Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Größe: px
Ab Seite anzeigen:

Download "Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik"

Transkript

1 Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25

2 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 6 Analoge Filter 3 6. Motivation Frequenzselektives Übertragungssystem Approximations-Verfahren Butterworth Tschebyscheff Cauer Frequenztransformation Realisierung Passive Filter Aktive Filter Ausblick Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-2

3 6 Analoge Filter Inhalt 6 Analoge Filter 6. Motivation Abschluss der Behandlung kontinuierlicher Signale und Systeme Anwendungsbeispiel zum Einsatz der Systemtheorie Entwurf sog. frequenzselektiver Übertragungssysteme Einsatz zur Bandbegrenzung (zwecks Übertragung) Nachverarbeitung (Audio- und Videosignale) Modulation (s. nächstes Semester, NAT 2) Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-3

4 6.2 Frequenzselektives Übertragungssystem Inhalt 6.2 Frequenzselektives Übertragungssystem Forderung an selektive Filter: Durchlassbereich (DB, a D, ω D ), Sperrbereich (SB, a S, ω S ) und Übergangsbereich (ÜB). Prototyp: Idealer Tiefpass: IH(j )I IH(j )I D ( ) D S D D S ( ) Eigenschaften: Durchlassbereich für ω ω D, Sperrbereich sonst, kein Übergangsbereich. Impulsantwort: Verschobene si-funktion, nicht kausal, nicht realisierbar. Ansatz: Daher rationale Funktion finden, die den idealen Tiefpass annähert (approximiert). Kompromisse im Dämpfungsverlauf Toleranzschema. Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-4

5 6.2 Frequenzselektives Übertragungssystem Inhalt Dämpfungsforderung (TP): a(ω) a D für ω < ω D im DB a(ω) a S für ω > ω S im SB () IH(j ) - D a( )/db a S DB SB DB SB S a D D S D S IH(j ) /db -a D DB D S SB K(j ) K S DB SB -a S K D D S Lösung mit Hilfe der charakteristischen Funktion K(s) bzw. K(jω). Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-5

6 6.2 Frequenzselektives Übertragungssystem Inhalt Definition für K(jω): H(jω) 2 = Damit folgt für die Dämpfung des Filters und für die charakteristische Funktion gilt + K(jω) 2 (2) a(ω) = 2 lg H(jω) = lg( + K(jω) 2 ) (3) K(jω) =,a(ω). (4) Merke: Dämpfung a(ω) und charakteristische Funktion K(jω) haben ähnliches Verhalten; K(jω) lässt sich aber besser approximieren! a(ω = ) = K(jω) = a(ω D ) = a D K(jω) = K D =.a D a(ω S ) = a S K(jω) = K S =.a S (5) a(ω ) K(jω). Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-6

7 6.3 Approximations-Verfahren Inhalt 6.3. Butterworth 6.3 Approximations-Verfahren IK(j )I großes n Ansatz mit charakteristischer Funktion: K(s) = K D s N (6) K D D = kleines n Normierte Durchlassgrenzfrequenz ω D = liefert unabhängig von N den gleichen Wert: Üblicherweise ist K D =, dann ist K(jω D ) = K(j) = K D (7) a(ω D ) = lg( + KD 2 ) = 3dB. (8) Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-7

8 6.3 Approximations-Verfahren Inhalt Berechnung der Filterordnung N (ohne Herleitung): Butterworth-Filter. bis 4. Ordnung: H (s) = H 2 (s) = H 3 (s) = H 4 (s) = Merke: In der Übertragungsfunktion des Butterworth-Filters ist das Zählerpolynom immer eine Konstante: N lg K S/K D lg ω S /ω D (9) s + () s 2 + 2s + () s 3 + 2s 2 + 2s + (2) (s 2 +,848s + )(s 2 +,765s + ). (3) N(s) =. ( allg. H(s) = N(s) ) D(s) Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-8

9 6.3 Approximations-Verfahren Inhalt Merke: Das Butterworth-Filter besitzt nur Pole, keine Nullstellen! Die Polstellen liegen auf einem Kreis: Butterworth Filter N = Im{s} Re{s} Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-9

10 6.3 Approximations-Verfahren Inhalt Betrag Dämpfung H(jω) *log ( H(jω) ) Phase 3 Gruppenlaufzeit φ(ω) 6 τ G (ω) ω 2 2 ω Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6 -

11 6.3 Approximations-Verfahren Inhalt Tschebyscheff Ansatz für die charakteristische Funktion: IK(j )I K(jω) = K D T n (jω) (4) T n (jω) = cos[n u(jω)] (5) u(jω) = arccos jω jω D (6) K S K D D S Der Tschebyscheff-Entwurf liefert eine Variation (ripple) im Durchlassbereich! Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6 -

12 6.3 Approximations-Verfahren Inhalt Die charakteristische Funktion verwendet im Kern Tschebyscheff-Polynome: T n (x) = cos(n arccosx) (7) Für n = gilt T (x) = cos = und für n = gilt T (x) = cos(arccos x) = x. Weitere Tschebyscheff-Polynome mit Hilfe der Rekursionsformel: T m+ (x) = 2xT m (x) T m (x) (8) Ermittlung der benötigten Ordnung N (ohne Herleitung): N arcosh(k S/K D ) arcosh(ω S /ω D ) (9) Durch Ausmultiplizieren aller Pole wird das Nennerpolynom von H(s) = N(s) D(s) gewonnen. Das Zählerpolynom ist wiederum eine Konstante, die aus H() bestimmt werden kann: N(s) D(s) s=! = H() (2) Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-2

13 6.3 Approximations-Verfahren Inhalt Merke: Das Tschebyscheff-Filter besitzt nur Pole, keine Nullstellen! Die Polstellen liegen auf einer Ellipse: 3 Tschebycheff Filter N = 5 2 Im{s} Re{s} Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-3

14 6.3 Approximations-Verfahren Inhalt Betrag 8 Dämpfung H(jω) *log ( H(jω) ) Phase 5 Gruppenlaufzeit 2 4 φ(ω) 4 τ G (ω) ω 2 2 ω Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-4

15 6.3 Approximations-Verfahren Inhalt Cauer Der Cauer- (oder elliptische) Entwurf verwendet im Kern Jakobische elliptische Funktionen R N (ξ,x). Umsetzung z.b. mit Matlab: ellip, ellipord. Er liefert eine Variation (ripple) in Durchlass- und Sperrbereich! Damit wird eine Realisierung mit minimal möglicher Ordnung N erreicht. K(j ) K S K D D S M. Lutovac et al.: Filter Design for Signal Processing, Prentice Hall, 2. Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-5

16 6.3 Approximations-Verfahren Inhalt Merke: Das Cauer-Filter besitzt Pole und Nullstellen! Die Polstellen liegen auf einer Ellipse (s. Tschebyscheff-Filter, Kap ); die Nullstellen liegen auf der jω-achse im Sperrbereich: Cauer Filter N = 4 5 Im{s} Re{s} Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-6

17 6.3 Approximations-Verfahren Inhalt Betrag Dämpfung H(jω) *log ( H(jω) ) Phase 5 Gruppenlaufzeit φ(ω) 2 τ G (ω) ω ω Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-7

18 6.4 Frequenztransformation Inhalt 6.4 Frequenztransformation Bisher: Approximation von Tiefpassfunktionen betrachtet. Jetzt: Die Durchlass- und Sperrbereiche können mit Hilfe der Frequenztransformation in andere Frequenzbereiche verschoben werden, um den Übertragungscharakter zu verändern: Tiefpass-Hochpass-Transformation (TH-HP) Tiefpass-Bandpass-Transformation (TH-BP) Tiefpass-Bandsperre-Transformation (TH-BS) H( ) /db H( ) /db H( ) /db H( ) /db D Dn u o u o TP HP BP BS Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-8

19 6.4 Frequenztransformation Inhalt Tabelle der wichtigsten Frequenztransformationen: Typ Transformation Eckfrequenzen Bedeutung TP-TP s ω D s ω Dn ω Dn neue TP-Grenzfrequenz TP-HP s ω D ω Dn s ω Dn neue HP-Grenzfrequenz TP-BP s ω D s 2 + ω u ω o s(ω o ω u ) TP-BS s ω D s(ω o ω u ) s 2 + ω u ω u ) ω u, ω o ω u, ω o untere/obere Grenzfrequenz untere/obere Grenzfrequenz Merke: Bei der TP/HP-Transformation bleibt die Ordnung erhalten; bei der BP/BS-Transformation hingegen verdoppelt sich die Ordnung (s s 2 )! Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-9

20 6.4 Frequenztransformation Inhalt Beispiel: TP-BP-Transformation Gegeben: Butterworth-Tiefpass. Ordnung Bekannte Transformation: Lösung: H(s) = H(s) = s ω D s 2 + ω u ω o s(ω o ω u ) ω D s + ω D (2) (22) s ω D + = s 2 +ω uω o + (23) s(ω o ω u) = s(ω o ω u ) s 2 + (ω o ω u )s + ω u ω o. (24) In dieser Form werden die Filterentwürfe in vielen Anwendungen (Matlab o. ä.) realisiert! Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-2

21 6.5 Realisierung Inhalt 6.5. Passive Filter Passive TP-Netzwerke. Ordnung 6.5 Realisierung a) R b) L U E C U A U E R U A Bild a) Bild b) H(s) = + scr = H s s s H(s) = R sl + R = H s (25) s s mit H = und s = /RC. mit H = und s = R/L. Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-2

22 6.5 Realisierung Inhalt Aktive Filter Technologische Erwägungen: Spulen sind aufwändig in der Herstellung, teuer, großes Volumen, nicht integrierbar. Daher besser Operationsverstärker (OP), R und C verwenden. Kaskadenfilter: Kettenschaltung von Filterstufen, jede Stufe hat eine Übertragungsfunktion erster oder zweiter Ordnung. U E H (s) H 2 (s) Hp (s) U A Gesamt-Übertragungsfunktion: H(s) = U A(s) p U E (s) = i= H i (s) mit H i (s) = a 2s 2 + a s + a b 2 s 2 + b s + b. (26) Im Falle von a 2 = und b 2 = liegt eine Übertragungsfunktion. Ordnung vor. Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-22

23 6.5 Realisierung Inhalt Beispiel: Aktive Filterstufe. Ordnung Filterstufe mit invertierender Gleichspannungsverstärkung: C C a) b) j R R U E - + U A j Übertragungsfunktion mit H(s) = U A(s) U E (s) = H + st (27) + st H = R R, T = R C, T = R C. (28) Pol und Nullstelle sind unabhängig voneinander einstellbar und liegen immer auf der negativ reellen Achse (minimalphasiges Netzwerk). Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-23

24 6.6 Ausblick Inhalt 6.6 Ausblick Bisher: Behandlung kontinuierlicher Signale im ZB und FB Nächster Termin: Übergang zu zeitdiskreten Signalen Prinzip der Abtastung Abtasttheorem Rekonstruktion von zeitkontinuierlichen Signalen Ende von NAT. Dipl.-Ing. Udo Ahlvers Nachrichtentechnik [NAT] 6-24

Filterentwurf. Aufgabe

Filterentwurf. Aufgabe Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich

Mehr

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf 5. Dezember 2016 Siehe begleitend: Kammeyer / Kroschel, Digitale Signalverarbeitung, 7. Auflage, Kapitel 4.2 1 Filterentwurfsstrategien 2 Diskretisierung

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter 6. Aktive Filter Filterschaltungen sind Schaltungen mit einer frequenzabhängigen Übertragungsfunktion. Man unterscheidet zwischen Tief, Hoch und Bandpässen sowie Sperrfiltern. Diesen Filtern ist gemeinsam,

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

5. Laplacetransformation

5. Laplacetransformation 5. Laplacetransformation 5. Übersicht Laplacetransformation Die Laplacetransformation ist eine Verallgemeinerung der Fouriertransformation. Vorteile: Es können auch Transformierte für Signale angegeben

Mehr

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

Der Tiefpass Betreuer: Daniel Triebs

Der Tiefpass Betreuer: Daniel Triebs Der Tiefpass Betreuer: Daniel Triebs 1 Gliederung Definiton: Filter Ideale Tiefpass Tiefpass 1.Ordnung Frequenzgänge Grundarten des Filters Filterentwurf Tiefpass 2.Ordnung 2 Definition: Filter 3 Filter

Mehr

SV1: Aktive RC-Filter

SV1: Aktive RC-Filter Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung. September 6 Fachpraktikum Signalverarbeitung SV: Aktive RC-Filter Einführung In diesem Versuch wird ein aktives

Mehr

Bestimmung der Lage der Polstellen bei der Erweiterung von TSCHEBYSCHEFF-Tiefpässen zu CAUER-Tiefpässen. Dipl.-Ing. Leo Baumann

Bestimmung der Lage der Polstellen bei der Erweiterung von TSCHEBYSCHEFF-Tiefpässen zu CAUER-Tiefpässen. Dipl.-Ing. Leo Baumann Bestimmung der Lage der Polstellen bei der Erweiterung von TSCHEBYSCHEFF-Tiefpässen zu CAUER-Tiefpässen Dipl.-Ing. Leo Baumann Datum 25. Mai 2007 Inhalt 1.0 Einleitung 2.0 Synthese des CAUER Tiefpasses

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Versuch 5: Filterentwurf

Versuch 5: Filterentwurf Ziele In diesem Versuch lernen Sie den Entwurf digitaler Filter, ausgehend von der Festlegung eines Toleranzschemas für den Verlauf der spektralen Charakteristik des Filters, kennen. Es können Filtercharakteristiken

Mehr

Systemtheorie. Vorlesung 25: Butterworth-Filter. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 25: Butterworth-Filter. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 5: Butterworth-Filter Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übersicht Für den Filterentwurf stehen unterschiedliche Verfahren zur Verfügung Filter mit

Mehr

LTI-Systeme in Frequenzbereich und Zeitbereich

LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme Frequenzgang, Filter Impulsfunktion und Impulsantwort, Faltung, Fourier-Transformation Spektrum, Zeitdauer-Bandbreite-Produkt Übungen Literatur

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Entwurf zeitdiskreter Systeme. Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 2012/13

Entwurf zeitdiskreter Systeme. Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 2012/13 Entwurf zeitdiskreter Systeme Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 0/3 Inhalt Einführung Entwurf auf der Basis zeitkontinuierlicher Systeme Impulsinvarianz Bilinear-Transformation

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Übungsaufgaben zur Lehrveranstaltung Analoge und digitale Filter Filter. Ordnung. Betrachtet wird ein

Mehr

Systemtheorie. Vorlesung 27: Schaltungstechnische Realisierung von Filtern. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 27: Schaltungstechnische Realisierung von Filtern. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 7: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Passive LC-Schaltungen erster Ordnung Übertragungsfunktionen, die durch die Entwurfsverfahren bestimmt werden,

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

ÜBUNG 4: ENTWURFSMETHODEN

ÜBUNG 4: ENTWURFSMETHODEN Dr. Emil Matus - Digitale Signalverarbeitungssysteme I/II - Übung ÜBUNG : ENTWURFSMETHODEN 5. AUFGABE: TIEFPASS-BANDPASS-TRANSFORMATION Entwerfen Sie ein nichtrekursives digitales Filter mit Bandpasscharakteristik!

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

KW Tiefpassfilter für 50 Watt MOSFET PA

KW Tiefpassfilter für 50 Watt MOSFET PA KW Tiefpassfilter für 50 Watt MOSFET PA Prinzip Das vorgestellte LC Tiefpassfilter arbeitet im Frequenzbereich von 0 30MHz und dient der Unterdrückung von Oberwellen (Harmonischen) der Leistungsendstufe

Mehr

TEIL I: Analoge Filter

TEIL I: Analoge Filter TEIL I: Analoge Filter Version vom. April 24 Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Analoge und digitale Filter Literatur: L. D. Paarmann, Design And Analysis of Analog Filters: A Signal Processing

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

TEIL I: Analoge Filter

TEIL I: Analoge Filter TEIL I: Analoge Filter Version vom 11. Juli 212 Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Analoge und digitale Filter 1 Literatur: L. D. Paarmann, Design And Analysis of Analog Filters: A Signal Processing

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese

9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 08..08 Analyse eines Filters. Ordnung (Aufgabe 7) 0 V V R C 3 0. C R v OPI 4 V.0 E.0 E.0 E0.0 E.0 E Frequency M agnitude d B P hase

Mehr

Aktive Filter und Oszillatoren

Aktive Filter und Oszillatoren Aktive Filter und Oszillatoren Entwurf und Schaltungstechnik mit integrierten Bausteinen Bearbeitet von Lutz Wangenheim 1. Auflage 2007. Taschenbuch. xvi, 373 S. Paperback ISBN 978 3 540 71737 9 Format

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Matlab-Praktika zur Vorlesung Analoge und digitale Filter 1. Betrachtet wird ein Tiefpass. Ordnung mit

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister... Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................

Mehr

Aktive Filter in RC- und SC-Technik

Aktive Filter in RC- und SC-Technik Lutz v. Wangenheim Aktive Filter in RC- und SC-Technik Grundlagen Berechnungsverfahren Schaltungstechnik Hüthig Buch Verlag Heidelberg INHALT VORWORT VERWENDETE SYMBOLE UND ABKÜRZUNGEN EINFÜHRUNG 1 KAP.

Mehr

Signale und Systeme. von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage. Oldenbourg Verlag Munchen

Signale und Systeme. von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage. Oldenbourg Verlag Munchen Signale und Systeme von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage Oldenbourg Verlag Munchen I Einfuhrung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale ufgabe (5 Punkte) ufgabe : Kontinuierliche und diskrete Signale. Zeichnen Sie jeweils den geraden und den ungeraden nteil des Signals in bb..!. Sind Sie folgenden Signale periodisch? Falls ja, bestimmen

Mehr

Inverse Tschebyscheff Tiefpassfilter

Inverse Tschebyscheff Tiefpassfilter Inverse Tschebyscheff Tiefpassfilter Inverse Tschebyscheff-Tiefpassfilter (Tschebyscheff Typ-) werden dort verwendet wo eine hohe Flankensteilheit bei maximal flachem mplitudengang im Durchlassbereich

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Netzwerkanalyse, Netzwerksynthese und Leitungstheorie

Netzwerkanalyse, Netzwerksynthese und Leitungstheorie Netzwerkanalyse, Netzwerksynthese und Leitungstheorie Von Dipl.-Phys. G. Ulbricht Professor an der Fachhochschule München Mit 109 Bildern, 10 Tafeln und zahlreichen Beispielen und Übungsaufgaben B. G.

Mehr

Filterentwurf. Patrick Seiler. Präsentation im Rahmen des Projektlabors der TU Berlin im Sommersemester 2009

Filterentwurf. Patrick Seiler. Präsentation im Rahmen des Projektlabors der TU Berlin im Sommersemester 2009 Filterentwurf Patrick Seiler Präsentation im Rahmen des Projektlabors der TU Berlin im Sommersemester 2009 7. Mai 2009 1 Gliederung 1. Was sind Filter? 2. Grundlagen: Charakteristika/Kenngrößen 3. Filterentwurf

Mehr

Filter - Theorie und Praxis

Filter - Theorie und Praxis 23.06.2016 Manuel C. Kohl, M.Sc. 1 Agenda Einführung und Motivation Analoge und digitale Übertragungssysteme Grundlegende Filtertypen Übertragungsfunktion, Impulsantwort und Faltung Filter mit endlicher

Mehr

Einführung in die Elektronik für Physiker

Einführung in die Elektronik für Physiker Hartmut Gemmeke Forschungszentrum Karlsruhe, IPE hartmut.gemmeke@kit.edu Tel.: 0747-8-5635 Einführung in die Elektronik für Physiker 4. Breitbandverstärker und analoge aktive Filter. HF-Verhalten von Operationsverstärkern.

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Lösungen der Übungsaufgaben zur Vorlesung Digitale Signalverarbeitung

Lösungen der Übungsaufgaben zur Vorlesung Digitale Signalverarbeitung Institut für Informationsverarbeitung Laboratorium für Informationstechnologie Lösungen der Übungsaufgaben zur Vorlesung Digitale Signalverarbeitung Wintersemester 009-00 Aufgabe : Diskrete Faltung Vorerst:

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

System- und Signaltheorie

System- und Signaltheorie Otto Mildenberger System- und Signaltheorie Grundlagen für das informationstechnische Studium 3., überarbeitete und erweiterte Auflage Mit 166 Bildern vieweg 1 Einleitung 1 1.1 Aufgaben der Systemtheorie

Mehr

Systemtheorie. Vorlesung 16: Interpretation der Übertragungsfunktion. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 16: Interpretation der Übertragungsfunktion. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 16: Interpretation der Übertragungsfunktion Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übertragungsfunktion Bedeutung der Nullstellen Bei der Interpretation

Mehr

Antialiasing-Filter. Die erforderliche Dämpfung des Antialiasingfilters bei der halben Abtastfrequenz errechnet sich nach (bei N-Bit ADU): f f.

Antialiasing-Filter. Die erforderliche Dämpfung des Antialiasingfilters bei der halben Abtastfrequenz errechnet sich nach (bei N-Bit ADU): f f. ntialiasing-filter Bei der btastung eines auf f < fb bandbeenzten Messsignal ergibt sich, wie später gezeigt wird, für das abgetastete ignal eine periodische Wiederholung des Basisspektrums. m Überlappungen

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2)

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2) Aufgabe 1: Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 1 s + (s +3) 3 (s +4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) =σ(t) W (s) = 1 s Die Übertragungsfunktion des

Mehr

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB Signale und Systeme Grundlagen und Anwendungen mit MATLAB Von Professor Dr.-Ing. Dr. h. c. Norbert Fliege und Dr.-Ing. Markus Gaida Universität Mannheim Mit 374 Bildern, 8 Tabellen und 38 MATLAB-Projekten

Mehr

Übung 12: Bestimmung des Frequenzganges

Übung 12: Bestimmung des Frequenzganges Übung Signale und Systeme Sommersemester Übung :Frequenzgang 5. Juli Übung : Bestimmung des Frequenzganges. Gegeben sei die Übertragungsfunktion eines diskreten Systems: (z ρe jα )(z σe jβ ) (a) Legen

Mehr

Aktive Filter und Oszillatoren

Aktive Filter und Oszillatoren Lutz v. Wangenheim Aktive Filter und Oszillatoren Entwurf und Schaltungstechnik mit integrierten Bausteinen Mit 153 Abbildungen und 26 Tabellen Springer Inhalt Einführung 1 1 Systemtheoretische Grundlagen

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Karl-Dirk Kammeyer, Kristian Kroschel Digitale Signalverarbeitung Filterung und Spektralanalyse mit MATLAB-Übungen 6., korrigierte und ergänzte Auflage Mit 315 Abbildungen und 33 Tabellen Teubner Inhaltsverzeichnis

Mehr

7. Filter. Aufgabe von Filtern

7. Filter. Aufgabe von Filtern . Filter Aufgabe von Filtern Amplitude Sperren einer Frequenz oder eines Frequenzbereichs Durchlassen einer Frequenz oder eines Frequenzbereichs möglichst kleine Phasenänderung Phase Phasenverschiebung

Mehr

Digitale Verarbeitung analoger Signale

Digitale Verarbeitung analoger Signale Digitale Verarbeitung analoger Signale Digital Signal Analysis von Samuel D. Stearns und Don R. Hush 7., durchgesehene Auflage mit 317 Bildern, 16 Tabellen, 373 Übungen mit ausgewählten Lösungen sowie

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Universität Ulm Institut für Allgemeine Elektrotechnik und Mikroelektronik Prof. Dr.-Ing. Albrecht Rothermel A A2 A3 Note Schriftliche Prüfung in Grundlagen der Elektrotechnik I 27.2.29 9:-: Uhr Name:

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Einführung in die Elektronik für Physiker

Einführung in die Elektronik für Physiker Hartmut Gemmeke Forschungszentrum Karlsruhe, IPE gemmeke@ipe.fzk.de Tel.: 0747-8-5635 Einführung in die Elektronik für Physiker 4. Breitbanderstärker und analoge aktie Filter. HF-Verhalten on Operationserstärkern.

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

Digitale Signalverarbeitung in der Meß- und Regelungstechnik

Digitale Signalverarbeitung in der Meß- und Regelungstechnik Digitale Signalverarbeitung in der Meß- und Regelungstechnik Von Dr.-Ing. Dr. h. c. Werner Leonhard o. Professor an der Technischen Universität Braunschweig 2., durchgesehene Auflage Mit 207 Bildern B.

Mehr

Analoge aktive Filter

Analoge aktive Filter ZHAW, EK, HS009, Seite Analoge aktive Filter. Allgemeine Bemerkungen. Theoretische Grundlagen der Tiefpassfilter 3. Tiefpass-Hochpass-Transformation 4. Realisierung von Tief- und Hochpassfiltern 5. Realisierung

Mehr

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11 Vorwort V I Einführung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4 Struktur des Buches 9 2 Mathematische Grundlagen 11 2.1 Räume 11 2.1.1 Metrischer Raum 12 2.1.2 Linearer

Mehr

Allpass-Transformation

Allpass-Transformation Grundidee: Allpass-Transformation Entwurf eines IIR-Filters H p (z) mit bekanntem Verfahren Abbildung des Frequenzgangs durch Transformation der Frequenzvariablen Transformation durch Substitution ζ =

Mehr

INSTITUT FÜR TECHNISCHE ELEKTRONIK

INSTITUT FÜR TECHNISCHE ELEKTRONIK INSTITUT FÜR TECHNISCHE ELEKTRONIK der Rheinisch-Westfälischen Technischen Hochschule Aachen Prof. Dr.-Ing. Bernhard Hill Korrespondenzen zur Laplacetransformation F(s) f(t) s s + α s + β ε(t) α e - α

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Aktiver Tiefpass mit Operationsverstärker

Aktiver Tiefpass mit Operationsverstärker Aktiver Tiefpass mit Operationsverstärker Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 17.3.2003 Samuel Benz Inhaltsverzeichnis

Mehr

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen 21. November 2016 Siehe Skript, Kapitel 8 Kammeyer & Kroschel, Abschnitt 4.1 1 Einführung Filterstrukturen: FIR vs. IIR 2 Motivation: Grundlage

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Gedächtnisprotokoll zur ADELE-Klausur vom (Prof. Orglmeister)

Gedächtnisprotokoll zur ADELE-Klausur vom (Prof. Orglmeister) 1. Aufgabe: Bandsperre Gegeben war das Toleranzschema einer Bandsperre über der normierten Frequenz (vgl. Abb. 1, links). Abbildung 1: Toleranzschema Die Verstärkung im Durchlassbereich sollte 1/ 2 betragen,

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora -

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister... Matr.Nr:.......................... Erasmus

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Übung 8: Aufgaben zu LC- und RC-Filter

Übung 8: Aufgaben zu LC- und RC-Filter = Übung 8: Aufgaben zu LC- und RC-Filter Aufgabe : Basisband LC-Filter für Funk-Modem Ein Frequency Hopping Funksignal (ähnlich Bluetooth) mit Mbit/s Datenraste belegt nach dem Dehopping im Basisband einen

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Signale und Systeme VL 1

Signale und Systeme VL 1 Einführung Beispiel RLC-Netzwerke Systemtheorie Fourier-Reihe und Methode der Ersatzspannungsquellen Spektrum und Frequenzgang Elektrische Filter Zusammenfassung Übungen Literatur und Quellen 9.4.8 Professor

Mehr

3. Quantisierte IIR-Filter R

3. Quantisierte IIR-Filter R . Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben

Mehr

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1. Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1. Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur

Mehr

Relativistische Bahnkurven und Cauerfilter. Dr.-Ing. Klaus Huber Sesenheimer Str Berlin

Relativistische Bahnkurven und Cauerfilter. Dr.-Ing. Klaus Huber Sesenheimer Str Berlin Relativistische Bahnkurven und Cauerfilter Dr.-Ing. Klaus Huber Sesenheimer Str. 21 10627 Berlin klaus.huber@o2online.de Zarm Universität Bremen Am Fallturm 28359 Bremen 16.12.2010 1 Übersicht: - Tiefpassfilter

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Hausaufgabe im Fach Grundlagen der Schaltungstechnik (WS09/0) Bearbeiter Mat.-nr. Emailadresse Aufgabe erreichte Punkte

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

Allgemeine Einführung in Filter

Allgemeine Einführung in Filter Allgemeine Einführung in Filter Konstantin Koslowski TU-Berlin 3. November 2009 Konstantin Koslowski (TU-Berlin) Allgemeine Einführung in Filter 3. November 2009 1 / 22 Inhalt 1 Einführung Was sind Filter

Mehr