt ergibt schließlich 0 = A y + B 0 = A y + 3 A y = 3 A y = 1 Damit sind alle Unbekannten Kräfte (Lagerreaktionen A x, A y und B) berechnet und die Aufgabe gelöst.

7 1 1 Statik Aufgabe 1.. Das System wird wie dargestellt durch eine Einzelkraft belastet. Man ermittle alle Lagerreaktionen. a a a Gegeben a,

8 1. Kräftegleichgewichte 13 Lösung 1.. Das System muss in zwei Teile zerlegt werden, da es sich hierbei um zwei Bauteile handelt, die über ein Gelenk miteinander verbunden sind. Diese werden am Gelenk getrennt. Hierbei ist zu beachten, die Gelenkkräfte einzutragen. Die Richtungen der Gelenkkräfte sind an den beiden Bauteilen jeweils entgegengesetzt. I II M B G x G x B x A G y G y B y ür den Körper I lauten die Gleichgewichtsbedingungen x = 0 = G x G x = 0 (1.4) y = 0 = A +G y (1.5) M A = 0 = a+ag y G y = 1 (1.6) Der Momentbezugspunkt wurde am linken Stabende angenommen. Aus der Gleichung (1.5) folgt mit G y = 1 A = G y = 1 = 1 = A ür den Körper I I lauten die Gleichgewichtsbedingungen y = 0 = G x + B x Da wir wissen, dass G x = 0 ist, folgt hier sofort B x = 0 Durch die beiden übrigen Summen können die verbleibenden Unbekannten aufgelöst werden y = 0 = G y + B y B y = G y = 1 = B y M B = 0 = M B + ag y M B = ag y = a 1 = M B Der Momentenbezugspunkt wurde am rechten Stabende angenommen.

9 14 1 Statik 1.. 3D-Systeme Die vorherigen Aufgaben waren zweidimensional. Nun schauen wir uns dreidimensionale Systeme an. Bei 3D-Systemen kommt eine zusätzliche Koordinatenachse hinzu. In diesem all die z-achse. Zu den bestehenden Kräftegleichgewichten ( x und y ) kommt nun eine weitere Gleichung ( z ) hinzu. Bei den Momentengleichgewichten müssen zwei weitere Gleichungen aufgestellt werden. Vorgehensweise Kräftegleichgewichte in 3D-Systemen 1. Koordinatensystem festlegen (dreidimensional).. Körper freischneiden (reikörperbild). 3. Kräfte einzeichnen. 4. Gleichgewichtsbedingungen aufstellen (3 Kräftesummen, 3 Momentensumme). Den Momentenbezugspunkt so wählen, dass möglichst viele unbekannte Kräfte wegfallen. 5. Nach Unbekannten auflösen.

10 1. Kräftegleichgewichte 15 Aufgabe 1..3 Eine in die Wand fest eingespannte rechtwinklinge Stange wird wie dargestellt belastet. Man ermittle alle Lagerreaktionen. Gegeben a, b, c, a b c Gegeben a, b, c,

11 16 1 Statik Lösung 1..3 Die rechtwinklige Stange wird von der festen Einspannung freigeschnitten. Da es sich um ein dreidimensionales System handelt, müssen nun drei Koordinatenachsen betrachtet werden. Neben den Kräften, die entlang der x- und y-koordinate auftreten, müssen nun auch die Kräfte entlang der z-koordinate berücksichtigt werden. Bei den zweidimensionalen Aufgaben wurden in festen Einspannung bisher nur zwei Kräfte und ein mögliches Moment eingetragen. Im dreidimensionalen tragen wir nun neben drei Kräften auch alle drei möglichen Momente ein, die auftreten können. Momente um eine bestimmte Achse stellen wir auf dem zweidimensionalen Blatt als Doppelpfeile dar, um die Übersicht zu behalten. Die Pfeilrichtung zeigt dabei an, ob das Moment positiv oder negativ ist. Mit der oben besprochenen Rechte-Hand-Regel ist dadurch die Drehrichtung nachvollziehbar. M Ay y A y x M Ax A x a z A z b M Az c Die Gleichgewichtsbedingungen lauten, wobei der Momentenbezugspunkt sich bei Punkt A (Einspannung) befindet x = 0 = A x A x = 0 (1.7) y = 0 = A y + A y = (1.8) z = 0 = A z A z = 0 (1.9) M A x = 0 = M Ax b M Ax = b (1.10) M A y = 0 = M Ay M Ay = 0 (1.11) M A z = 0 = M Az + a M Az = a (1.1) Der Drehsinn des Moments a, welches in der Summe für M A x auftritt, kann nach der Rechte-Hand-Regel wie folgt erklärt werden. Man umgreift mit der rechten Hand die x-achse, so dass der Daumen in die positive Koordinatenrichtung zeigt. Nun prüft man, in welcher Weise die Kraft die

12 1. Kräftegleichgewichte 17 rechte Hand um die x-achse drehen würde. Da die Kraft von uns aus gesehen weiter vorne liegt und nach oben zeigt, resultiert eine Drehbewegung, die den gekrümmten ingern der rechten Hand entgegenwirkt. Dadurch erhält man das negative Vorzeichen bzw. den Drehsinn des Moments. Postiv wäre das Moment, wenn die Drehbewegung in Richtung der gekrümmten inger zeigen würde. positive Drehrichtung bzgl. der x-achse y x z Der Hebelarm ist der senkrechte Abstand zwischen der Drehachse (in diesem all die grüne x-koordinatenachse) und der Wirkungslinie (rot gestrichelt) der Kraft. y x z Hebelarm = b Der Drehsinn des Moments a, dass in der Summe für Mz A auftritt, kann nach der Rechte-Hand-Regel wie folgt erklärt werden. Man umgreift mit der rechten Hand die z-achse, so dass der Daumen in die positive Koordinatenrichtung zeigt. Nun prüft man, in welcher Weise die Kraft die rechte Hand drehen würde. Da die Kraft von uns aus gesehen rechts von der z-achse liegt und nach oben zeigt, resultiert eine Drehbewegung, die der Richtung der gekrümmten ingern der rechten Hand entspricht. Dadurch erhält man das positive Vorzeichen bzw. den Drehsinn des Moments.

13 18 1 Statik positive Drehrichtung bzgl. der z-achse y x z Drehbewegung durch die Kraft Der Hebelarm ist der senkrechte Abstand zwischen der Drehachse (in diesem all die grüne z-koordinatenachse) und der Wirkungslinie (rot gestrichelt) der Kraft. y x Hebelarm = a z

14 1. Kräftegleichgewichte 19 Aufgabe 1..4 Eine in die Wand fest eingespannte abgewinkelte Stange wird wie dargestellt durch zwei Kräfte und ein Moment belastet. Man ermittle alle Lagerreaktionen. Gegeben a, b, c, 1,, M 1 a 1 b M 1 c

15 64 1 Statik x = 0 = A x + S 4 + y = 0 = A y + S 1 + S 3 (1.47) S 3 (1.48) Hier können noch keine Stabkräfte konkret berechnet werden, da es noch zu viele Unbekannte gibt. Wir betrachten daher den nächsten Knoten. Knoten II B S II S 1 x = 0 = B+S S = B = (1.49) y = 0 = S 1 S 1 = 0 (1.50) S 1 ist ein Nullstab. Eingesetzt in (1.48) ergibt S 3 in (1.47) ergibt Knoten III 0 = + 0 = +S 4 + S 3 S 3 = ( ) S 4 = S S 6 III S 3 S 5 x = 0 = S + S 6 y = 0 = S 5 S 3 (1.51) S 3 (1.5)

16 1.7 Ebene achwerke 65 Mit S = und S 3 = folgt für S6 in (1.51) 0 = +S 6 Mit S 3 = folgt für S 5 in (1.5) 0 = S 5 ( ) S 6 = ( ) S 5 = Knoten IV S 6 IV S 7 S 8 Mit S 6 = folgt für S 7 in (1.53) x = 0 = S 6 y = 0 = S 8 0 = Mit S 7 = folgt für S 8 in (1.54) S 8 ist ein Nullstab. 0 = S 8 S 7 (1.53) S 7 S 7 = S 7 (1.54) ( ) S 8 = 0 Knoten V V S 8 S 9 x = 0 = S 9 S 9 = 0 S 9 ist ebenfalls ein Nullstab. Somit ergeben sich folgende Ergebnisse:

17 4. Impuls- und Drehimpulssatz 131 Aufgabe 4..1 Auf einem Band (Masse vernachlässigbar), das in A befestigt ist und über eine massebehaftete Umlenkrolle (Radius r, Masse m, Massenträgheitsmoment Θ ) und eine masselose Umlenkrolle geführt wird, liegt ein Hohlzylinder (Radien r 1, r 1, Masse m 1, Massenträgheitsmoment Θ 1 ). Mit Hilfe des Gegengewichtes (Masse m 3 ) wird der Hohlzylinder angehoben. Die Massenträgheitsmomente sind bezüglich des jeweiligen Schwerpunktes anzunehmen. A ϕ y C r x S 3 D g y 1 S 1 S r 1 m, Θ m 3 B r 1 y 3 m 1, Θ 1 ϕ 1 Gegeben g, m 1, m, m 3, r 1, r, Θ 1, Θ a) Stellen Sie alle Gleichgewichtsbedingungen der massebehafteten Körper (bezüglich deren Schwerpunkte) auf. Verwenden Sie hierzu die angegebenen Koordinaten. b) Bestimmen Sie die Gleichungen für die kinematischen Bindungen (Beziehung zwischen ÿ 1, ϕ 1 und ϕ in Abhängigkeit von ÿ 3 ). c) Berechnen Sie die Massenträgheitsmomente Θ 1 und Θ bezüglich deren Schwerpunkte für den Hohlzylinder und die Umlenkrolle.

18 13 4 Kinetik Lösung 4..1 a) Körper I Zunächst erfolgt der reischnitt für Körper I. Es werden in das reikörperbild alle Kräfte eingezeichnet. Die Koordinatensysteme sind ebenfalls eingetragen worden, sind jedoch nicht zwingend erforderlich. I y 1 S 1 S m 1 g ϕ 1 Nun werden die Impulssätze und der Drallsatz für Körper I aufgestellt. Der Drallsatz wurde bezüglich des Mittelpunktes gebildet. m 1 ẍ 1 = 0 m 1 ÿ 1 = S 1 + S m 1 g Θ 1 ϕ 1 = S r 1 S 1 r 1 Körper I I Analog zu Körper I wird auch hier zunächst das reikörperbild erstellt und alle Kräfte eingetragen. II y ϕ S 3 C y S C x m g x Analog folgen hier die Impulssätze und der Drallsatz. Auch hier wurde der Drallsatz bezüglich des Mittelpunktes gebildet. m ẍ = S 3 + C x m ÿ = S m g+c y Θ ϕ = S 3 r S r

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

Allgemeine Kräftesysteme

Allgemeine Kräftesysteme 3 Allgemeine Kräftesysteme Allgemeine Kräftesysteme Allgemeine Kräftesysteme Was ist neu? Zwei Kräfte, die nicht an einem zentralen Punkt angreifen Ist das System im Gleichgewicht? A ja B ja, horizontal

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

2. Exzentrischer Stoß

2. Exzentrischer Stoß 2. Exzentrischer Stoß 2.1 Ebener Stoß zwischen freien Körpern 2.2 Ebener Stoß auf gelagerten Körper 3.2-1 2.1 Ebener Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander.

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5

Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5 Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der esultierenden Aufgabe: Belasteter Balken F 5 F 1 F 2 F 3 F 4 F 5 55 110 a a a a a Gegeben: F1 = 20 N F2 = 15 N F3 = 30 N F4 = 10 N F5 = 45 N a

Mehr

9 Mehrkörpersysteme. Anwendungsbeispiele

9 Mehrkörpersysteme. Anwendungsbeispiele 63 Bei vielen technischen Fragestellungen kann man die Verformungen der Maschinenteile gegenüber den durch Lager ermöglichten Bewegungen vernachlässigen. Die daraus resultierenden Modelle bezeichnet man

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Aufgabe 1 (14 Punkte)

Aufgabe 1 (14 Punkte) Technische Mechanik & Fahrzeugdynamik TM II Prof. Dr.-Ing. habil. D. Bestle 8. September 1 Familienname, Vorname Matrikel-Nummer Prüfungsklausur Technische Mechanik II Fachrichtung 1. Die Prüfung umfasst

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Musterlösung 40 % der Punkte werden zum Bestehen benötigt Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte:

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

Schnittgrößen und Vorzeichenkonvention

Schnittgrößen und Vorzeichenkonvention Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht

Mehr

3 Zentrale ebene Kräftegruppen

3 Zentrale ebene Kräftegruppen 25 3 Zentrale ebene Kräftegruppen 3.1 Erste Grundaufgabe: Zerlegung... 26 3.2 Zweite Grundaufgabe: Reduktion... 30 3.3 Dritte Grundaufgabe: Gleichgewicht... 34 3.4 ufgaben zu Kapitel 3... 39 Springer achmedien

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Gleichgewicht am Punkt

Gleichgewicht am Punkt Gleichgewicht am Punkt 3.1 Gleichgewichtsbedingung für einen Massenpunkt.. 52 3.2 Freikörperbild................................... 52 3.3 Ebene Kräftesysteme............................ 55 3.4 Räumliche

Mehr

5 Gleichgewicht gebundener Systeme

5 Gleichgewicht gebundener Systeme 29 Technische Systeme bestehen aus mehreren miteinander und mit der Umwelt verbundenen Maschinenteilen. Die Bewegung erfolgt über die Lagerfreiheiten, die Verformung der Körper kann i. Allg. vernachlässigt

Mehr

Theoretische Einleitung Fachwerkbrücken Parabelbrücken

Theoretische Einleitung Fachwerkbrücken Parabelbrücken Quellen: www.1000steine.com, www.professorbeaker.com, http://andrea2007.files.wordpress.com, www.zum.de, www.morgenweb.de, www1.pictures.gi.zimbio.com Quellen: www.1000steine.com, www.professorbeaker.com,

Mehr

Matr.-Nummer Fachrichtung

Matr.-Nummer Fachrichtung Institut für Technische und Num. Mechanik Technische Mechanik II+III Profs. P. Eberhard, M. Hanss WS 2015/16 P 1 18. Februar 2016 Bachelor-Prüfung in Technischer Mechanik II+III Nachname, Vorname E-Mail-Adresse

Mehr

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk. TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Prof. Dr.-Ing. Ams Matrikelnummer: Klausur Technische Mechanik 05/02/13 Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit

Mehr

Technische Mechanik. Fachwerke

Technische Mechanik. Fachwerke 7 Fachwerke Fachwerke Fachwerke Anwendungsbeispiele... Beispiele aus dem Ingenieurwesen (wikipedia.org) Fachwerke 1 Fachwerke Anwendungsbeispiele nanowerk.com (T. Bückmann) wikipedia.org Beispiele aus

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 4 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 9 15 10 9 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Einführung in die Statik und räumliche Kraftsysteme

Einführung in die Statik und räumliche Kraftsysteme Leseprobe Kirbs Einführung in die Statik und räumliche Kraftsysteme TECHNISCHE MECHANIK Studienbrief 2-050-0904 3. Auflage 2008 HOCHSCHULVERBUND DISTANCE LEARNING Impressum Verfasser: Prof. Dr.-Ing. Jörg

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

2. Zentrale Kraftsysteme

2. Zentrale Kraftsysteme 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

= 1kN F 1 F 2. = 2,5 kn. 2m 4m 2m. = 0,75 kn/m. Webinar: Statik Thema: Schnittgrößen

= 1kN F 1 F 2. = 2,5 kn. 2m 4m 2m. = 0,75 kn/m. Webinar: Statik Thema: Schnittgrößen Webinar Statik Thema Schnittgrößen Bestimme für die nachfolgenden beiden Aufgaben die Schnittgrößen und Schnittgrößenverläufe! F 1 = 1k = 2,5 k a) 30 = 0,75 k/m b) Lösung Teil a) Wir beginnen damit den

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 Summe Punkte: 29 18,5 11 11 10,5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 10.09.2012 Matrikel: Folgende Angaben sind freiwillig: Name: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die drei Stoffgebiete

Mehr

Die Kraft. F y. f A. F x. e y. Institut für Mechanik und Fluiddynamik Festkörpermechanik: Prof. Dr. M. Kuna

Die Kraft. F y. f A. F x. e y. Institut für Mechanik und Fluiddynamik Festkörpermechanik: Prof. Dr. M. Kuna Institut für echanik und luiddnamik estkörpermechanik: Prof. Dr.. Kuna Technische echanik rbeitsblätter Die Kraft f e e T rbeitsblätter_7.0.00_neu.doc Institut für echanik und luiddnamik estkörpermechanik:

Mehr

Technische Mechanik für Wirtschaftsingenieure

Technische Mechanik für Wirtschaftsingenieure Ulrich Gabbert/Ingo Raecke Technische Mechanik für Wirtschaftsingenieure 5., aktualisierte Auflage Mit 301 Abbildungen, 16 Tabellen, 83 Beispielen sowie einer CD-ROM Wi im Carl Hanser Verlag 1 Statik 11

Mehr

Übung zu Mechanik 1 Seite 19

Übung zu Mechanik 1 Seite 19 Übung zu Mechanik 1 Seite 19 Aufgabe 33 Bestimmen Sie die Lage des Flächenschwerpunktes für den dargestellten Plattenbalkenquerschnitt! (Einheit: cm) Aufgabe 34 Betimmen Sie die Lage des Flächenschwerpunktes

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Das unten abgebildete System befindet sich im Schwerefeld (Erdbeschleunigung g). Es besteht aus einer Rolle (Masse m, Radius r), die über zwei Federn (Federsteifigkeit c) und

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Technische Mechanik für Wirtschaftsingenieure

Technische Mechanik für Wirtschaftsingenieure Technische Mechanik für Wirtschaftsingenieure von Ulrich Gabbert, Ingo Raecke 2. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22807 8 Zu Leseprobe schnell und portofrei

Mehr

Übungen zur Vorlesung Fahrdynamik

Übungen zur Vorlesung Fahrdynamik Seite 1 Aufgabe 1 : Der skizzierte Manipulator mit den Hebeln r 1,2 und r 2,3 besitzt zwei Drehgelenke (Drehachsen u 1, u 2 u 1 ). Gegeben seien die Drehwinkel Θ 1 und Θ 2 sowie die Winkelgeschwindigkeiten

Mehr

Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke. 5., aktualisierte Auflage

Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke. 5., aktualisierte Auflage Raimond Dallmann Baustatik Berechnung statisch bestimmter Tragwerke., aktualisierte uflage .3 leichgewicht am Punkt 9 F + F 3 Hinweis: Da die Länge des Richtungsvektors beliebig ist, wurde für n nicht

Mehr

Theorie zur Serie 1. erstellt von A. Menichelli. 14. Dezember 2017

Theorie zur Serie 1. erstellt von A. Menichelli. 14. Dezember 2017 Theorie zur Serie 1 erstellt von A. Menichelli 14. Dezember 2017 1 Vorgehen bei Statikaufgaben 1. System analysieren einzelne Stäbe identifizieren Lagerungstypen erkennen 2. System freischneiden Lagerungen

Mehr

1. Aufgabe (ca % der Gesamtpunktzahl)

1. Aufgabe (ca % der Gesamtpunktzahl) . Aufgabe (ca. 7.5 % der Gesamtpunktzahl) S 4 b G S S S 3 F A B 8a Das dargestellte Tragwerk besteht aus 4 Stäben und einer starren Scheibe. Es wird durch die Kraft F und durch die Gewichtskraft G (im

Mehr

1.6 Nichtzentrale Kräftesysteme

1.6 Nichtzentrale Kräftesysteme 1.6 Nichtzentrale Kräftesysteme 1.6.1 Zusammensetzen von ebenen Kräften mit verschiedenen ngriffspunkten Je zwei Kräfte bilden ein zentrales Kräftesystem, wenn sie nicht gerade zueinander parallel verlaufen

Mehr

5 Haftreibung Technische Mechanik Haftreibung

5 Haftreibung Technische Mechanik Haftreibung 5 Haftreibung Haftreibung 1 Haftkraft kompakt: Spezielles Lager Kontaktkraft: Aufgrund der Rauhigkeit kann sowohl vertikale Kraft N als auch horizontale Kraft H übertragen werden Kraft N ist Druckkraft

Mehr

Zentrale Kräftesysteme

Zentrale Kräftesysteme 2 Zentrale Kräftesysteme Zentrale Kräftesysteme http://www.fotocommunity.de Einteilung von Kräften Grundsätzliches: Einzelkraft ist eine Idealisierung. Volumenkräfte Beispiel: Eigengewicht Flächenkräfte

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 07/02/12 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

σ, σ Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 2016 P II Aufgabe 1 (8 Punkte)

σ, σ Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 2016 P II Aufgabe 1 (8 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. P. Eberhard / M. Hanss SS 206 P II 2. August 206 Bachelorprüfung in Technische Mechanik II/III Nachname, Vorname E-Mail-Adresse

Mehr

Festigkeitslehre, Kinematik, Kinetik, Hydromechanik

Festigkeitslehre, Kinematik, Kinetik, Hydromechanik Festigkeitslehre, Kinematik, Kinetik, Hydromechanik Von Prof. Dipl. Ing. Dr. Hans G. Steger, Linz Prof. Dipl. Ing. Johann Sieghart, Linz Prof. Dipl. Ing. Erhard Glauninger, Linz 2., verbesserte und erweiterte

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

2. Statisch bestimmte Systeme

2. Statisch bestimmte Systeme 1 von 14 2. Statisch bestimmte Systeme 2.1 Definition Eine Lagerung nennt man statisch bestimmt, wenn die Lagerreaktionen (Kräfte und Momente) allein aus den Gleichgewichtsbedingungen bestimmbar sind.

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

Prüfungstrainer Technische Mechanik

Prüfungstrainer Technische Mechanik Stefan Hartmann Prüfungstrainer Technische Mechanik Wl LEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort IX Ziele der Aufgabensammlung XI Teil I Statik starrer Körper 1 1 Einführung in die Vektorrechnung

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

Physikalische Anwendungen Statik

Physikalische Anwendungen Statik Physikalische Anwendungen Statik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die Anwendung

Mehr

Universität für Bodenkultur

Universität für Bodenkultur Baustatik Übungen Kolloquiumsvorbereitung Universität für Bodenkultur Department für Bautechnik und Naturgefahren Wien, am 15. Oktober 2004 DI Dr. techn. Roman Geier Theoretischer Teil: Ziele / Allgemeine

Mehr

Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018

Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018 Theorie zu Serie erstellt von A. Menichelli 16. Februar 018 1 Spannungen in D 1.1 Allgemein Die Definition der Spannung ist im allgemeinen die Verteilung einer Kraft auf der Fläche, auf der diese Kraft

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 018 Prüfungsklausur Technische Mechanik I Aufgabe 1 (6 Punkte) Zwei Gewichte (Massen m 1, m ) sind

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5 Inhaltsverzeichnis Vorwort 5 1 Allgemeine Einführung 13 1.1 Aufgabe und Einteilung der Mechanik.............. 13 1.2 Vorgehen in der Mechanik..................... 14 1.3 Physikalische Größen und Einheiten................

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Fragen aus dem Repetitorium II

Fragen aus dem Repetitorium II Fragen aus dem Repetitorium II Folgend werden die Fragen des Repetitoriums II, welche ihr im Skript ab Seite 182 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

1.1.2 Stabkräfte berechnen

1.1.2 Stabkräfte berechnen 1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt

Mehr

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 1. März 016 Prüfungsklausur Technische Mechanik I Familienname, Vorname Matrikel-Nummer Fachrichtung Aufgabe 1 (3

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 3 4 Summe Punkte: 9 8,, 8 Davon erreicht Punkte: Gesamtergebnis Klausur Testate Summe

Mehr

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE

4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE 1) Kräfte greifen in einem Punkt an a) Zusammensetzen (Reduktion) von Kräften -

Mehr

Inhaltsverzeichnis TEIL 1: Statik............................................... Kräfte 19................ 33.U... 33 34...... 36 1 Begriffe. Grundgesetze. Grundaufgaben 1 1.1 Die Kraft 1 1.2 Masse und

Mehr

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.

4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. 4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem

Mehr

Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks. 4 kn 6 kn I IV V VI III

Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks. 4 kn 6 kn I IV V VI III Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks Aufgabe: Cremonaplan 8 9 0 Gegeben sei das obige Fachwerk welches durch die beiden äußeren Kräfte belastet wird.

Mehr

1 Schubstarrer Balken

1 Schubstarrer Balken Einsteinufer 5, 1587 Berlin PdvK Energiemethoden 7. Übungsblatt, WS 212/13, S. 1 1 Schubstarrer Balken Freischnitt und Schnittlasten für das reale System x läuft mit der Balkenachse, die strichlierte Linie

Mehr

Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67

Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67 Aufgabenstellung: Berechne die Schnittpunkte der e k1 und k mit den Mittelpunkten M1 bzw. M und den Radien r1 bzw. r a. k1: M1 3, 4, P 5, 3 k 1, k geht durch A 0 und B 4 0 r 5 M liegt im 1. Quadranten

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

In den folgenden Erklärungen und Beispielen gelten folgende Begriffe: F A *l = F 1 *l 1 + F 2 + l 2 M r = M l

In den folgenden Erklärungen und Beispielen gelten folgende Begriffe: F A *l = F 1 *l 1 + F 2 + l 2 M r = M l Belasteter Träger In den folgenden Erklärungen und Beispielen gelten folgende Begriffe: M R M L F o F u l l x Summenzeichen rechtsdrehendes Drehmoment, in Uhrzeigerrichtung linksdrehendes Drehmoment, gegen

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

a) Stellen Sie das Diagramm Geschwindigkeits Zeit Diagramm für eine geeignete Kombination von Massen und dar.

a) Stellen Sie das Diagramm Geschwindigkeits Zeit Diagramm für eine geeignete Kombination von Massen und dar. Atwood sche Fallmaschine Die kann zum Bestimmen der Erdbeschleunigung und zum Darstellen der Zusammenhänge zwischen Weg, Geschwindigkeit und Beschleunigung verwendet werden. 1) Aufgaben a) Stellen Sie

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur. Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur.  Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen Kräfte Vorlesung und Übungen 1. Semester BA Architektur Institut Entwerfen und Bautechnik, / KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr