Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Größe: px
Ab Seite anzeigen:

Download "Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung"

Transkript

1 Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit beruht auf folgender Grundidee: Im Sonnensystem sind alle Winkel und alle Winkelgeschwindigkeiten bekannt. Jedoch ist zu keinem dieser Winkel die gegenüber liegende Länge bekannt. Gelingt es, bei nur einem Planeten zu einem Zentralwinkel die zugehörige Bogenlänge zu messen, dann kennt man seine Entfernung zur Sonne und damit alle Entfernungen. Bei einem Venustransit wird die Erde von dem Schatten getroffen, den Venus bei ihrem Umlauf um die Sonne in den Weltraum wirft. Wenn es gelingt, die Geschwindigkeit v Sch dieses Schattens relativ zur Erde in absoluten Einheiten (z.b. km/s oder Erdradien/min) zu messen, dann kann man einem bekannten Winkel, den Venus in einer bestimmten Zeit auf ihrer Bahn um die Sonne überstrichen hat, die zugehörige Bogenlänge auf der Erde zuordnen. Wenn man z.b. den Zeitpunkt t 1 misst, an dem die Erde zum ersten Mal von dem Schatten getroffen wird (Beginn des 1. Kontakts, Abb. 1, oben), und den Zeitpunkt t 2, zu dem sie ganz in den Schatten eingetaucht ist (Ende des 1. Kontakts, Abb. 1, Mitte), dann beträgt zu dem bekannten Zentralwinkel ω syn t ges (in Abb. 1, unten, rot hervorgehoben) gerade zwei Erdradien. Also 2 Verfeinerungen ω syn t = 2R E r E = π S = R E r E = 1 2 ω syn t ges (1) Die Zeitdauer t ges des Schattendurchganges kann nicht direkt gemessen werden, weil an den entsprechenden Orten auf der Erde die Sonne gerade auf- bzw. untergeht, also direkt am Horizont steht. Außerdem wäre eine Einzelmessung nicht genau genug. Deshalb misst man den Moment des Schattendurchganges, den so genannten Kontaktzeitpunkt, an vielen Orten auf der Erde. Allerdings wird dann die Auswertung schwieriger, weil die Erde eine Kugel ist und der Schatten deshalb nicht gleichförmig über ihre Oberfläche wandert. 1

2 Abbildung 1: Beim Venustransit ergibt sich zu einem bekannten Winkel eine messbare Länge, z.b. der Durchmesser der Erde. 2.1 Drehung des Koordinatensystems Um diese Rechnung zu vereinfachen, berechnet man zunächst aus den geografischen Koordinaten (λ, ϕ) der Beobachtungsorte die zugehörigen rechtwinkligen Koordinaten r: r = r x r y r z = R E cos ϕ cos λ cos ϕ sin λ cosλ (2) Das zugehörige Koordinatensystem ist zunächst so orientiert, dass die z-achse durch den Nordpol der Erde, die x-achse durch den Längengrad von Greenwich geht. Durch geeignete Tranformation dreht man das Koordinatensystem so, dass die z-achse zum Nordpol der Ekliptik, die x-achse von der Sonne zur Erde zeigt. Diese Transformation wird durch eine Drehmatrix D 1 vermittelt: r = D 1 r (3) Nach dieser Drehung kann der Schattenlauf über die Erde dargestellt werden (Abb. 2) 1. Wenn nun noch, durch eine weitere Drehmatrix D 2, das Koordinatensystem so um die y-achse gedreht wird, dass der Venusschatten genau von rechts nach links, d.h. entgegengesetzt zur x-richtung, verläuft, r = D 2 r = D 2 D 1 r = D r, (4) dann ist die neue x-koordinate der Beobachtungsorte gerade ein Maß für ihren Abstand vom Schattenrand, dessen konstante Geschwindigkeit nur eine x-komponente hat (Abb. 4). 1 Dass die Schattengrenzen auf der Erde nicht geradlinig verlaufen, erkennt man deutlich, wenn man sich die Szene aus einem anderen Blickwinkel ansieht (s. Abb.??). 2

3 Abbildung 2: Ansicht des Schattendurchganges von der Sonne aus. Die Linien markieren die Schattenpositionen in Abständen von einer Minute. Abbildung 3: Der Schattendurchgang wie in Abb. 2, betrachtet aus anderer Perspektive (Suhr) 3

4 Abbildung 4: Das Koordinatensystem aus Abbildung 2 wurde so gedreht, dass sich die Schattenfront entlang der x-achse bewegt. In dieser Darstellung muss also gelten: x R E = 1 + v Sch R E (t t 1 ) (5) Dabei ist t 1 die, zunächst unbekannte, Zeit, zu der die Erde erstmals von dem Schatten getroffen wird. Trägt man also die Kontaktzeiten t über den entsprechenden x-koordinaten der Beobachtungsorte auf, dann müsste sich ein linearer Zusammenhang ergeben. Statistische Messfehler können durch eine Ausgleichsgerade kompensiert werden, deren Steigung gerade die Schattengeschwindigkeit ist. Extrapolation der Ausgleichsgeraden nach x = 1 und x = 1 liefert dann die in (1) auftretende Gesamtdauer t des Schattendurchganges. 2.2 Berechnung der Geschwindigkeit des Schattenrandes Im vorangehenden Abschnitt wurde stillschweigend vorausgesetzt, dass sich die Geschwindigkeit des Schattenrandes leicht aus der Winkelgeschwindigkeit der Venus berechnen lässt. Allerdings ist dabei noch zu berücksichtigen, dass sich Venus weder Abbildung 2, noch in Abbildung 4 parallel zur x-achse bewegt: In Abbildung 2, in dem die x-achse in der Ebene der Ekliptik liegt, beruht diese Abweichung auf der Neigung der Venusbahnebene gegen die Ekliptikebene. In Abbildung 4 wird dieser Winkel weiter vergrößert, weil der Mittelpunkt des Schattens den Erdmittelpunkt verfehlt, die Schattenfront also nicht senkrecht zur Richtung der Venusbewegung ist. Die Schattengeschwindigkeit muss deshalb noch mit dem Kosinus der Bewegungsrichtung korrigiert werden: 4

5 v Sch R E Dabei ist n die Normale auf der Schattenfront. 2.3 Idealisierungen = r E R E ω syn cos( n, v syn ) (6) 1. Während der ca. 15 Minuten des Schattendurchganges wird von der Erddrehung abgesehen. 2. Die Schattenfront wird als geradlinig angenommen. Tatsächlich ist sie natürlich kreisförmig. Allerdings ist dieser Kreis mehr als 40-mal so groß wie die Erde. Tatsächlich wurden die Abbildungen 2 und 4 mit maßstabsrichtigen Schattenkreisen gezeichnet. 2.4 Berechnung der Drehmatrix Auf dem Bild zeigt die x-achse nach rechts, die z-achse nach oben. In der Ausgangsstellung liegt also Greenwich am rechten Rand der Erdkugel, während Amerika mit seinen westlichen Längen zu sehen ist (Abb. 5, links oben). Zunächst wird das Koordinatensystem so gedreht, dass die x-achse durch den Längengrad geht, auf dem der subsolare Punkt liegt (Abb. 5, rechts oben). Da an diesem Punkt die Sonne gerade kulminiert, gilt: Θ SSP = α Sonne Die Sternzeit des subsolaren Punktes hängt folgendermaßen mit der von Greenwich zusammen: Θ SSP = Θ Gr + λ SSP Die geografische Länge λ SSP des subsolaren Punktes lässt sich also berechnen: λ SSP = α Sonne Θ Gr D 1 = D z ( λ SSP ) = D z (Θ Gr α Sonne ) (7) Mit der zweiten Drehung wird erreicht, dass die x-achse durch den subsolaren Punkt geht (Abb. 5, unten links). Dessen geografische Breite muss mit der Deklination der Sonne übereinstimmen: D 2 = D y (ϕ SSP ) = D y (δ Sonne ) (8) In dieser Stellung zeigt die Rotationsachse der der Erde nach rechts oben wie zu Frühlingsanfang. Im weiteren Verlauf des Jahres wendet sich der Nordpol, entsprechend der ekliptikalen Länge der Sonne λ Sonne, zunächst immer weiter der Sonne zu. Mit der 5

6 Abbildung 5: Drehungen der Erdkugel (x-achse zeigt nach rechts, z-achse nach oben): oben links: Original, oben rechts: nach Drehung um z-achse, unten links: nach zusätzlicher Drehung um y-achse, unten rechts: nach zusätzlicher Drehung um z-achse 6

7 dritten Drehung muss das Koordinatensystem also um diese Länge um die z-achse gedreht werden (Abb. 5, rechts unten). D 3 = D z ( λ Sonne ) (9) Mit der vierten Drehung um die y-achse wird schließlich die Schattengrenze in z- Richtung gedreht: D 4 = D y (α vsyn ) (10) Die Matrix der gesamten Drehung ergibt sich als Produkt der einzelnen Drehmatrizen: 2.5 Zahlenwerte D = D 4 D 3 D 2 D 1 (11) Am 8. Juni 2004 gelten für den 1./2. Kontakt folgende Zahlenwerte: λ Sonne = 77.7 (12) α Sonne = 76.7 (13) δ Sonne = 22.9 (14) Θ Gr = = 20h31m36s (15) R Schatten = 43.4R E (16) ω syn = 1.58 /min (17) v syn = 0.132R E /min (18) cos( n, v syn ) = (19) v Schatten = 0.116R E /min (20) Gesamtdauer des Durchlaufes: t ges = 17.2min (21) D 11 D 21 D D = D 12 D 22 D 32 = (22) D 13 D 23 D Die Transformation der Ortskoordinaten wird vermittelt durch: x = D 11 cos ϕ cos λ + D 21 cos ϕ sin λ + D 31 sin ϕ (23) 3 Auswertungsergebnisse 3.1 Quarks Abbildung?? zeigt die linearisierten Ergebnisse des Quarks-Projektes für den 2. Kontakt 2. Als Ausgleichsgerade wird von Excel angegeben: 2 Die Ergebnisse des 1. Kontaktes sind nicht auswertbar, 7

8 Abbildung 6: Quarks-Ergebnisse für den 2. Kontakt t 2 5h = 6.34 x R E min (24) Setzt man für x -1 und 1 ein, ergibt sich für die Gesamtdauer des Schattendurchlaufs: t 2 t 1 = 5h40.6min 5h28min = 12.6min (25) Für v Sch ergibt sich v Sch = R E min und daraus eine Schattengeschwindigkeit von v Sch v Sch = cos( n, v syn ) = R E min Aus der Ephemeridenrechnung ergibt sich v Sch = ω syn r E = 1.58 /min 1.015AE = 1.60 /min AE Zusammen genommen ergibt sich damit: π S = R E AE = = 8.9 (26) Dies perfekte Ergebnis dürfte angesichts der Datenlage Zufall sein. 8

9 3.2 ESO Abbildung 7: ESO-Ergebnisse für den 1. Kontakt Ganz entsprechend ergeben sich mit den deutlich zahlreicheren (und besseren?) Messergebnissen des ESO-Projektes 1. für den 1. Kontakt (s. Abb für den 2. Kontakt (s. Abb. 8 v Sch = 0.15 R E min = π S = 9.4 v Sch = 0.12 R E min = π S =

10 Abbildung 8: ESO-Ergebnisse für den 2. Kontakt 10

Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits

Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits Die

Mehr

Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits

Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits (mit

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

Eine digitale astronomische Uhr

Eine digitale astronomische Uhr Eine digitale astronomische Uhr Udo Backhaus (ASTRONOMIE+Raumfahrt 32, 26 (1995)) Ein Computerprogramm, das viele Anzeigen einer astronomischen Uhr darstellt, kann als ständig laufendes Programm (evtl.

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Gewußt...? Kap. 1: Sonnenstand. ... wieviel Handspannen die Sonne im Winter mittags über dem Horizont steht?

Gewußt...? Kap. 1: Sonnenstand. ... wieviel Handspannen die Sonne im Winter mittags über dem Horizont steht? Gewußt...? In diesem Dokument sind einige Besonderheiten im jahreszeitlichen und örtlichen Verlauf der Sonne zusammengestellt und aufgrund der astronomischen Zusammenhänge erklärt. Die entsprechenden Daten,

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Auswertung CY Aqr Sept. 2010 - Sept. 2011

Auswertung CY Aqr Sept. 2010 - Sept. 2011 Auswertung CY Aqr Sept. 2010 - Sept. 2011 U. Backhaus 11. September 2011 Über einen einen Zeitraum von 12 Monaten wurden die kurzperiodischen Helligkeitsschwankungen des Sterns CY Aquarii von einer Gruppe

Mehr

Zwei Methoden zur Messung der Entfernung Erde-Sonne

Zwei Methoden zur Messung der Entfernung Erde-Sonne AUS BILDUNG UND WISSENSCHAFT Zwei Methoden zur Messung der Entfernung Erde-Sonne aus Anlass des Venustransits 2012 erfolgreich nachvollzogen UDO BACKHAUS PATRIK GABRIEL THOMAS KERSTING Der Venustransit

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Einführung in die Trigonometrie

Einführung in die Trigonometrie Einführung in die Trigonometrie Sinus, Kosinus, Tangens am rechtwinkligen Dreieck und am Einheitskreis Monika Sellemond, Anton Proßliner, Martin Niederkofler Thema Stoffzusammenhang Klassenstufe Trigonometrie

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Messung der Astronomischen Einheit durch Beobachtung und Auswertung eines Venustransits

Messung der Astronomischen Einheit durch Beobachtung und Auswertung eines Venustransits Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Beobachtung und Auswertung eines Venustransits Serienaufnahme

Mehr

Die Planeten der Sonne: Berechnung der Umlaufbahnen (A), graphische Darstellung von Sichtbarkeitszeiten (B).

Die Planeten der Sonne: Berechnung der Umlaufbahnen (A), graphische Darstellung von Sichtbarkeitszeiten (B). Die Planeten der Sonne: Berechnung der Umlaufbahnen (A), graphische Darstellung von Sichtbarkeitszeiten (B). von Franz J. Bellen, 46537 Dinslaken, E-Mail: dj1yq@t-online.de A. Berechnung der Umlaufbahnen

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Astronomie und Astrophysik II. SS 2005 a

Astronomie und Astrophysik II. SS 2005 a Astronomie und Astrophysik II SS 2005 a Christoph Berger / Frank Raupach RWTH-Aachen Physikalisches Institut Ib Email:frank.raupach@cern.ch Email:berger@physik.rwth-aachen.de July 7, 2005 a Institut Ib,

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Anwendungen 1. b) Berechnen Sie die Hypothenuse c: c) Berechnen Sie die Winkelfunktionen sinα, cosα, und tanα. d) Berechnen Sie die Winkel α und β :

Anwendungen 1. b) Berechnen Sie die Hypothenuse c: c) Berechnen Sie die Winkelfunktionen sinα, cosα, und tanα. d) Berechnen Sie die Winkel α und β : Für alle Aufgaben gilt: 1. Winkel und Strecken sind auf eine, Winkelfunktionen auf 4 Nachkommastellen zu runden; nehmen Sie für Zwischenresultate mit denen Sie weiterrechnen eine Stelle mehr 2. Erstellen

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v.5 03/08/3 7::33 hk Exp $ 5 Sphärische Trigonometrie 5.4 Geographische Koordinaten In der letzten Sitzung hatten wir die geographischen Koordinaten eines Punkts P auf einer Kugel, beziehungsweise

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

KREISEL, PENDEL & PLANETEN

KREISEL, PENDEL & PLANETEN KREISEL, PENDEL & PLANETEN Unterrichtseinheit zum Astronomischen Jahr Dynamikum Exponat: Ball am Seil Stichworte: Zentrifugalkraft, Zentripetalkraft, Bahngeschwindigkeit Mit dieser Versuchsanordnung lässt

Mehr

Es wird versucht, die geometrischen Grundlagen zur Entscheidung dieser Frage aufzuarbeiten.

Es wird versucht, die geometrischen Grundlagen zur Entscheidung dieser Frage aufzuarbeiten. Hans Walser, [20160609] Gestalt der Erde 1 Worum geht es? Im späten 17. Jahrhundert entspann sich ein wissenschaftlicher treit um die Gestalt der Erde (Brotton 2012,. 308): Die Anhänger von Descartes (1596-1650)

Mehr

Astronomie Unser Sonnensystem in Zahlen

Astronomie Unser Sonnensystem in Zahlen Ausgabe 2007-10 Astronomie Unser Sonnensystem in Zahlen Seite 1. Erde, Mond, Sonne in Zahlen 2 1.1 Die Erde als Himmelskörper 2 1.2 Der Erdmond 3 1.3 Die Sonne 4 2. Unser Planetensystem 5 1. Erde, Mond,

Mehr

Die Bestimmung der Entfernung des Asteroiden Toutatis (4179) Michael Geffert

Die Bestimmung der Entfernung des Asteroiden Toutatis (4179) Michael Geffert Die Bestimmung der Entfernung des Asteroiden Toutatis (4179) Michael Geffert In diesem Beitrag wird ein Versuch für eine Praktikumsarbeit vorgestellt, bei dem der Abstand eines Asteroiden von der Erde

Mehr

Berechnung und Messung der Sonnenscheindauer. auf einer Dachschrägen

Berechnung und Messung der Sonnenscheindauer. auf einer Dachschrägen Didaktik der Physik Frühjahrstagung Wuppertal 2015 Berechnung und Messung der Sonnenscheindauer auf beliebigen Dachschrägen Tran Ngoc Chat*, Adrian Weber* *Universität Siegen, Didaktik der Physik, Adolf-Reichwein-Straße

Mehr

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann.

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Expertengruppenarbeit Sonnenentfernung Das ist unsere Aufgabe: Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Konkret ist Folgendes zu tun: Lesen Sie

Mehr

2D - Strömungssimulation einer dreiblättrigen Vertikalachs-Windkraftanlage

2D - Strömungssimulation einer dreiblättrigen Vertikalachs-Windkraftanlage 2D - Strömungssimulation einer dreiblättrigen Vertikalachs-Windkraftanlage Inhalt: 1 Einleitung 3 2 Technische Daten 4 3 Geometrie unter PRO Engineer 5 4 Vernetzung der Geometrie 9 5 Simulation des stationären

Mehr

7 Beziehungen im Raum

7 Beziehungen im Raum Lange Zeit glaubten die Menschen, die Erde sei eine Scheibe. Heute zeigen dir Bilder aus dem Weltall sehr deutlich, dass die Erde die Gestalt einer Kugel hat. 7 Beziehungen im Raum Gradnetz der Erde Längengrade

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

Philippe Jeanjacquot Gerhard Rath Corina Toma Zbigniew Trzmiel

Philippe Jeanjacquot Gerhard Rath Corina Toma Zbigniew Trzmiel Philippe Jeanjacquot Gerhard Rath Corina Toma Zbigniew Trzmiel isky: Die Vermessung des Himmels 15 1 Zusammenfassung W - fangen von Planetarien-Apps gibt es eine Reihe von Möglichkeiten, um weitere Messungen

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren?

32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren? 32. Algorithmus der Woche Kreise zeichnen mit Turbo Programmoptimierung: Wie kann man die Zahl der Rechenoperationen minimieren? Autor Leif Kobbelt, RWTH Aachen Dominik Sibbing, RWTH Aachen Hast Du schon

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Einführung in die Astronomie

Einführung in die Astronomie Einführung in die Astronomie Teil 1 Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg part1.tex Einführung in die Astronomie Peter H. Hauschildt 21/10/2014

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt 5 Dr. P. P. Orth Abgabe und Besprechung 29..23. Messung der Gravitationsbeschleunigung

Mehr

P r o t o k o l l: P r a k t i s c h e A s t r o n o m i e

P r o t o k o l l: P r a k t i s c h e A s t r o n o m i e Praktische Astronomie Sommersemester 08 Klaus Reitberger csaf8510@uibk.ac.at 0516683 P r o t o k o l l: P r a k t i s c h e A s t r o n o m i e von Klaus Reitberger 1 1 Zusammenfassung Ein Teil der Vorlesung

Mehr

6 Trigonometrische Funktionen

6 Trigonometrische Funktionen 6 Trigonometrische Funktionen 6. Definition Die Trigonometrischen Funktionen (oder Winkelfunktionen) Sinus-, Kosinusund Tangensfunktion stellen den Zusammenhang zwischen Winkel und Seitenverhältnis dar.

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

Mittelpunktbestimmung von PLZ-Regionen

Mittelpunktbestimmung von PLZ-Regionen Mittelpunktbestimmung von PLZ-Regionen Technische Beschreibung der Lat-Lon-Liste von Geodaten-Deutschland.de (c) 2016 OW networks GmbH Stand: 6. Februar 2016 1 Algorithmus Mittelpunkt-Bestimmung Gesucht

Mehr

Messung der Astronomischen Einheit nach Aristarch

Messung der Astronomischen Einheit nach Aristarch Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch 1 Einleitung Bis ins 17. Jahrhundert war die

Mehr

3 Vektorbündel und das Tangentialbündel

3 Vektorbündel und das Tangentialbündel $Id: vektor.tex,v 1.6 2014/06/30 10:20:57 hk Ex $ $Id: fluss.tex,v 1.2 2014/06/30 12:36:06 hk Ex hk $ 3 Vektorbündel und das Tangentialbündel 3.4 Ableitungen von C q -Funktionen In der letzten Sitzung

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

MC (Medium Coeli) und AS (Aszendent) berechnen

MC (Medium Coeli) und AS (Aszendent) berechnen 14. Jahrgang, Nr. 02, April 2003, Karsten F. Kröncke MC (Medium Coeli) und AS (Aszendent) berechnen Grundlage der Berechnung sind die Geburtsdaten. Dazu gehören: Jahr Monat Tag Stunde Minute Sekunde Ort

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

2 Skalarprodukt, Vektorprodukt

2 Skalarprodukt, Vektorprodukt 37 2 Skalarprodukt, Vektorprodukt Es gibt zwei verschiedene Verknüpfungsregeln für das Produkt von Vektoren. Die mechanische Arbeit ist definiert als Produkt aus Kraft und Weg. 1 Vorausgesetzt wird dabei,

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Die Keplerschen Gesetze ==================================================================

Die Keplerschen Gesetze ================================================================== Die Keplerschen Gesetze ================================================================== Astronomische Daten, die bei den folgenden Berechnungen verwendet werden dürfen: Große Halbachse Sonne-Erde: 1

Mehr

Mathematik Klasse 9b, AB 03 Lineare Funktionen 02 - Lösung

Mathematik Klasse 9b, AB 03 Lineare Funktionen 02 - Lösung Allgemeiner Hinweis: An einigen Stellen fehlen aus Platzgründen bei Gleichungsumformungen die Anzeige der Äquivalenzumformungen, wenn sie eindeutig sind. Also 2 x=10 x=5 statt 2x=10 :2 x=5. In der Arbeit

Mehr

1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007

1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007 1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007 Bsp. Name:... 1 2 Matr. Nr.... SKZ:... 3 4 Bitte verwenden Sie nur ausgeteilte Blätter! Σ Maximal : 20 Punkte (5 Punkte/Aufgabe) Punkte Kinematik

Mehr

Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010)

Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010) Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010) Das mit dem Modell verfolgte Ziel besteht darin, die Bewegung

Mehr

Schule. Station Löffelliste Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode

Schule. Station Löffelliste Teil 2. Klasse. Arbeitsheft. Tischnummer. Teilnehmercode Station Löffelliste Teil 2 Schule Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Löffelliste Teil 2 Liebe Schülerinnen und Schüler! Nachdem Opa Helmut seine Reise zum Mond beendet hat,

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1. Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare

Mehr

2. UNTERRICHTSTUNDE: DIE LAGE DER VEREINIGTEN STAATEN: EINE LANDKARTE LESEN KÖNNEN

2. UNTERRICHTSTUNDE: DIE LAGE DER VEREINIGTEN STAATEN: EINE LANDKARTE LESEN KÖNNEN THEMA: USA 2. UNTERRICHTSTUNDE 34 2. UNTERRICHTSTUNDE: DIE LAGE DER VEREINIGTEN STAATEN: EINE LANDKARTE LESEN KÖNNEN Ziele: die Schüler sollen sich über die Größe der Vereinigten Staaten bewusst werden

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Bauingenieure und Geodäten Übung 1: Geodätische Koordinatensysteme und Erste Geodätische Hauptaufgabe Milo Hirsch Hendrik Hellmers Florian Schill Institut für Geodäsie Fachbereich

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff

Mehr

Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle

Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle CAD Ebenes Zeichnen (2D-CAD) und die ersten Befehle Schnellzugriff-Werkzeugkasten (Quick Access Toolbar) Registerkarten (Tabs) Gruppenfenster (Panels) Zeichenfläche Befehlszeile: für schriftl. Eingabe

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Geheimnis Dunkle Materie

Geheimnis Dunkle Materie Geheimnis Dunkle Materie Auf der Suche nach den Bausteinen des Kosmos Unterrichtsmaterial für Schulen zur Vor- und Nachbereitung des Besuchs in unserem Planetarium 1. Kurze Information für die Lehrkräfte

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

Das Astrolabium. experimentis 2010 Erhältlich unter www.experimentis-shop.de

Das Astrolabium. experimentis 2010 Erhältlich unter www.experimentis-shop.de Das Astrolabium experimentis 2010 Erhältlich unter www.experimentis-shop.de Über 1000 Einsatzmöglichkeiten sollen für das Astrolabium einst bekannt gewesen sein - das berichtete zumindest der arabische

Mehr

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung 1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz Kepler sche Gesetze 1. 3. Keplersche Gesetz (a) Wie kann man das 3. Keplersche Gesetz aus physikalischen Gesetzen ableiten? Welche vereinfachenden Annahmen werden dazu gemacht? (b) Welche Verfeinerung

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

Herzlich Willkommen. GeoGebra für Anfänger

Herzlich Willkommen. GeoGebra für Anfänger Herzlich Willkommen beim Seminar GeoGebra für Anfänger Ihr Name Viel Erfolg! Inhaltsverzeichnis Viel Erfolg!... 1 Ableitung einer Funktion...2...2...2 Tangenten einer Funktion...3...3...3 Kurvendiskussion...4...4...4

Mehr

Geradengleichungen. Anna Heynkes. 21.9.2005, Aachen

Geradengleichungen. Anna Heynkes. 21.9.2005, Aachen Geradengleichungen Anna Heynkes 21.9.2005, Aachen Wegen des Überspringens einer Jahrgangsstufe habe ich den Mathematik- Unterricht verpasst, in dem die Geradengleichungen behandelt wurden. Deshalb musste

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

1. Lineare Regression (Ausgleichsgerade)

1. Lineare Regression (Ausgleichsgerade) Carl-Engler-Schule Karlsruhe Lineare Regression 1 (6) 1. Lineare Regression (Ausgleichsgerade) 1.1 Was ist eine Ausgleichsgerade? Die Ausgleichsgerade ist ein Ausgleichs-Verfahren zur Kurvenanpassung (Approximation).

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008 Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 8 Zusammenfassung IC Il Corso Advanzato I. Besondere Punkte, Geraden und Ebenen 1. Besondere Ebenen Koordinatenebenen: Wie in dem konkretes

Mehr

Sonne, Mond und Sterne: Die neue Sicht des Universum. II Skalen des Universums

Sonne, Mond und Sterne: Die neue Sicht des Universum. II Skalen des Universums Sonne, Mond und Sterne: Die neue Sicht des Universum II Skalen des Universums Größen und Entfernungen im Universum Erde/Mond Sonnensystem Milchstraße Kosmos als Ganzes Kugelgestalt der Erde Größe der Erdkugel

Mehr

Anwendungen 1 - Lösungen

Anwendungen 1 - Lösungen Für alle Aufgaben gilt: 1. Winkel und Strecken sind auf eine, Winkelfunktionen auf 4 Nachkommastellen zu runden; nehmen Sie für Zwischenresultate mit denen Sie weiterrechnen eine Stelle mehr. Erstellen

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Das Magnetfeld der Erde. Stephen Kimbrough Damjan Štrus Corina Toma

Das Magnetfeld der Erde. Stephen Kimbrough Damjan Štrus Corina Toma Das Magnetfeld der Erde Stephen Kimbrough Damjan Štrus Corina Toma Das Magnetfeld der Erde 65 1 Zusammenfassung Warum ist es so wichtig, die Werte des Magnetfelds der Erde zu kennen? Warum untersucht die

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr