Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Größe: px
Ab Seite anzeigen:

Download "Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung"

Transkript

1 Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit beruht auf folgender Grundidee: Im Sonnensystem sind alle Winkel und alle Winkelgeschwindigkeiten bekannt. Jedoch ist zu keinem dieser Winkel die gegenüber liegende Länge bekannt. Gelingt es, bei nur einem Planeten zu einem Zentralwinkel die zugehörige Bogenlänge zu messen, dann kennt man seine Entfernung zur Sonne und damit alle Entfernungen. Bei einem Venustransit wird die Erde von dem Schatten getroffen, den Venus bei ihrem Umlauf um die Sonne in den Weltraum wirft. Wenn es gelingt, die Geschwindigkeit v Sch dieses Schattens relativ zur Erde in absoluten Einheiten (z.b. km/s oder Erdradien/min) zu messen, dann kann man einem bekannten Winkel, den Venus in einer bestimmten Zeit auf ihrer Bahn um die Sonne überstrichen hat, die zugehörige Bogenlänge auf der Erde zuordnen. Wenn man z.b. den Zeitpunkt t 1 misst, an dem die Erde zum ersten Mal von dem Schatten getroffen wird (Beginn des 1. Kontakts, Abb. 1, oben), und den Zeitpunkt t 2, zu dem sie ganz in den Schatten eingetaucht ist (Ende des 1. Kontakts, Abb. 1, Mitte), dann beträgt zu dem bekannten Zentralwinkel ω syn t ges (in Abb. 1, unten, rot hervorgehoben) gerade zwei Erdradien. Also 2 Verfeinerungen ω syn t = 2R E r E = π S = R E r E = 1 2 ω syn t ges (1) Die Zeitdauer t ges des Schattendurchganges kann nicht direkt gemessen werden, weil an den entsprechenden Orten auf der Erde die Sonne gerade auf- bzw. untergeht, also direkt am Horizont steht. Außerdem wäre eine Einzelmessung nicht genau genug. Deshalb misst man den Moment des Schattendurchganges, den so genannten Kontaktzeitpunkt, an vielen Orten auf der Erde. Allerdings wird dann die Auswertung schwieriger, weil die Erde eine Kugel ist und der Schatten deshalb nicht gleichförmig über ihre Oberfläche wandert. 1

2 Abbildung 1: Beim Venustransit ergibt sich zu einem bekannten Winkel eine messbare Länge, z.b. der Durchmesser der Erde. 2.1 Drehung des Koordinatensystems Um diese Rechnung zu vereinfachen, berechnet man zunächst aus den geografischen Koordinaten (λ, ϕ) der Beobachtungsorte die zugehörigen rechtwinkligen Koordinaten r: r = r x r y r z = R E cos ϕ cos λ cos ϕ sin λ cosλ (2) Das zugehörige Koordinatensystem ist zunächst so orientiert, dass die z-achse durch den Nordpol der Erde, die x-achse durch den Längengrad von Greenwich geht. Durch geeignete Tranformation dreht man das Koordinatensystem so, dass die z-achse zum Nordpol der Ekliptik, die x-achse von der Sonne zur Erde zeigt. Diese Transformation wird durch eine Drehmatrix D 1 vermittelt: r = D 1 r (3) Nach dieser Drehung kann der Schattenlauf über die Erde dargestellt werden (Abb. 2) 1. Wenn nun noch, durch eine weitere Drehmatrix D 2, das Koordinatensystem so um die y-achse gedreht wird, dass der Venusschatten genau von rechts nach links, d.h. entgegengesetzt zur x-richtung, verläuft, r = D 2 r = D 2 D 1 r = D r, (4) dann ist die neue x-koordinate der Beobachtungsorte gerade ein Maß für ihren Abstand vom Schattenrand, dessen konstante Geschwindigkeit nur eine x-komponente hat (Abb. 4). 1 Dass die Schattengrenzen auf der Erde nicht geradlinig verlaufen, erkennt man deutlich, wenn man sich die Szene aus einem anderen Blickwinkel ansieht (s. Abb.??). 2

3 Abbildung 2: Ansicht des Schattendurchganges von der Sonne aus. Die Linien markieren die Schattenpositionen in Abständen von einer Minute. Abbildung 3: Der Schattendurchgang wie in Abb. 2, betrachtet aus anderer Perspektive (Suhr) 3

4 Abbildung 4: Das Koordinatensystem aus Abbildung 2 wurde so gedreht, dass sich die Schattenfront entlang der x-achse bewegt. In dieser Darstellung muss also gelten: x R E = 1 + v Sch R E (t t 1 ) (5) Dabei ist t 1 die, zunächst unbekannte, Zeit, zu der die Erde erstmals von dem Schatten getroffen wird. Trägt man also die Kontaktzeiten t über den entsprechenden x-koordinaten der Beobachtungsorte auf, dann müsste sich ein linearer Zusammenhang ergeben. Statistische Messfehler können durch eine Ausgleichsgerade kompensiert werden, deren Steigung gerade die Schattengeschwindigkeit ist. Extrapolation der Ausgleichsgeraden nach x = 1 und x = 1 liefert dann die in (1) auftretende Gesamtdauer t des Schattendurchganges. 2.2 Berechnung der Geschwindigkeit des Schattenrandes Im vorangehenden Abschnitt wurde stillschweigend vorausgesetzt, dass sich die Geschwindigkeit des Schattenrandes leicht aus der Winkelgeschwindigkeit der Venus berechnen lässt. Allerdings ist dabei noch zu berücksichtigen, dass sich Venus weder Abbildung 2, noch in Abbildung 4 parallel zur x-achse bewegt: In Abbildung 2, in dem die x-achse in der Ebene der Ekliptik liegt, beruht diese Abweichung auf der Neigung der Venusbahnebene gegen die Ekliptikebene. In Abbildung 4 wird dieser Winkel weiter vergrößert, weil der Mittelpunkt des Schattens den Erdmittelpunkt verfehlt, die Schattenfront also nicht senkrecht zur Richtung der Venusbewegung ist. Die Schattengeschwindigkeit muss deshalb noch mit dem Kosinus der Bewegungsrichtung korrigiert werden: 4

5 v Sch R E Dabei ist n die Normale auf der Schattenfront. 2.3 Idealisierungen = r E R E ω syn cos( n, v syn ) (6) 1. Während der ca. 15 Minuten des Schattendurchganges wird von der Erddrehung abgesehen. 2. Die Schattenfront wird als geradlinig angenommen. Tatsächlich ist sie natürlich kreisförmig. Allerdings ist dieser Kreis mehr als 40-mal so groß wie die Erde. Tatsächlich wurden die Abbildungen 2 und 4 mit maßstabsrichtigen Schattenkreisen gezeichnet. 2.4 Berechnung der Drehmatrix Auf dem Bild zeigt die x-achse nach rechts, die z-achse nach oben. In der Ausgangsstellung liegt also Greenwich am rechten Rand der Erdkugel, während Amerika mit seinen westlichen Längen zu sehen ist (Abb. 5, links oben). Zunächst wird das Koordinatensystem so gedreht, dass die x-achse durch den Längengrad geht, auf dem der subsolare Punkt liegt (Abb. 5, rechts oben). Da an diesem Punkt die Sonne gerade kulminiert, gilt: Θ SSP = α Sonne Die Sternzeit des subsolaren Punktes hängt folgendermaßen mit der von Greenwich zusammen: Θ SSP = Θ Gr + λ SSP Die geografische Länge λ SSP des subsolaren Punktes lässt sich also berechnen: λ SSP = α Sonne Θ Gr D 1 = D z ( λ SSP ) = D z (Θ Gr α Sonne ) (7) Mit der zweiten Drehung wird erreicht, dass die x-achse durch den subsolaren Punkt geht (Abb. 5, unten links). Dessen geografische Breite muss mit der Deklination der Sonne übereinstimmen: D 2 = D y (ϕ SSP ) = D y (δ Sonne ) (8) In dieser Stellung zeigt die Rotationsachse der der Erde nach rechts oben wie zu Frühlingsanfang. Im weiteren Verlauf des Jahres wendet sich der Nordpol, entsprechend der ekliptikalen Länge der Sonne λ Sonne, zunächst immer weiter der Sonne zu. Mit der 5

6 Abbildung 5: Drehungen der Erdkugel (x-achse zeigt nach rechts, z-achse nach oben): oben links: Original, oben rechts: nach Drehung um z-achse, unten links: nach zusätzlicher Drehung um y-achse, unten rechts: nach zusätzlicher Drehung um z-achse 6

7 dritten Drehung muss das Koordinatensystem also um diese Länge um die z-achse gedreht werden (Abb. 5, rechts unten). D 3 = D z ( λ Sonne ) (9) Mit der vierten Drehung um die y-achse wird schließlich die Schattengrenze in z- Richtung gedreht: D 4 = D y (α vsyn ) (10) Die Matrix der gesamten Drehung ergibt sich als Produkt der einzelnen Drehmatrizen: 2.5 Zahlenwerte D = D 4 D 3 D 2 D 1 (11) Am 8. Juni 2004 gelten für den 1./2. Kontakt folgende Zahlenwerte: λ Sonne = 77.7 (12) α Sonne = 76.7 (13) δ Sonne = 22.9 (14) Θ Gr = = 20h31m36s (15) R Schatten = 43.4R E (16) ω syn = 1.58 /min (17) v syn = 0.132R E /min (18) cos( n, v syn ) = (19) v Schatten = 0.116R E /min (20) Gesamtdauer des Durchlaufes: t ges = 17.2min (21) D 11 D 21 D D = D 12 D 22 D 32 = (22) D 13 D 23 D Die Transformation der Ortskoordinaten wird vermittelt durch: x = D 11 cos ϕ cos λ + D 21 cos ϕ sin λ + D 31 sin ϕ (23) 3 Auswertungsergebnisse 3.1 Quarks Abbildung?? zeigt die linearisierten Ergebnisse des Quarks-Projektes für den 2. Kontakt 2. Als Ausgleichsgerade wird von Excel angegeben: 2 Die Ergebnisse des 1. Kontaktes sind nicht auswertbar, 7

8 Abbildung 6: Quarks-Ergebnisse für den 2. Kontakt t 2 5h = 6.34 x R E min (24) Setzt man für x -1 und 1 ein, ergibt sich für die Gesamtdauer des Schattendurchlaufs: t 2 t 1 = 5h40.6min 5h28min = 12.6min (25) Für v Sch ergibt sich v Sch = R E min und daraus eine Schattengeschwindigkeit von v Sch v Sch = cos( n, v syn ) = R E min Aus der Ephemeridenrechnung ergibt sich v Sch = ω syn r E = 1.58 /min 1.015AE = 1.60 /min AE Zusammen genommen ergibt sich damit: π S = R E AE = = 8.9 (26) Dies perfekte Ergebnis dürfte angesichts der Datenlage Zufall sein. 8

9 3.2 ESO Abbildung 7: ESO-Ergebnisse für den 1. Kontakt Ganz entsprechend ergeben sich mit den deutlich zahlreicheren (und besseren?) Messergebnissen des ESO-Projektes 1. für den 1. Kontakt (s. Abb für den 2. Kontakt (s. Abb. 8 v Sch = 0.15 R E min = π S = 9.4 v Sch = 0.12 R E min = π S =

10 Abbildung 8: ESO-Ergebnisse für den 2. Kontakt 10

Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits

Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits Die

Mehr

Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits

Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Messung von Kontaktzeiten bei einem Venustransits (mit

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Doppler-Effekt und Bahngeschwindigkeit der Erde

Doppler-Effekt und Bahngeschwindigkeit der Erde Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Doppler-Effekt und Bahngeschwindigkeit der Erde 1 Einleitung Nimmt man im Laufe eines Jahres

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.8 2015/07/09 15:09:47 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

Messung der Astronomischen Einheit nach Aristarch (mit Lösung)

Messung der Astronomischen Einheit nach Aristarch (mit Lösung) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Aristarch (mit Lösung) 1 Einleitung Bis ins 17. Jahrhundert

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Messung der Astronomischen Einheit durch Spektroskopie der Sonne

Messung der Astronomischen Einheit durch Spektroskopie der Sonne Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit durch Spektroskopie der Sonne (mit Lösungen) 1 Einleitung

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Die Regiomontanus-Sonnenuhr

Die Regiomontanus-Sonnenuhr Die Regiomontanus-Sonnenuhr Von Günther Zivny Die Regiomontanus-Sonnenuhr gehört zur Gruppe der Höhensonnenuhren. Die Sonnenhöhe, also der Winkel zwischen Horizont und Sonne, ändert sich im aufe des Tages.

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen)

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) 1 Einleitung Der Parallaxeneffekt

Mehr

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März Unser Sonnensystem Prof. Dr. Christina Birkenhake christina@birkenhake.net http://christina.birkenhake.net 8. März 2010 Heliozentrisches Weltbild des Kopernikus Ellipsen überspringen Ellipsen und Planetenbahnen

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen 1 Einleitung Die Mondentfernung (mit Lösungen) Als Aristarch versuchte, die Sonnenentfernung

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

SIS Vortragsreihe. Astronomische Koordinatensysteme

SIS Vortragsreihe. Astronomische Koordinatensysteme SIS Vortragsreihe Astronomische Koordinatensysteme Das Himmelsgewölbe Zur Vereinfachung stellen wir uns das Himmelsgewölbe als hohle Kugel vor. Die Fix-Sterne sind an dieser Kugel befestigt oder einfach

Mehr

Messung der Astronomischen Einheit nach Ole Römer

Messung der Astronomischen Einheit nach Ole Römer Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Messung der Astronomischen Einheit nach Ole Römer Einleitung Misst man um die Zeit der Jupiteropposition

Mehr

Physikalisches Grundpraktikum I SS2015 Foucault-Pendel Editierte Version für markrobin.de

Physikalisches Grundpraktikum I SS2015 Foucault-Pendel Editierte Version für markrobin.de Physikalisches Grundpraktikum I SS2015 Foucault-Pendel Editierte Version für markrobin.de Mark Robin Niemyj Marko Trojic Universität Bielefeld 23. September 2016 Inhaltsverzeichnis 1 Allgemeines 2 2 Theorie

Mehr

ASV Astroseminar 2003

ASV Astroseminar 2003 Astronavigation nicht für Prüfungen (C-Schein, SHS) sondern zum Vergnügen. Nichts auswendig lernen, sondern Hintergründe verstehen Nur Verfahren, die auf Sportbooten anwendbar sind Keine HO-Tafeln heutzutage

Mehr

Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe

Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie 1 Einleitung U. Backhaus, Universität Duisburg-Essen Die Entfernung der Hyaden Beispiel für die Bestimmung einer Sternstromparallaxe

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Die allgemeine Sinusfunktion

Die allgemeine Sinusfunktion Die allgemeine Sinusfunktion 1. Die Tageslänge(Zeitdauer zwischen Sonnenaufgang und Sonnenuntergang) an einem festen Ort verändert sich im Lauf eines Jahres. Die Graphik zeigt diese Veränderung für München.

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Astronomische Ortsbestimmung mit dem Sextanten

Astronomische Ortsbestimmung mit dem Sextanten Astronomische Ortsbestimmung mit dem Sextanten Der Sextant Die einfachste Art seine Position zu bestimmen ist die Mittagsmethode. Dabei wird die Sonnenhöhe zur Mittagszeit gemessen. Sie hat den Vorteil,

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Schwierigkeitsgrad Projekt 2 Der wahre Mittag Mittelstufe

Schwierigkeitsgrad Projekt 2 Der wahre Mittag Mittelstufe Schwierigkeitsgrad Projekt 2 Der wahre Mittag Mittelstufe - GERÄTE ein Solarscope ein Lot eine Uhr mit Sekundenanzeige ein Messschirm. Dieses Experiment kann in einem nach Süden gerichteten Raum oder an

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

F u n k t i o n e n Lineare Funktionen

F u n k t i o n e n Lineare Funktionen F u n k t i o n e n Lineare Funktionen Dieses Muster entstand aus der Drehung einer Geraden um einen kleinen Kreis. Dieser kleine Kreis dreht wiederum um einen grösseren Kreis. ADSL Internetanschlüsse

Mehr

Eine digitale astronomische Uhr

Eine digitale astronomische Uhr Eine digitale astronomische Uhr Udo Backhaus (ASTRONOMIE+Raumfahrt 32, 26 (1995)) Ein Computerprogramm, das viele Anzeigen einer astronomischen Uhr darstellt, kann als ständig laufendes Programm (evtl.

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Mittel- und Oberstufe - MITTEL:

Mittel- und Oberstufe - MITTEL: Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Beispiel: Wir suchen die Bildpunktkoordinaten der Sonne am um 0900h 22 min 25 sec Frage am Rande: Warum suchen wir die nochmal?

Beispiel: Wir suchen die Bildpunktkoordinaten der Sonne am um 0900h 22 min 25 sec Frage am Rande: Warum suchen wir die nochmal? Beispiel: Wir suchen die Bildpunktkoordinaten der Sonne am 20.03. 2005 um 0900h 22 min 25 sec Frage am Rande: Warum suchen wir die nochmal? Genau: Weil wir zu dem Zeitpunkt den Winkel zwischen Horizont

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Auswertung CY Aqr Sept Juni 2012

Auswertung CY Aqr Sept Juni 2012 Auswertung CY Aqr Sept. 2010 - Juni 2012 U. Backhaus 23. Oktober 2015 Über einen einen Zeitraum von 12 Monaten wurden die kurzperiodischen Helligkeitsschwankungen des Sterns CY Aquarii von einer Gruppe

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

11.3. Variablentrennung, Ähnlichkeit und Trajektorien

11.3. Variablentrennung, Ähnlichkeit und Trajektorien 3 Variablentrennung, Ähnlichkeit und Trajektorien Trennung der Veränderlichen (TdV) Es seien zwei stetige Funktionen a (der Variablen ) und b (der Variablen ) gegeben Die Dgl a( ) b( ) b( ) d d läßt sich

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block Stundenprotokoll Fach: Fachlehrer: Zeit: Protokollant: Thema der Stunde: Leistungskurs Physik A40/Q1 Herr Winkowski Dienstag, den 13.09.11, 3. Block Christian Täge Vertiefung der Kreisbewegung Gliederung

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & &

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & & Vektorprodukt Institut für Mathematik Humboldt-Universität zu Berlin 18.02.2004 & 17.02.2005 & 11.07.2005 zu den Vorlesungen Lineare Algebra und analytische Geometrie I (L) im WS 2003/2004, Mathematik

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

ASTRONOMISCHE NAVIGATION

ASTRONOMISCHE NAVIGATION ASTRONOMISCHE NAVIGATION Zur Ortsbestimmung durch Gestirnsbeobachtung in der Seefahrt Wolfgang Steiner FH OÖ, Fakultät für Technik und Umweltwissenschaften Die Koordinaten eines Punktes B auf der Erdoberfläche:

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Aufgabe 34 (Mechanik, Drehbewegung) Die Spitze des Minutenzeigers einer Turmuhr hat die Geschwindigkeit 1,50 mms -1. Wie lang ist der Zeiger?

Aufgabe 34 (Mechanik, Drehbewegung) Die Spitze des Minutenzeigers einer Turmuhr hat die Geschwindigkeit 1,50 mms -1. Wie lang ist der Zeiger? zu 2.2 / IV. Wiederholung zur Drehbewegung (Rotation) Aufgabe 31 (Mechanik, Drehbewegung) Fach: Physik/ L. Wenzl Datum:. Der Erdradius beträgt etwa 6370 km. Mit welcher Geschwindigkeit bewegt sich ein

Mehr

Astronavigation

Astronavigation Astronavigation 1. Lektion: Nordsternbreite Der Nordstern steht genau über dem Nordpol (stimmt nicht, ich weiß, aber die Differenz ignorieren wir zunächst mal). Mit einem Sextanten misst man den Winkel

Mehr

und einen zugehörigen Winkel beschreiben. Diese Bewegung wird auch kurz ROT[E, Ω ]

und einen zugehörigen Winkel beschreiben. Diese Bewegung wird auch kurz ROT[E, Ω ] EULER-POLE 1. Relativbewegungen von zwei n auf einer Kugel 1.1. Beschreibung der Relativbewegung Jede Bewegung einer sphärischen auf einer Kugel kann als eine Rotation dieser um eine Achse E, die durch

Mehr

Praktikum SC Optische Aktivität und Saccharimetrie

Praktikum SC Optische Aktivität und Saccharimetrie Praktikum SC Optische Aktivität und Saccharimetrie Hanno Rein, Florian Jessen betreut durch Gunnar Ritt 19. Januar 2004 1 Vorwort In den meiste Fällen setzt man bei verschiedensten Rechnungen stillschweigend

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Bauingenieure und Geodäten Übung 6: statistische Auswertung ungleichgenauer Messungen Milo Hirsch Hendrik Hellmers Florian Schill Institut für Geodäsie Fachbereich 13 Inhaltsverzeichnis

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 11

Technische Universität München Zentrum Mathematik. Übungsblatt 11 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 11 Hausaufgaben Aufgabe 11.1 Berechnen Sie jeweils die Jacobi-Matrix folgender

Mehr

Wima-Praktikum 2: Bildsynthese-Phong

Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Prof. Dr. Lebiedz, M. Sc. Radic 1 Inhaltsverzeichnis 1 Einleitung 3 2 Kurze Beschreibung der Aufgabenstellung und dem Phong- Modell 3 3 Modellierung

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

Kleines Klassen-Planetarium

Kleines Klassen-Planetarium Kleines Klassen-Planetarium Prof. Dr. Christina Birkenhake http://www.thuisbrunn65.de/ 23. März 2015 Unser Sonnensystem Sonne Merkur Venus Erde Mars Jupiter Saturn Uranus Neptun Seit 24. Aug. 2006 ist

Mehr

Projektionskurve Abiturprüfung LK Bayern 2003

Projektionskurve Abiturprüfung LK Bayern 2003 Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr

Meteorspur-Berechnung basierend auf Daten mindestens zweier Beobachtungsorte

Meteorspur-Berechnung basierend auf Daten mindestens zweier Beobachtungsorte Innere Planeten mit in xy Berechnung: Beat Booz Meteorspur-Berechnung basierend auf Daten mindestens zweier Beobachtungsorte Berechnungsverfahren: Die Meteorspur wird berechnet für alle gemeinsamen Schnittlinien

Mehr

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen:

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen: Aufgabe zur Corioliskraft 1 Aufgabe: Ein Luftgewehr sei mit dem Lot exakt senkrecht nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit 60 ms 1 Wo landet das Geschoss, wenn der Abschuss

Mehr

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt Eine Methode zur Positionsberechnung aus Relativmessungen Von Eckhardt Schön, Erfurt Mit 4 Abbildungen Die Bewegung der Sterne und Planeten vollzieht sich für einen irdischen Beobachter scheinbar an einer

Mehr

Extrasolare Planeten und ihre Zentralsterne

Extrasolare Planeten und ihre Zentralsterne Extrasolare Planeten und ihre Zentralsterne Nachtrag Organisatorisches Da schlussendlich eine individuelle Benotung erfolgen muss, soll am Ende eine etwa einstündige Klausur über den Stoff der Vorlesung

Mehr

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten "Zwischenwert"

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten Zwischenwert Kreis - Übungen Wenn die "Kreisgleichung" gesucht ist, sind der Mittelpunkt und der Radius anzugeben. Es ist möglich, dass mehrere Kreise eine Aufgabenstellung erfüllen. 1) Ein Kreis berührt die y-achse

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil Aufgabe : Bilden Sie die Ableitung der Funktion f

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr