Grundlagen der Informatik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Informatik"

Transkript

1 Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1

2 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung von Objekten Menge der Schafe in einer Herde Anzahl von Getreidesäcken Kontrolle von Beständen durch Vergleich von Zahlenmengen Basis: Abzählen der Finger, also 10er-System Seite 2

3 Zahlensysteme Römische Zahlen Seite 3

4 Positionssysteme Babylonier, Chinesen, Mayas, Inder Wert einer Zahl hängt von Form und Position ab Positions- Stellenwertsysteme Einführung der 0 Unser Zahlensystem stammt aus Indien (Arabische Zahlen, weil von Indien über den nahen Osten nach Europa) Seite 4

5 Positionssysteme Heutige Rechner: Dual- oder Binärsystem Also 0 und 1 Grund: Einfachere Bauteile Nur zwei Zustände 0 => kein Strom 1 => Strom Alle Daten auf Rechnern werden binär kodiert Seite 5

6 Zahlensysteme Positionssysteme bei natürlichen Zahlen Ein Positionssystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl n nach Potenzen von B zerlegt wird. Seite 6

7 Zahlensysteme Positionssysteme bei natürlichen Zahlen Beispiel: n (2017 ) Seite 7

8 Aufgaben 1. Wie viele Ziffern stehen im Oktalsystem zur Verfügung? 2. Geben Sie alle Ziffern im Oktalsystem an! 3. Wie viele Ziffern stehen im Hexadezimalsystem zur Verfügung? 4. Geben Sie alle Ziffern des Hexadezimalsystems an! Seite 8

9 Aufgaben 1. Stellen Sie die Zahl (7508)10 in Summenform dar! 2. Rechnen Sie die folgenden Zahlen in das Dezimalsystem um (315)8 (11001)2 (777)8 Seite 9

10 Zahlensysteme Positionssysteme bei natürlichen Zahlen Seite 10

11 Zahlensysteme Positionssysteme bei gebrochenen Zahlen Gebrochene Zahlen lassen sich durch folgende Summenformel beschreiben: Seite 11

12 Zahlensysteme Positionssysteme bei gebrochenen Zahlen Beispiele: Seite 12

13 Aufgaben 1. Geben Sie zu folgenden Zahlen die Summenform und die Darstellung im Dezimalsystem an: (1573.4)8, (ABC.CBA)16, ( )2, (0.4)8 Seite 13

14 Zahlensysteme Konvertieren zwischen Dual- und Hexadezimalsystem Dualdarstellung der Ziffern des Hexadezimalsystems Seite 14

15 Zahlensysteme Konvertieren in andere Zahlensysteme Dualsystem => Oktalsystem Bilden von Dualtriaden (Dreiergruppen) Dualsystem => Hexadezimalsystem: Bilden von Dualtetraden (Vierergruppen) Seite 15

16 Aufgaben 1. Konvertieren Sie die folgenden Zahlen in das Oktalsystem: ( )2, ( )2 2. Konvertieren Sie die folgenden Zahlen in das Hexadezimalsystem: ( )2, ( )2 Seite 16

17 Zahlensysteme Konvertieren in andere Zahlensysteme Eine in einem Positionssystem mit der Basis B dargestellte natürliche Zahl n: lässt sich mit Hilfe des Hornerschemas wie folgt darstellen: Mit Hilfe dieser Darstellung können Konvertierungen in das Dezimalsystem einfach durchgeführt werden. Seite 17

18 Zahlensysteme Konvertieren in andere Zahlensysteme Algorithmus zur Konvertierung eines Zahlensystems in eine anderes: 1. x : n = y Rest z 1. x = y wenn x!= 0 => Schritt 1 wenn x = 0 => Schritt 3 3. Reste z ergeben Ergebniszahl Seite 18

19 Zahlensysteme Konvertieren in andere Zahlensysteme Beispiel: (30)10 = (?)2 n = 2 x1 = 30 x n y z => Abbruch z = (11110)2 Seite 19

20 Aufgaben 1. Berechnen Sie (43)10 = (?)2 1. Berechnen Sie (7294)10 = (?)8 1. Berechnen Sie (87599)10 = (?)16 Seite 20

21 Rechenoperationen im Dualsystem Addition von Dualzahlen Für die duale Addition gilt allgemein: Seite 21

22 Aufgaben 1. Berechnen Sie Seite 22

23 Rechenoperationen im Dualsystem Subtraktion und negative Zahlen Negative Zahlen werden durch ihren Betrag mit vorangestelltem Minuszeichen dargestellt: - 1 Diese Darstellung wäre auch rechnerintern denkbar, hat jedoch den Nachteil, dass man eine gesonderte Vorzeichenrechnung durchführen müsste und man ein Rechenwerk benötigt, das sowohl addieren als auch subtrahieren kann. Man kann die Subtraktion auf eine Addition zurückzuführen durch das Verfahren der Komplementbildung. Man unterscheidet zwei Arten der Komplementbildung: B-Komplement und (B-1)-Komplement B-Komplement technisch leichter realisierbar Arbeiten mit B-Komplement (spez. Zweier-Komplement) Seite 23

24 Rechenoperationen im Dualsystem Subtraktion und negative Zahlen Zuordnung der Bitkombinationen zu positiven und negativen Zahlen Zahlenring für vier Bits, erstes Bit ist Vorzeichenbit Seite 24

25 Rechenoperationen im Dualsystem Regeln für das Zweier-Komplement 1. Ist das erste Bit = 1 => negative Zahl 2. Jedes einzelne Bit invertieren 3. Addieren von 1 (0001) Beispiel: Zweier-Komplement zu 5: (5)10 = (0101)2 Umkehroperation: Negieren 5: 1010 Negieren -5: : : : : 0101 Seite 25

26 Aufgaben 1. Berechnen Sie die folgenden Aufgaben mit Hilfe des Zweier-Komplements und vier zur Verfügung stehenden Bits: a) 2 4 b) 6 2 Seite 26

27 Codes zur Darstellung von Zeichen ASCII-Code ASCII-Code => American Standard for Coded Information Interchange festgelegte Abbildungsvorschrift (Norm) zur binären Kodierung von Zeichen Klein-/Großbuchstaben des lateinischen Alphabets (arabische) Ziffern viele Sonderzeichen Kodierung erfolgt in einem Byte (8 Bits) 256 verschiedene Zeichen Seite 27

28 Codes zur Darstellung von Zeichen ASCII-Code (Ausschnitt) Seite 28

29 Codes zur Darstellung von Zeichen ASCII-Code Speicherung von Texten einzelne Bytes (also jeweils ein Zeichen) werden hintereinander abgespeichert, so dass man eine Zeichenkette (String) erhält. Um das Ende der Zeichenkette zu identifizieren, werden (in den Programmiersprachen) unterschiedliche Verfahren verwendet. Die Länge der Zeichenkette wird im ersten bzw. in den ersten Bytes vor der eigentlichen Zeichenkette gespeichert. Beispiel: PASCAL Das Ende der Zeichenkette wird durch ein besonderes, nicht darzustellendes Zeichen gekennzeichnet. So verwendet z.b. die Programmiersprache C/C++ ein 0-Byte (Byte, in dem alle Bits 0 sind) Seite 29

30 Codes zur Darstellung von Zeichen ASCII-Code Unterscheidung zwischen Ziffern und Zeichen Seite 30

31 Codes zur Darstellung von Zeichen ASCII-Code Beispiele zum Speichern von Zeichen im ASCII-Code: Seite 31

32 Aufgabe Übersetzen Sie folgenden Binär-Code mit Hilfe der ASCII-Tabelle: Seite 32

33 Duale Größenangaben Weil Speicherung im Dualsystem kilo => 1024 Seite 33

34 Datentypen Unterschiedliche Behandlung von Zahlen und Zeichen Klassifikation notwendig Unterschiede: Speicherbedarf u.a. darstellbare Größe von Zahlen Interpretation des Bitmusters Seite 34

35 Datentypen Seite 35

36 Datentypen Seite 36

37 Datentypen Wird versucht, in einem Datentyp einen Wert abzulegen, der nicht in diesen Datentyp passt, so werden einfach die vorne überhängenden Dualziffern abgeschnitten. Beispiel: Seite 37

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14 Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Helmut Herold Bruno Lurz Jürgen Wohlrab Grundlagen der Informatik Praktisch Technisch Theoretisch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Bibliografische Information der Deutschen Nationalbibliothek

Bibliografische Information der Deutschen Nationalbibliothek Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind

Mehr

EIN NEUES KAPITEL: SPEICHERUNG UND INTERPRETATION VON INFORMATION

EIN NEUES KAPITEL: SPEICHERUNG UND INTERPRETATION VON INFORMATION Auf diesem Computerschirm sieht man verschiedene Arten von Information dargestellt. Wie wird sie eigentlich im Computer abgespeichert. Was man sieht, ist nur eine Graphik! EIN NEUES KAPITEL EIN NEUES KAPITEL:

Mehr

Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.

Die Zahlensysteme. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000. Die Zahlensysteme Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nichtkommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Einführung Seite 1 2 Das Umrechnen von Zahlen aus unterschiedlichen

Mehr

Algorithmen & Programmierung. Zahlensysteme Bits und Bytes

Algorithmen & Programmierung. Zahlensysteme Bits und Bytes Algorithmen & Programmierung Zahlensysteme Bits und Bytes Zahlensysteme Positionssystem Bei sogenannten Positionssystemen bestimmt (im Gegensatz zu additiven Systemen wie dem römischen Zahlensystem) die

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Dualzahlen

Dualzahlen Dualzahlen Ein Schüler soll sich eine Zahl zwischen und 6 denken. Nun soll der Schüler seinen Zahl in folgenden Tabellen suchen und die Nummer der Tabelle nennen in welcher sich seine Zahl befindet. 7

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

2 Repräsentation von elementaren Daten

2 Repräsentation von elementaren Daten 2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis

Mehr

, 5 8. Hunderter Zehner Zehntel. Einer

, 5 8. Hunderter Zehner Zehntel. Einer 5 1 11 Das Dezimalsystem Seit wir das erste Mal mit Hilfe unserer Finger»gezählt«haben, ist uns das Dezimalsystem Stück für Stück so vertraut geworden, dass wir es als selbstverständliches und womöglich

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

Skript Zahlensysteme

Skript Zahlensysteme Skript Zahlensysteme Dieses Skript enthält die Themen meiner Unterrichtseinheit Zahlensysteme. Hier sollen die Grundlagen für das Verständnis der darauf folgenden Inhalte zu den Abläufen innerhalb des

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

5. Nichtdezimale Zahlensysteme

5. Nichtdezimale Zahlensysteme 10 5. Nichtdezimale Zahlensysteme Dezimalsystem: 2315 10 = 2 10 3 + 3 10 2 + 1 10 1 + 5 10 0 2 Tausender, 3 Hunderter, 1 Zehner und 5 Einer. Basis b = 10, Ziffern 0, 1,..., 9 (10 ist keine Ziffer!) bedeutet

Mehr

7. Übung zur Vorlesung Grundlagen der Informatik

7. Übung zur Vorlesung Grundlagen der Informatik 7. Übung zur Vorlesung Grundlagen der Informatik 13.Interne Darstellung von Daten In der Vorlesung wurde bereits darauf hingewiesen, dass ein Rechner intern lediglich die Zustände 0 (kein Signal liegt

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Zahlensysteme Das 10er-System

Zahlensysteme Das 10er-System Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...

Mehr

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände

Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 1 2 Merke: Mit jedem zusätzlichen Bit verdoppelt sich die Anzahl der darstellbaren Zahlen bzw. Zustände 3 Die Zuordnung der Himmelsrichtungen zu den dreistelligen Binärzahlen, also Norden 000 Süden 001

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren:

Zur Universalität der Informatik. Gott ist ein Informatiker. Die Grundordnung der Welt läßt sich mathematisch formulieren: Daten und ihre Codierung Seite: 1 Zur Universalität der Informatik Gott ist ein Informatiker Die Grundordnung der Welt läßt sich mathematisch formulieren: Naturgesetze, wie wir sie in der Physik, Chemie

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert Binäre Repräsentation von Information Bits und Bytes Binärzahlen ASCII Ganze Zahlen Rationale Zahlen Gleitkommazahlen Motivation Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Mehr

Aufgaben zu Stellenwertsystemen

Aufgaben zu Stellenwertsystemen Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

TOTAL DIGITAL - Wie Computer Daten darstellen

TOTAL DIGITAL - Wie Computer Daten darstellen TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

Leseprobe. Matthias Sturm. Mikrocontrollertechnik. Am Beispiel der MSP430-Familie. ISBN (Buch): 978-3-446-42231-5. ISBN (E-Book): 978-3-446-42964-2

Leseprobe. Matthias Sturm. Mikrocontrollertechnik. Am Beispiel der MSP430-Familie. ISBN (Buch): 978-3-446-42231-5. ISBN (E-Book): 978-3-446-42964-2 Leseprobe Matthias Sturm Mikrocontrollertechnik Am Beispiel der MSP430-Familie ISBN (Buch): 978-3-446-42231-5 ISBN (E-Book): 978-3-446-42964-2 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42231-5

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

DIGITALTECHNIK 02 ZAHLENSYSTEME

DIGITALTECHNIK 02 ZAHLENSYSTEME Seite 1 von 15 DIGITALTECHNIK 02 ZAHLENSYSTEME Inhalt Seite 2 von 15 1 ALLGEMEINES ZU ZAHLENSYSTEMEN... 3 1.1 ZAHLENSYSTEME... 3 1.2 KENNZEICHEN VON ZAHLENSYSTEMEN... 4 1.3 BILDUNGSGESETZE... 4 1.4 STELLENWERTSYSTEM...

Mehr

Zahlensysteme. Formale Methoden der Informatik WiSe 2008/2009 Folie 1 (von 54)

Zahlensysteme. Formale Methoden der Informatik WiSe 2008/2009 Folie 1 (von 54) Zahlensysteme Formale Methoden der Informatik WiSe 28/29 Folie (von 54) Teil I: Zahlensysteme. Einführung und Zahlensysteme 2. Zahlensysteme / Algorithmik 3. Zahlendarstellung im Rechner Franz-Josef Radermacher,

Mehr

Lektion 1: Zahlensysteme und Binärdarstellung. Übersicht Lektion 1

Lektion 1: Zahlensysteme und Binärdarstellung. Übersicht Lektion 1 Lektion 1: Zahlensysteme und Binärdarstellung Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1: Zahlensysteme 1-1 Übersicht

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Zahlensysteme Dezimal-System

Zahlensysteme Dezimal-System Zahlensysteme Dezimal-System Zahlenvorrat: 0,1,2,3,4,5,6,7,8,9 Mögliche unterschiedliche Zeichen pro Stelle:10 Basis: 10 Kennzeichnung: Index 10 oder D (dezimal) Wertigkeit 10 5 10 4 10 3 10 2 10 1 10

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

2 ARITHM. UND LOG. AUSDRÜCKE ZAHLEN

2 ARITHM. UND LOG. AUSDRÜCKE ZAHLEN 2 ARITHM. UND LOG. AUSDRÜCKE ZAHLEN Leitidee: Die Darstellung von Zahlen durch eine feste Zahl von Bits erfordert eine Reihe von Kompromissen Ganzzahl- oder Gleitpunktarithmetik? Dual- und Hexadezimalzahlsystem

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 2013/2014 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

Dies sagt schon mal was über das System aus: es basiert auf der Zahl 16.

Dies sagt schon mal was über das System aus: es basiert auf der Zahl 16. Dieses Dokument erklärt das Hexadezimalsystem, das Binärsystem und die Farbdarstellung in HTML-Dateien. "Hexa-WAS?!?" "Hexadezimal" steht für "16", die Zahl Sechzehn. Dies sagt schon mal was über das System

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128)

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128) Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen (2 7 = 128) 26 Kleinbuchstaben 26 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen ( 7 = 18) 6 Kleinbuchstaben 6 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage return

Mehr

Zahlen- und Buchstabencodierung. Zahlendarstellung

Zahlen- und Buchstabencodierung. Zahlendarstellung Dezimalsystem: Zahlen- und Buchstabencodierung Zahlendarstellung 123 = 1 10 2 + 2 10 1 + 3 10 0 1,23 = 1 10 0 + 2 10-1 + 3 10-2 10 Zeichen im Dezimalsystem: 0,1,...9 10 ist die Basis des Dezimalsystems

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

Grundlagen der Informatik Übungen 1.Termin

Grundlagen der Informatik Übungen 1.Termin : : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt

Mehr

4. Digitale Datendarstellung

4. Digitale Datendarstellung 4 Digitale Datendarstellung Daten und Codierung Textcodierung Codierung natürlicher Zahlen - Stellenwertsysteme - Konvertierung - Elementare Rechenoperationen Codierung ganzer Zahlen - Komplementdarstellung

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2014/15 29. Oktober 2014 Grundlagen II Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Beuth Hochschule Zahlensysteme SS16, S. 1

Beuth Hochschule Zahlensysteme SS16, S. 1 Beuth Hochschule Zahlensysteme SS16, S. 1 Zahlensysteme Eine natürliche Zahl (wie z.b. drei oder siebzehn etc.) kann man auf verschiedene Weisen darstellen, etwa als römische Zahl (z.b. XVII) oder durch

Mehr

2 DATEN-INFORMATION-WISSEN. Marcel Götze

2 DATEN-INFORMATION-WISSEN. Marcel Götze GRUNDKURS INFORMATIK 2 DATEN-INFORMATION-WISSEN Marcel Götze Überblick 1. Informatik Grundlagen: Informationsdarstellung, Information und Daten, Algorithmen, Problemlösung. 2. Web 2.0, Semantic Web 3.

Mehr

Darstellung von Informationen

Darstellung von Informationen Darstellung von Informationen Bit, Byte, Speicherzelle und rbeitsspeicher Boolesche Operationen, Gatter, Schaltkreis Bit Speicher (Flipflop) Binär- Hexadezimal und Dezimalzahlensystem, Umrechnungen Zweierkomplement

Mehr

Zahlensysteme Römische Zahlen

Zahlensysteme Römische Zahlen Modul 2: Rechnerarithmetik (1) Informatik I Modul 2: Rechnerarithmetik Zahlensysteme Zahlendarstellung Grundrechenarten Zeichendarstellung 212 Burkhard Stiller M2 1 212 Burkhard Stiller M2 2 Rechnerarithmetik

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

Grundlagen der Datenverarbeitung - Zahlensysteme

Grundlagen der Datenverarbeitung - Zahlensysteme 1. Zahlensysteme 1.1.Dezimalsystem Das Dezimalsystem ist das System, in dem wir gewohnt sind zu zählen und zu rechnen. Zahlen werden durch die Ziffern 0,1,2,...,9 dargestellt. Die Zahl 7243 wird als Siebentausendzweihundertdreiundvierzig

Mehr

gleich ?

gleich ? Bekanntlich rechnen wir üblicherweise mit Zahlen, die mit Ziffern aus einem Vorrat von 10 verschiedenen Zeichen beschrieben werden: { 0, 1, 2,..., 8, 9 }, wobei die Ziffer 0 ganz wesentlich für ein Stellenwertsystem

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

1 Zahlen im Dezimalsystem

1 Zahlen im Dezimalsystem 1 Zahlen im Dezimalsystem Es gibt verschiedene Arten Zahlen aufzuschreiben. Zunächst gibt es verschiedene Zahlzeichen wie chinesische, römische oder arabische. Im deutschsprachigen Raum ist die Verwendung

Mehr

2. Web 2.0, Semantic Web. 3. Wissensmanagement. 1. Methoden des Wissensmanagements. 2. Software. 4. Wissensrepräsentation

2. Web 2.0, Semantic Web. 3. Wissensmanagement. 1. Methoden des Wissensmanagements. 2. Software. 4. Wissensrepräsentation Überblick GRUNDKURS INFORMATIK 2 DATEN-INFORMATION-WISSEN 1. Informatik Grundlagen: Informationsdarstellung, Information und Daten, Algorithmen, Problemlösung. 2. Web 2.0, Semantic Web 3. Wissensmanagement

Mehr

Beschaffung vom Informationssystemen Datenorganisation Kommunikation

Beschaffung vom Informationssystemen Datenorganisation Kommunikation Grundlegende Definitionen Technik Hardware Bits, Bytes und Zahlensysteme Von-Neumann Architektur Datenein- und ausgabe Software System- und systemnahe Software Anwendungssysteme Beschaffung vom Informationssystemen

Mehr

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement

1. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement 3 Darstellungsformen für Zahlen Informatik II SS 24 Dipl.-Inform. Michael Ebner. Vorzeichen und Betrag (engl. Sign-/Magnitude) 2. Stellenkomplement 3. Basiskomplement Warum 3 Darstellungsformen? Ziel:

Mehr

1. Stellenwerte im Dualsystem

1. Stellenwerte im Dualsystem 1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

Beuth Hochschule Zahlensysteme WS15/16, S. 1

Beuth Hochschule Zahlensysteme WS15/16, S. 1 Beuth Hochschule Zahlensysteme WS15/16, S. 1 Zahlensysteme Eine natürliche Zahl (wie z.b. drei oder siebzehn etc.) kann man auf verschiedene Weisen darstellen, etwa als römische Zahl (z.b. XVII) oder durch

Mehr

3. Datentypen, Ausdrücke und Operatoren

3. Datentypen, Ausdrücke und Operatoren 3. Datentypen, Ausdrücke und Operatoren Programm muß i.a. Daten zwischenspeichern Speicherplatz muß bereitgestellt werden, der ansprechbar, reserviert ist Ablegen & Wiederfinden in höheren Programmiersprachen

Mehr

D A T E N... 1 Daten Micheuz Peter

D A T E N... 1 Daten Micheuz Peter D A T E N.....! Symbole, Alphabete, Codierung! Universalität binärcodierter Daten! Elementare Datentypen! Speicherung binärcodierter Daten! Befehle und Programme! Form und Bedeutung 1 Daten Micheuz Peter

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.

Mehr

Skript. EDV Grundlagen

Skript. EDV Grundlagen PAUL-EHRLICH-SCHULE Frankfurt-Höchst Berufs-, Fach-, Fachoberschule Informatik FOS FS Skript EDV Grundlagen Datum: Name: Klasse: 1. Daten die Welt der Bits und Bytes Daten begegnen uns im Alltag in vielfältiger

Mehr

Alexander Halles. Zahlensysteme

Alexander Halles. Zahlensysteme Stand: 26.01.2004 - Inhalt - 1. Die verschiedenen und Umwandlungen zwischen diesen 3 1.1 Dezimalzahlensystem 3 1.2 Das Dualzahlensystem 4 1.2.1 Umwandlung einer Dezimalzahl in eine Dualzahl 4 1.2.2 Umwandlung

Mehr

{0,1,...,b-1} Die Ziffern (Digits) werden der Eindeutigkeit wegen häufig mit Bezeichnungen belegt, aus denen die Basis b erkennbar wird:

{0,1,...,b-1} Die Ziffern (Digits) werden der Eindeutigkeit wegen häufig mit Bezeichnungen belegt, aus denen die Basis b erkennbar wird: 2. Zahlendarstellung 2.1. Positionssysteme Was muß man sich merken? Basis {2,3,...} Zahl z = d d...d d.d d...d m-1 m-2 1 0-1 -2 -n mit Ziffer (Digit) d auf Position und d {0,1,...,-1} Die Ziffern (Digits)

Mehr

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme Grundlagen der Informatik Übungen 1. Termin Zahlensysteme M. Sc. Yevgen Dorozhko dorozhko@hlrs.de Kurzvorstellung M. Sc. Yevgen Dorozhko Ausbildung: 2008: M. Sc. Systemprogrammieren, Nationale technische

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Herzlich Willkommen zur Informatik I. Bits und Bytes. Zahlensystem zur Basis 10 (Dezimalzahlen) Warum Zahlensysteme betrachten?

Herzlich Willkommen zur Informatik I. Bits und Bytes. Zahlensystem zur Basis 10 (Dezimalzahlen) Warum Zahlensysteme betrachten? Herzlich Willkommen zur Informatik I Bits und Bytes Zahlen im Computer: Binärzahlen, Hexadezimalzahlen Text im Computer: ASCII-Code und Unicode Quelle: http://www.schulphysik.de/rgb.html Bit: eine binäre

Mehr

Black Box erklärt Zahlensysteme.

Black Box erklärt Zahlensysteme. Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der 1. Begriff der Definition seit den 60er Jahren: Wissenschaft von der maschinellen Informationsverarbeitung (engl. Computer Sciences) a) Theoretische mathematisch-logische Grundlagen aller

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr