Laplacetransformation in der Technik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Laplacetransformation in der Technik"

Transkript

1 Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik

2 Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen σ-funkion δ-funkion 2 Überragungsfunkion Beispiele 3 essignal Beschreibungsmöglichkeien Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 2

3 Sprungfunkionen I Verallgemeinere Funkionen σ-funkion δ-funkion Einheissprungfunkion σ() (Heaviside-Funkion) { für > σ() = für < Sückweise definiere Funkionen lassen sich mi σ() in kompaker Gesal darsellen. Anwendung finde die Einheissprungfunkion insbesondere bei der Beschreibung von Schalvorgängen. Durch Überlagerung geeigne verschobener Sprungfunkionen kann man reppenfunkionen in geschlossener Form darsellen. Recheckimpuls { für < r() = sons = σ( + ) σ( ) σ() r() σ( + ) σ( ) Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 3

4 Sprungfunkionen II g() = Verallgemeinere Funkionen für > für < < für < < = σ( + ) 2σ() + σ( ) σ-funkion δ-funkion Muliplizier man eine normale Funkion f () mi einem Recheckimpuls, so werden eile dieser Funkion herausgeschnien. f () [σ( ) σ( 2 )], < 2 für < π 2 h() = cos für π π für > 3 2 π = ( cos ) [σ ( π 2 ) σ ( 3 2 π)] g() σ( π 2 ) σ( 3π 2 ) π 2 h() π 3π 2 Die Funkion f () wird zur Zei eingeschale und zur Zei 2 ausgeschale. Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 4

5 δ-funkion Verallgemeinere Funkionen σ-funkion δ-funkion Impuls von kleiner Zeidauer = und Ampliude d () = [σ() σ( )] { für < < = mi sons d () d = Der Flächeninhal is dabei ein Maß für die Inensiä des Impulses. [σ() σ( )] e s s δ() δ() = lim d () = lim [σ() σ( )] d () e lim s se = lim s = oder +( s)+ ( s)2 2! ( s) ( s) 2 (s) ! = s = ( s) ! e s s = ( ) +... Einheisimpuls, Dirac-Soß Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 5

6 Verallgemeinere Funkionen σ-funkion δ-funkion δ-funkion; verallgemeinere Ableiung s () σ() ṡ () = d () σ() = δ() Abgesehen von den Übergangssellen = und = gil: { } ṡ () = ds d = für < < = d () sons δ() is die verallgemeinere Ableiung von σ() δ() = σ() = dσ() d Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 6

7 Verallgemeinere Funkionen δ-funkion; Eigenschafen σ-funkion δ-funkion Einen mahemaischen Sinn erhäl die δ-funkion im Zusammenhang mi Inegralen. Die dabei beracheen Funkionen klingen im Unendlichen so sark ab, dass alle vorkommenden uneigenlichen Inegrale konvergieren. { } f () [σ() σ( )] d = f ()d f ()d Ausblendeigenschaf = f ()δ()d = f () f ()d = f (τ) ; f () δ( ) d = f ( ) τ Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 7

8 Verallgemeinere Funkionen σ-funkion δ-funkion verallgemeinere Ableiung; Beispiel u() u() ü() u() = ( + ) [σ( + ) σ()] + ( ) [σ() σ( )] u() = [σ( + ) σ()] + ( + ) [δ( + ) δ()] [σ() σ( )] + ( ) [δ() δ( )] = [σ( + ) 2σ() + σ( )] + δ( + ) δ( ) +[ δ( + ) 2 δ() + δ( ) ] Ausblendeigenschaf }{{}}{{}}{{} δ(+) δ() δ( ) = [σ( + ) 2σ() + σ( )] ü() = [δ( + ) 2δ() + δ( )] Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 8

9 Verallgemeinere Funkionen Überragungsfunkion I Überragungsfunkion Beispiele Lineare rückwirkungsfreie Überragungsglieder werden im Zeibereich durch lineare Differenialgleichungen beschrieben. Dabei können auch Ableiungen des Eingangssignals eingehen. a n x (n) a a ẋ a + a x a = b m x (m) e b ẋ e + b x e ; m n x e ()... Eingangssignal x a ()... Ausgangssignal Die Laplaceransformaion mi Nullanfangsbedingungen liefer eine algebraische Gleichung zwischen den Laplaceransformieren von Eingangs- und Ausgangssignal. (a n s n a s + a ) X a (s) = (b m s m b s + b ) X e (s) Die Überragungsfunkion G(s) is das Verhälnis der Laplaceransformieren von Ausgangs- und Eingangsssignal. G(s) = X a(s) X e (s) = b ms m b s + b a n s n a s + a Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 9

10 Verallgemeinere Funkionen Überragungsfunkion II Überragungsfunkion Beispiele Der Beziehung X a (s) = G(s) X e (s) ensprich im Zeibereich die Falung der Erregung x e () mi der Laplace-Inversen von G(s): x a () = g() x e () = x e () = δ() X e (s) = X a (s) = G(s) x a () = g() g() heiß Impulsanwor des Sysems. x e () = σ() X e (s) = s X a (s) = G(s) s g(τ) x e ( τ) dτ ; g() G(s) x a () = g() σ() = g(τ)dτ heiß Sprunganwor des Sysems. g(τ)σ( τ)dτ }{{} = g(τ)dτ Fakulä Grundlagen Laplaceransformaion in der echnik Folie:

11 Verallgemeinere Funkionen Überragungsfunkion III Überragungsfunkion Beispiele Die Überragungsfunkion G(s) enhäl alle Koeffizienen der DGL; somi beschreib G(s) das Sysem vollsändig. Andererseis wird das Glied auch vollsändig durch seine Impulsanwor g() bzw. seine Sprunganwor h() = g(τ)dτ beschrieben. x e() X e(s) g() G(s) x a() X a(s) Bei obigen Überlegungen spielen die Anfangsbedingungen der DGL keine Rolle. Bei sabilen Sysemen geh der Einfluss der Sarwere für asympoisch gegen Null (vgl. Skrip DGL, Folie 6). Die Eigenwere der zugehörigen DGL ensprechen den Nullsellen des Nennerpolynoms der Überragungsfunkion. Ein Sysem is asympoisch sabil, wenn sämliche Nullsellen λ i in der negaiven Halbebene liegen, d. h. Re{λ i } <. Fakulä Grundlagen Laplaceransformaion in der echnik Folie:

12 Reihenschalung Verallgemeinere Funkionen Überragungsfunkion Beispiele Da die algebraische Gleichung zwischen X e (s) und X a (s) einfacher is als die Auswerung des Falungsinegrals, werden solche linearen Glieder of nur im s-bereich berache. Besonders offensichlich wird dieser Voreil bei Sysemen aus vermaschen Überragungsgliedern. Jedes einzelne Glied wird im Zeibereich durch eine DGL beschrieben; zur Beschreibung des Gesamsysems müssen diese Differenialgleichungen mühsam ineinander eingesez werden. Im s-bereich reduzier sich dann alles auf einfache algebraische Operaionen, wie folgende Beispiele zeigen. Reihenschalung X a (s) = G (s) G 2 (s) X e (s) X e(s) G (s) G 2 (s) X a(s) Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 2

13 Verallgemeinere Funkionen Überragungsfunkion Beispiele Parallelschalung, negaive Rückführung Parallelschalung X a (s) = Z (s) + Z 2 (s) mi Z i (s) = G i (s) X e (s) X e(s) G (s) X a(s) = X a (s) = [G (s) + G 2 (s)] X e (s) G 2 (s) Negaive Rückführung X a = G Z mi Z = X e G 2 X a X a = G (X e G 2 X a ) X e(s) Z G (s) X a(s) = G X e G G 2 X a = X a (s) = G (s) + G (s) G 2 (s) X e(s) G 2 (s) Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 3

14 Verallgemeinere Funkionen essignal Beschreibungsmöglichkeien Beschreibung eines Sysems im Zeibereich Sysem : Abbildung eines x() y() Eingangsignals x() in ein Ausgangsignal y() = {x()} {.} z. B. Filer, Bildbearbeiung, ec. Möglichkeien Beschreibung durch Differenzialgleichungen Mehode, die für jede reche Seie Eingangssignal die Lösung Ausgangssignal berechne. (vgl. Kapiel Differenzialgleichungen) Beschreibung durch essignale Ziel: Anwor des Sysems auf essignal muss alle Eigenschafen des Sysems beschreiben. Dabei darf sich die spezielle Srukur des essignals nich in Anwor spiegeln. Alernaive: Laplaceransformaion; Überragungsfunkion G(s) Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 4

15 essignal Verallgemeinere Funkionen essignal Beschreibungsmöglichkeien Eine essignal x () für das Sysem liefer die Sysemanwor y () x () essignal {.} y () Sysemanwor Für eine beliebige Anregung x() muss sich die Lösung y() durch eine Rechenoperaion darsellen lassen, bei der nur die Sysemanwor y () vorkomm. x() y() = x() y () Wie könne ine solche Rechenoperaion aussehen? Da die Eigenschafen von y () für alle eingehen müssen, komm nur ein Inegral in Frage. Vermuung: Falungsinegral Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 5

16 I Verallgemeinere Funkionen essignal Beschreibungsmöglichkeien U() = U R () + U C () q() : Ladung; i() : Sromsärke U R () = R i(); U C () = q() C q() = C U C () i() = C U C () U() U R () R C U C () U() = }{{} RC U C () + U C () bzw. ẏ() + y() = U(); y() = DGL: y h () = K e... y p () = y() = Ke + e τ U(τ)dτ e τ y()= = y() = U(τ)dτ e τ (Variaion der Konsanen) U(τ)dτ Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 6

17 II Verallgemeinere Funkionen essignal Beschreibungsmöglichkeien Die Darsellung der Lösung y() = Laplace-Umfeld der Falung: y() = e τ U(τ)dτ = e τ {e τ U(τ)dτ ensprich im } {U()} Die Funkion y () = e kann als Lösung der DGL beim Dirac-Impuls inerpreier werden. ẏ() + y() = δ(); y() = y () Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 7

18 Verallgemeinere Funkionen essignal Beschreibungsmöglichkeien ; Lösung DGL für Dirac-Soß Abschnisweise Lösung der DGL für die Recheckfunkion ẏ() + y() = d (); y() = d () { für < < d () = sons Die homogene Lösung der DGL is ses: y h = Ke Bereich Anfangswerproblem Lösung der DGL < ẏ() + y() = ; y() = y p = y = e ẏ() + y() = ; y() = e y p = y = e e Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 8

19 Verallgemeinere Funkionen ; Grenzübergang essignal Beschreibungsmöglichkeien Da lim e = gil für y () = e e y () = e Im Bereich < bleib y () beschränk, denn es gil: y () = e = [ 2 2! ! 3 ±... ] y Anregung d () δ() Lösung der DGL y () y () = e Impulsanwor Grenzfunkion kann als Anwor des Sysems auf den Dirac-Soß inerpreier werden. Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 9

20 Verallgemeinere Funkionen ; Sprunganwor essignal Beschreibungsmöglichkeien Die Sprunganwor des Sysems ergib sich als Lösung der DGL für die σ-funkion. ẏ() + y() = σ(); y() =... y() = e Die Sprunganwor kann ebenso aus der Impulsanwor durch Inegraion besimm werden. y() = = e τ dτ [ ] e τ y() = e Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 2

21 Verallgemeinere Funkionen essignal Beschreibungsmöglichkeien Anfangswerproblem mi Nullanfangsbedingungen a n x (n) a a ẋ a + a x a = b m x (m) e b ẋ e + b x e ; m n ẏ() + y() = U(); y() = Überragungsfunkion G(s) = X a(s) X e (s) = b ms m b s + b a n s n a s + a G(s) = + s Impulsanwor g() als Anwor des Sysems auf x e () = δ() g() = e Sprunganwor h() = h() = e g(τ)dτ als Anwor auf x e () = σ() Falungsinegral x a () = x e () g() y() = e τ U(τ)dτ Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 2

22 Verallgemeinere Funkionen als iefpass essignal Beschreibungsmöglichkeien DGL: RC U C () + U C () = U() ; = RC Überragungsfunkion: G(s) = + s Freuquenzgang: mi s = jω erhäl man aus der Überragungsfunkion A(ω) = G(jω) = + 2 ω 2 ϕ = arg {G(jω)} = arcan( ω) A(ω) ω Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 22

23 Verallgemeinere Funkionen als Hochpass essignal Beschreibungsmöglichkeien DGL: U R () + U R() RC = U() ; = RC Überragungsfunkion: G(s) = + s s Freuquenzgang: mi s = jω erhäl man aus der Überragungsfunkion A(ω) = G(jω) = ω + 2 ω 2 ϕ = arg {G(jω)} = ( ) arcan ω A(ω) Fakulä Grundlagen Laplaceransformaion in der echnik Folie: 23 ω

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich Regelungsechnik - Grundglieder: Analyse im Zei und Frequenzbereich Vorberachungen: Das Überragungsverhalen von linearen Regelkreiselemenen wird vorwiegend durch Sprunganworen bzw. Übergangsfunkionen sowie

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Systemtheorie: Übertragungssystem: Beispiele

Systemtheorie: Übertragungssystem: Beispiele Sysemheorie: lieer mahemaische Werkzeuge, um die Umwandlung einer physikalisch kodieren Inormaion in einer andere Darsellung z.b. vom Orsraum in den Fourierraum ohne Inormaionsverlus zu beschreiben. Überragungssysem:

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skrium zur Vorlesung Mahemaik für Ingenieure Fourier- und Lalace- Transformaion Teil 3: Lalace-Transformaion Prof. Dr.-Ing. Norber Höner (nach einer Vorlage von Prof. Dr.-Ing. Torsen Benkner) Fachhochschule

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Grundlagen der Elekroechnik 3 Kapiel 3. Schalvorgänge - Die aplace Transformaion Prof. Dr.-Ing. I. Willms Grundlagen der Elekroechnik 3 S. Fachgebie Nachrichenechnische Syseme 3.. Einführung Nuzung einer

Mehr

Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619

Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619 Aufgabensammlung Signale und Syseme 1 für die BA-Sudiengänge EIT, II, BT, MTR, OTR, MT, IN (3. FS) Einführung in die Signal- und Sysemheorie für den BA-Sudiengang WIW-ET (5. FS) Konakinformaion: Dr. Mike

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Wechselstromlehre. (Lothar Melching) 1 Komplexe Zahlen Arithmetik Polarkoordinaten... 2

Wechselstromlehre. (Lothar Melching) 1 Komplexe Zahlen Arithmetik Polarkoordinaten... 2 Wechselsromlehre (Lohar Melching) Inhalsverzeichnis Komplexe Zahlen 2. Arihmeik.............................. 2.2 Polarkoordinaen........................... 2 2 Widersände 3 2. Ohmscher Widersand........................

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2

Green-Funktion. Wir betrachten (z. B.) eine inhomogene lineare DGL 2. Ordnung. y +y = r(x) Die allgemeine Lösung mit y(0) = 0 und y( π 2 Green-Funkion Wir berchen (z. B.) eine inhomogene linere DGL 2. Ordnung y +y = r() Die llgemeine Lösung mi y() = und y( π 2 ) = (Rndwerufgbe) sez sich us der llgemeinen Lösung der zugehörigen homogenen

Mehr

Mathematik für das Ingenieurstudium. 4. Juli 2011

Mathematik für das Ingenieurstudium. 4. Juli 2011 Mahemaik ür das Ingenieursudium Jürgen Koch Marin Sämple 4. Juli 0 .6 Beweise 43 Beispiel.3 (Ungleichungen) a) Die Ungleichung + 4 < 6 is ür alle -Were deinier. Zur Besimmung der Lösungsmenge berechnen

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Medikamentendosierung A. M.

Medikamentendosierung A. M. Medikamenendosierung A M Inhalsverzeichnis 1 Einleiung 2 2 Ar der Einnahme 3 3 Tropfenweise Einnahme 4 31 Differenialgleichung 4 32 Exake Lösung 5 33 Näherungsweise Lösung 5 4 Periodische Einnahme 7 41

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

8.2 Die Theorie stetiger Halbgruppen im Banachraum

8.2 Die Theorie stetiger Halbgruppen im Banachraum 8.2 Die Theorie seiger Halbgruppen im Banachraum 3 8.2 Die Theorie seiger Halbgruppen im Banachraum Im weieren sellen wir einige allgemeine Aussagen der Theorie seiger Halbgruppen in Banachräumen zusammen.

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Signale - Fourieranalyse. Roland Küng, 2010

Signale - Fourieranalyse. Roland Küng, 2010 Signale - Fourieranalyse Roland Küng, Moivaion Digial Radio Mondial Analog Modulaion AM/FM Digial Modulaion hp://www.drm.org/?page_id5 Moivaion Grenzfrequenz Filer? Bandbreie MIC?.5. 5.. 5. -.5. 5 -.5..5..5

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Ines Rennert Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie

Ines Rennert Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie Ines Renner Bernhard Bundschuh Signale und Syseme Einführung in die Sysemheorie Renner/Bundschuh Signale und Syseme Bleiben Sie auf dem Laufenden! Hanser Newsleer informieren Sie regel mäßig über neue

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Aufgaben zu Mathematik 3

Aufgaben zu Mathematik 3 Aufgaben zu 3 Sudiengang Sensorik Hochschule Karlsruhe Lieraur/Theorie: Thomas Wesermann: für Ingenieure Ein anwendungsorienieres Lehrbuch mi CD-Rom Springer-Verlag, 5. Auflage 8 Version. Sand.4.9 Aufgaben

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

IX. Lagrange-Formulierung der Elektrodynamik

IX. Lagrange-Formulierung der Elektrodynamik IX. Lagrange-Formulierung der Elekrodynamik In diesem Kapiel wird gezeig, dass die Maxwell Lorenz-Gleihungen der Elekrodynamik hergeleie werden können, wenn dem Sysem {Punkladung + elekromagneihes Feld}

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen

5.5. Abstrakte Abituraufgaben zu Exponentialfunktionen 5.5. Absrake Abiuraufgaben zu Eponenialfunkionen Aufgabe : Kurvenunersuchung, Inegraion, Opimierungsaufgabe Gegeben is die Funkion f() ( ) e,5. a) Unersuchen Sie das Schaubild von f auf Achsenschnipunke,

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003

Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003 Bernhard Geiger, 4 MODULATION Unerrichsskrip aus dem TKHF-Unerrich 3 Was is Modulaion? Was is Modulaion? Modulaion is die Veränderung eines Signalparameers (Ampliude, Frequenz, hasenwinkel) eines Trägersignals

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Kapitel 2: Spektrum periodischer Signale (Fourierreihe)

Kapitel 2: Spektrum periodischer Signale (Fourierreihe) ZHW, SiSy, Rumc, - Kapiel : Sperum periodischer Signale (Fourierreihe) Signale önnen im Zeibereich analysier werden. Es is aber häufig voreilhaf, Signale im Frequenzbereich zu analysieren. In diesem Kapiel

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

Fourier- und Laplace-Transformation. Fourierreihe einer T-periodischen Funktion f(t)

Fourier- und Laplace-Transformation. Fourierreihe einer T-periodischen Funktion f(t) Fourier- und Laplace-Transformaion Fourier-Laplace.mw Neue MAPLE-Befehle: Heaviside, Dirac, fourier, invfourier, laplace, invlaplace, (TransferFuncion, DiffEquaion, ResponsePlo, BodePlo, ImpulseResponse,

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

A. Multiple Choice Teil der Klausur (22 Punkte) Lösungen jeweils in blauer Schrift

A. Multiple Choice Teil der Klausur (22 Punkte) Lösungen jeweils in blauer Schrift A. Muliple Choice eil der Klausur ( Punke) Lösungen jeweils in blauer chrif Punk Lösung: B Homoskedasiziä bedeue dass a) Annahme B gil, d.h. dass die geschäzen örgrößen û über alle Zeipunke gerechne eine

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen Kapiel 5 Übungsaufgaben zu Kapiel 5: Erwarungen Die Grundlagen Übungsaufgabe 5-1a 5-1a) Beschreiben Sie die heoreischen Überlegungen zum Realzins. Wie unerscheide sich der Realzins vom Nominalzins? Folie

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2)

Unterschied 2: kurzfristige vs langfristige Zinssätze. Arbitrage impliziert: r = i e i = r + e (1) (2) Unerschied : kurzfrisige vs langfrisige Zinssäze Inermediae Macro - Uni Basel 10 Arbirage implizier: (1) () Es gib eine klare Beziehung zwischen langfrisigen Zinsen und erwareen künfigen Kurzfriszinsen

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d)

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d) Digialechnik 2 Grundschalungen der Digialechnik BFH-I-Biel/Bienne (Version v.d) oland Schäfer Inhalsverzeichnis Kombinaorische Schalungen. Muliplexer/Demuliplexer................... Muliplexer (Muliplexers).............

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimenalphysik 1 1 Fakulä für Physik Technische Universiä München Bernd Kohler & Daniel Singh Bla 1 - Lösung WS 214/215 23.3.215 Ferienkurs Experimenalphysik 1 ( ) - leich ( ) - miel ( )

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.4 Funkionsscharen A.4 Funkionsscharen ( ) Bemerkung: Im Buch Kurvenprobleme gib es viel Aufgaben zu Funkionen, die einen Parameer enhalen. Falls Sie hier also nich genug kriegen... A.4.0 Orskurven (

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Grundlagen der Elekroechnik 3 Prof. Dr.-Ing. Ingolf Willms und Prof. Dr.-Ing. Adalber Beyer und basierend auf dem Scrip von Prof. Dr.-Ing. Ingo Wolff Prof. Dr.-Ing. I. Willms Grundlagen der Elekroechnik

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form.

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form. Sequenielle Schalungen 9 Charakerisische Gleichungen Eine charakerisische Gleichung beschreib die Arbeisweise eines Flipflops in schalalgebraischer Form. n is ein Zeipunk vor einem beracheen Tak. is ein

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Prof. Dr. P. Pogazki en für Kommunikaionsechniker und Informaionsechniker an der sn ( ) si( 2π f ( ) g n ) - -2 - FH-Düsseldorf 2 Aufgabe : Prüfen Sie, ob die folgenden Syseme g()=f{s()} s() F{s()} g()

Mehr

2 Messsignale. 2.1 Klassifizierung von Messsignalen

2 Messsignale. 2.1 Klassifizierung von Messsignalen 7 2 Messsignale Messwere beinhalen Informaionen über physikalische Größen. Die Überragung dieser Informaionen erfolg in Form eines Signals. Allerdings wird der Signalbegriff im äglichen Leben mehrdeuig

Mehr

Facharbeit aus dem Fach Mathematik

Facharbeit aus dem Fach Mathematik Oo-Hahn-Gmnasium Kollegsufenjahrgang 999/ Schulsraße 9565 Markredwiz Facharbei aus dem Fach Mahemaik Thema: Gewöhnliche Differenialgleichungen und ihre Anwendungen Verfasser: Nikolas Tauenhahn Inhal Seie.

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN

Übungsbuch Physik. Peter Müller, Hilmar Heinemann, Hellmut Zimmer, Heinz Krämer. Grundlagen Kontrollfragen Beispiele Aufgaben ISBN Übungsbuch Physi Peer Müller, Hilar Heineann, Hellu Zier, Heinz Kräer Grundlagen Konrollfragen Beispiele Aufgaben ISBN 3-446-478-4 Leseprobe Weiere Inforaionen oder Besellungen uner hp://www.hanser.de/3-446-478-4

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

4. Zeitabhängige Spannungen und Ströme in Netzwerken

4. Zeitabhängige Spannungen und Ströme in Netzwerken 86 4 Zeiabhängige Spannungen und Sröme 4 Zeiabhängige Spannungen und Sröme in Nezwerken m vorigen Abschni wurde dargeleg, wie durch zeiliche Änderung des magneischen Flusses Spannungen in Leiern induzier

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Schaltvorgänge. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Prakikm Grndlagen der Elekroechnik Versch: Schalvorgänge Verschsanleing. Allgemeines Eine sinnvolle Teilnahme am Prakikm is nr drch eine ge Vorbereing af dem jeweiligen Soffgebie möglich. Von den Teilnehmern

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich Anleiung zum Physikprakikum für Obersufenlehrpersonen Wechselsröme (WS) Frühjahrssemeser 2017 Physik-nsiu der Universiä Zürich nhalsverzeichnis 11 Wechselsröme (WS) 11.1 11.1 Einleiung........................................

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Vorlesung - Prozessleittechnik 2 (PLT 2)

Vorlesung - Prozessleittechnik 2 (PLT 2) Fakulä Elekro- & Informaionsechnik, Insiu für Auomaisierungsechnik, rofessur für rozessleiechnik Vorlesung - rozessleiechnik LT Sicherhei und Zuverlässigkei von rozessanlagen - Sicherheislebenszyklus Teil

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 1 - Grundlagen Einführung in die Verfahren der Zeireihenanalyse (1) Typischerweise beginn man mi einer Beschreibung der jeweils zu unersuchenden Zeireihe (graphisch) Trendverhalen,

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

oder Masse Zeit Zeit = n oder m t t

oder Masse Zeit Zeit = n oder m t t 1. WIEDERHOLUNG GRUNDLAGEN 1.1 DEFINITIONEN Ergänze bzw. füge die ensprechenden Symbole ein: Sromsärke allgemein = z.b. Menge oder Masse Zei Zei = n oder m Ladung(smenge) Elekrische Sromsärke I = = Q Zei

Mehr