Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A.

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A."

Transkript

1 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Hoctunusscule Oeusel Pilipp Mue in Zusmmeneit mit StR A. Käme Stnd: 20. Feu 2014

2 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Inltsvezeicnis 1 Mtemtisce Gundlgen Potenzgesetze Binomisce Fomeln Beecnung n Deiecken Tigonometie Stz des Pytgos Gnztionle Funktionen Geden Nomlfom Steigungsdeieck und Steigungswinkel Funktionen zweiten Gdes Sceitelpunktfom Qudtisce Egänzung zu Bestimmung de Sceitelpunktfom pq-fomel Fomel Vogeensweise Sustitution: Lösen iqudtisce Gleicungen Kuvendiskussion Steen gegen ± Symmetien Aleitungsegeln (Potenzegel, Poduktegel, Quotientenegel, Kettenegel) Extemwete Wendepunkte Tngenten Nomle Steigungswinkel Scnittwinkel Astnd zwiscen zwei Punkten Rekonstuktion 6 5 Extemwetufgen 6 6 Integlecnung Integieen Vogeensweise Fläce zwiscen zwei Funktionen Geometisce Figuen Inlt und Umfng eene Figuen Volumen und Oefläce von Köpen Pilipp Mue in Zusmmeneit mit StR A. Käme Seite 1

3 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 1 Mtemtisce Gundlgen 1.1 Potenzgesetze x 0 = 1 x = 1 x x 1 = x x x = x + x = x x = x x (x ) = x (x y) = x y ( x y ) = x y 1.2 Binomisce Fomeln 1. inomisce Fomel: (+) 2 = inomisce Fomel: ( ) 2 = inomisce Fomel: (+) ( ) = Beecnung n Deiecken A α c C. B 2.1 Tigonometie Sinus sin(α) = Gegenktete Hypotenuse = c Kosinus cos(α) = Anktete Hypotenuse = c Tngens tn(α) = Gegenktete Anktete = 2.2 Stz des Pytgos = c 2 Pilipp Mue in Zusmmeneit mit StR A. Käme Seite 2

4 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 3 Gnztionle Funktionen 3.1 Geden Nomlfom f(x) = m x Steigungsdeieck und Steigungswinkel P 2 P 1 x 2-x 1 y 2-y 1 Steigung: m = y x = y2 y1 x 2 x 1 Steigungswinkel: α = ctn(m) 3.2 Funktionen zweiten Gdes Sceitelpunktfom f(x) = (x x s ) 2 +y s Steckung/Stucung x s x-wet des Sceitelpunktes y s y-wet des Sceitelpunktes Qudtisce Egänzung zu Bestimmung de Sceitelpunktfom Gegeene qudtisce Funktion y = x 2 +x+c Ausklmmen des Leitkoeffizienten y = ( ( x 2 + x) +c Qudtisce Egänzung y = x 2 + x+( ) 2 ( 2 ) 2 ) 2 +c (x+ ) 2 ( Bildung des Qudts y = [ 2 ) 2 ] 2 +c Ausmultiplizieen y = ( ) x c 2 Sceitelpunktfom de Funktion y = ( ) ) x+ 2 + (c 2 ( ) 4 Alesen des Sceitelpunkts S 2 2 c pq-fomel Fomel 0 = x 2 +p x+q x 1/2 = p 2 ± (p 2) 2 q Vogeensweise Funktion zweiten Gdes f(x) = x 2 +x+c Esten Fkto duc teilen f(x) = x 2 + x+ c f(x) = 0 setzen 0 = x 2 + x+ c ( In pq-fomel einsetzen x 1/2 = ) 2 2 ± 2 c 3.4 Sustitution: Lösen iqudtisce Gleicungen Funktion vieten Gedes f(x) = x 4 + x 2 +c z estimmen z = x 2 in f(x) einsetzen f(z) = z 2 + z +c Nullsetzen und mit pq-fomel weite ecnen f(z) = 0 Wuzel de Egenisse de pq-fomel zieen x 1/2 = ± z 1 x 3/4 = ± z 2 Pilipp Mue in Zusmmeneit mit StR A. Käme Seite 3

5 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe Kuvendiskussion Steen gegen ± Betctet wid ieei nu de öcste Exponent und sein Vofkto x n positiv negtiv n gede fü x gegen + f(x) get gegen + fü x gegen + f(x) get gegen fü x gegen f(x) get gegen + fü x gegen f(x) get gegen n ungede fü x gegen + f(x) get gegen + fü x gegen + f(x) get gegen fü x gegen f(x) get gegen fü x gegen f(x) get gegen Symmetien Acsensymmetie: Alle Exponenten gede f(x) = f(-x) Punktsymmetie: Alle Exponenten ungede f(x) = -f(-x) Aleitungsegeln (Potenzegel, Poduktegel, Quotientenegel, Kettenegel) Potenzegel f(x) = x n f (x) = n x n 1 Poduktegel f(x) = u(x) v(x) f (x) = u (x) v(x)+u(x) v (x) Quotientenegel f(x) = u(x) v(x) f (x) = u (x) v(x) u(x) v (x) (v(x)) 2 Kettenegel f(x) = u(v(x)) f (x) = u (v(x)) v (x) Pilipp Mue in Zusmmeneit mit StR A. Käme Seite 4

6 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe Extemwete Bilde f (x) Nullstelle(n) von f (x) sucen f (x) = 0 x 0 =... notwendige Bedingung: ( Steigung = 0) Nullstelle(n) von f (x) in f(x) einsetzen, um die y-wete de Extemwete zu estimmen (f(x 0 ) =...) ineicende Bedingung: f (x) 0 Emitteln o x 0 ein Hoc- ode Tiefpunkt ist, indem x 0 in f (x) eingesetzt wid: 1. f (x) > 0 Tiefpunkt (lokles Minimum) 2. f (x) < 0 Hocpunkt (lokles Mximum) 3. f (x) = 0 Sttelpunkt Wendepunkte Vogeen wie ei Extemweten. Bedingungen sind lledings etws geändet: notwendige Bedingung: f (x) = 0 ineicende Bedingung: f (x) 0 1. Aleitungen ilden (is f (x)) 2. Nullstellen sucen notwendige Bedingung Wendepunkt f (x) = 0 x 1/2/3/ Einsetzen de Nullstellen in f(x) y 1/2/3/ ineicende Bedingung x 1/2/3/... einsetzen 5. Einzeicnen 6. uf Plusiilität püfen Pilipp Mue in Zusmmeneit mit StR A. Käme Seite 5

7 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe Tngenten Definition: Gede die im Beüpunkt die identisce Steigung wie die Funktion t Nomlfom eine Geden y = m x+ 1. Aleitung ilden und x einsetzen m = f (x) Punkt (duc den die Tngente get) in Nomlfom einsetzen y p = m x p + = y p m x p 3.7 Nomle Definition: Gede, die im Scnittpunkt die Funktion im Recten Winkel (90 ) scneidet Est die Tngente estimmen (siee Tngente) und dnn mit m 2 = 1 m 1 die Nomle estimmen. 3.8 Steigungswinkel m = f (x) fü x den Punkt einsetzen m = tnα α = ctnm 3.9 Scnittwinkel m estimmen wie eim Steigungswinkel α = ctnm 1 ctnm Astnd zwiscen zwei Punkten 2 = ( x) 2 +( y) 2 2 = (x 2 x 1 ) 2 +(y 2 y 1 ) 2 4 Rekonstuktion Funktionsnstz vom Gd n ufstellen f(x) = x n + x n Aleitungen emitteln f (x) und f (x) Bedingung fomulieen i.d.r. n+1 Bedingungen f(x) fü Funktionswete f (x) fü Steigung und Extem f (x) fü Kümmung und Wendepunkte Wete einsetzen Gleicungssystem ufstellen Gleicungssystem lösen z.b. Einsetzvefen ode Guss-Jodn 5 Extemwetufgen HB Huptedingung ufstellen Funktion fü zu optimieende Göße fomulieen NB Neenedingung ufstellen Rndedingung / Einscänkung Zielfunktion emitteln NB in HB einsetzen, so dss diese nu von eine Vile ängt Extemwet estimmen f (x) = 0 und f (x) 0 lle gesucten Gößen emitteln einsetzen in HB / NB Kontolle des Egenisses 6 Integlecnung 6.1 Integieen f(x) = x n F(x) = n+1 xn Vogeensweise f(x)dx = [F(x)] = F() F() 6.3 Fläce zwiscen zwei Funktionen f 1(x)dx f 2(x)dx = [f 1(x) f 2 (x)]dx Hinweis: Integtion de Teilfläce duc scittweise Integtion üe die Scnittpunkte von f 1 und f 2 Pilipp Mue in Zusmmeneit mit StR A. Käme Seite 6

8 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 7 Geometisce Figuen 7.1 Inlt und Umfng eene Figuen Qudt Recteck Deieck Pllelogmm g Inlt: A = 2 Inlt: A = Inlt: A = 1 2 g Inlt: A = Umfng: U = 4 Umfng: U = 2+2 Umfng: U = ++c Umfng: U = 2+2 Keis Keisusscnitt Tpez gleicseitiges Deieck α Inlt: A = π 2 Inlt: A = π 2 α 360 Inlt: A = + 2 Höe: = 1 2 g 3 α Umfng: U = 2π Bogen: = 2π Volumen und Oefläce von Köpen Wüfel Qude Zylinde c Volumen: V = 3 Volumen: V = c Volumen: V = π 2 Oefläce: O = 6 2 Oefläce: O = 2 (+c+c) Oefläce: O = 2π( +) Pymide Kegel Kugel g g g G Volumen: V = 1 3 G Volumen: V = 1 3 π2 Volumen: V = 4 3 π 3 Oefläce: Summe de Inlte de Oefläce: O = π( +s) Oefläce: O = 4π 2 Gundfläce und de Seitenfläce Pilipp Mue in Zusmmeneit mit StR A. Käme Seite 7

Formelsammlung. x 2 + px + q = 0 ax 2 + bx + c = 0 x 1,2. = p 2 ± p². Fläche eines rechtwinkligen Dreiecks: Fläche eines Dreiecks: A = 1 2 g h

Formelsammlung. x 2 + px + q = 0 ax 2 + bx + c = 0 x 1,2. = p 2 ± p². Fläche eines rechtwinkligen Dreiecks: Fläche eines Dreiecks: A = 1 2 g h Fomelsmmlung p q Fomel: c Fomel x 2 + px + q = 0 x 2 + x + c = 0 x 1,2 = p 2 ± p² 4 q x 1,2 = ± ² 4c 2 Fläce eines Deiecks: Fläce eines ectwinkligen Deiecks: A = 1 2 g A = 1 2 g Fläce eines Qudts: A =

Mehr

Eigenschaften mathematischer Körper

Eigenschaften mathematischer Körper Rettungsing Köpe gnz kl: temtik 4 - Ds Feieneft mit Efolgsnzeige Eigenscften mtemtisce Köpe Eigenscften von Pismen Ein gedes Pism t imme eine und- und eine Deckfläce, die deckungsgleic und pllel zueinnde

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Abiturprüfung Mathematik 2017 Merkhilfe S. 1/8. Dreieck Flächeninhalt: 1 2. Mindestens zwei Seiten sind gleich lang.

Abiturprüfung Mathematik 2017 Merkhilfe S. 1/8. Dreieck Flächeninhalt: 1 2. Mindestens zwei Seiten sind gleich lang. Aitupüfung Mthemtik 07 Mekhilfe S. /8 Eene Figuen Deieck Flächeninhlt: A g h g gleichschenkliges Deieck Mindestens zwei Seiten sind gleich lng. gleichseitiges Deieck Alle dei Seiten sind gleich lng. Flächeninhlt:

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

x 8x 2 x 3 x Anwendungsorientierte Mathematik für Techniker Lösungen der Aufgaben zu Kapitel

x 8x 2 x 3 x Anwendungsorientierte Mathematik für Techniker Lösungen der Aufgaben zu Kapitel Anwendungsoientiete Mtemtik ü Tecnike Lösungen de Augen zu Kpitel 8 8. 8. 5 8. 8 8. 7² 8. 5 ² + 0 8. 6 ³ + ² 8. 7 8. 8 8. 8. 0 8. 6 Duckele: Die Auge sollte luten 6 7 8. " 8 0.5 0 0 6 8 Wi estimmen die

Mehr

Aufgabe 9: Prisma mit maximalem Volumen

Aufgabe 9: Prisma mit maximalem Volumen Lösungen de Extemwetpoleme im Skipt, Ascnitt 86 Aufgae 9: Pisma mit maximalem olumen Wete > 0 sind natülic sinnlos! ( x ) ( 00 x ) ( 60 x) x 0 50 0 0 0 ( ) 0 0 0 0 0 5 0 5 0 5 0 5 0 5 50 olumenfunktion:

Mehr

Wir teilen das Intervall [a,b] in n Teilintervalle der Breite x (Skizze: n = 5). Wir ersetzen die im k-ten Teilintervall f x und der

Wir teilen das Intervall [a,b] in n Teilintervalle der Breite x (Skizze: n = 5). Wir ersetzen die im k-ten Teilintervall f x und der olumen von Rotationsköpen Die Fläce zwiscen de stetigen Kuve y = f(x), de x-acse und den Paallelen x = a und x = b ezeugt bei Rotation um die x-acse einen sogenannten Rotationsköpe. Gesuct ist das olumen

Mehr

P eine waagrechte Tangente besitzt.

P eine waagrechte Tangente besitzt. Mtemtik MB Üungsltt Temen: unktionsuntesucungen, Etem mit und one Neenedingungen DHBW STUTTGART MB MATHEMATI SEITE VON Aufge A: Gegeen ist die unktion, in impliite om ) Bestimmen Sie die Tngentensteigung

Mehr

Merkhilfe Mathematik. Teil I: Stoffgebiete der Mittelstufe

Merkhilfe Mathematik. Teil I: Stoffgebiete der Mittelstufe Mekilfe Mtemtik Dies ist keie Fomelsmmlug im klssisce Si - die vewedete Bezeicuge wede ict eklät ud Voussetzuge fü die Gültigkeit de Fomel wede i de Regel ict gegee. Teil I: Stoffgeiete de Mittelstufe

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

Gymnasium Hilpoltstein Grundwissen 9. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 9. Jahrgangsstufe ymium Hilpolttei udwie 9. Jhggtufe Wie / Köe. Reche mit Wuzel Qudtwuzel Wuzel u it diejeige Zhl göße ode gleich Null, die mit ich elt multipliziet egit. Dei mu 0 ei. Reelle Zhle Jede uedliche, icht peiodiche

Mehr

Merkhilfe Mathematik (FOS/BOS) Ausbildungsrichtung Technik

Merkhilfe Mathematik (FOS/BOS) Ausbildungsrichtung Technik Algeische Gundlgen Binomische Fomeln Asolutetg (+ ) = + + (- ) = - + (+ ) (- ) = - Ï fü =Ì Ó fü < 3 3 3 (+ ) = + 3 + 3 + 3 3 3 (- ) = 3 + 3 3 3 - = ( ) ( + + ) Wuzeln und Potenzen n = = =... 3 - = nfktoen

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

x = d größer 0 entschieden. Dieses bleibt nun fest,

x = d größer 0 entschieden. Dieses bleibt nun fest, Stützkus Matematik WIW Üungen Tag 5 Datum: 7.. ****** Temen: Etemwetpoleme, Aleitung de Umkefunktion, Genzwete, Stetigkeit und Diffeenzieakeit Umfang: Hilfsmittel: Aufgaen Sind keine notwendig. Eine Fomelsammlung

Mehr

E x t r e m w e r t a u f g a b e n

E x t r e m w e r t a u f g a b e n E x t e m w e t u f e n Aufen De Qude Welce oen offene Scctel in de Fom eine qu dtiscen S ule t ei eeenem Oefl ceninlt von dm ein mximles Fssunsvemoen? De Keel Aus einem keisfomien Bltt Ppie soll ein Keel

Mehr

ist ein Punkt im 2-dimensionalen karthesischen Koordinatensystem, früher hieß stumpfer gestreckter Winkel 180 o

ist ein Punkt im 2-dimensionalen karthesischen Koordinatensystem, früher hieß stumpfer gestreckter Winkel 180 o Geometie Punkt ist ein Punkt im -dimensionlen ktesisen Koodintensystem, füe ieß P x p y P szisse eute x-koodinte x p Odinte eute y-koodinte y P stnd de Punkte und d(, ) = = (x x ) + (y y ) Die Steke t

Mehr

Rotationskörper

Rotationskörper .17.5 ottionskörper Im folgenden efssen wir uns mit Körpern, die ddurc entsteen, dss eine eene Kurve oder ein eenes Kurvenstück um eine Acse rotiert, die in der gleicen Eene liegt. Einige spezielle Typen

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite Reelle Zahlen. Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus. Eine Wuzel kann nicht negativ

Mehr

Zehnerpotenz Bezeichnung Vorsilbe Symbol Zehnerpotenz Bezeichnung Vorsilbe Symbol = Billion tera T

Zehnerpotenz Bezeichnung Vorsilbe Symbol Zehnerpotenz Bezeichnung Vorsilbe Symbol = Billion tera T Fomelsmmlung Fomelsmmlung ieise Busten α Α Alp η Η Et ν Ν Ny τ Τ Tu β Β Bet ϑ Θ Tet ξ Ξ Xi υ Υ Ypsilon γ Γ mm ι Ι Iot ο Ο Omikon φ Φ Pi δ Δ Delt κ Κ Kpp π Π Pi χ Χ Ci ε Ε Epsilon λ Λ Lm ϱ Ρ Ro ψ Ψ Psi

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 RMG Haßfut Gundwien Mathematik Jahgangtufe 9 Regiomontanu - Gymnaium Haßfut - Gundwien Mathematik Jahgangtufe 9 Wien und Können. Zahlenmengen Aufgaen, Beipiele, Eläuteungen N Z Q R natüliche ganze ationale

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose.

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose. Excel at bäenstäke Wekzeuge. So kann man z.b. den Solve nutzen um ptimieungen vozunemen. Hie am Beispiel eine Blecdose. B C Anfangswete 4 Radius 4,50 cm 4,5 5 Höe 10,00 cm 10 4,50 cm 6 Fomeln: 7 Zylindeobefläce

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt Semester ARBEITSBLATT 11 EXTREMWERTAUFGABEN Mtemtik: Mg. Wolfgng Smid beitsbltt 11 6. Semeste BEITSBLTT 11 EXTEMWETUFGBEN In diesem beitsbltt befssen wi uns mit ufgben, bei denen einem gegebenen Köpe ein ndee Köpe eingesieben ode umsieben wid. Beispiel:

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS Definition: Ktete Ktete Hypotenuse Jene beiden Seiten, die den recten Winkel bilden (,b) nennt mn Kteten, die dritte

Mehr

Referat im Fach Mathematik

Referat im Fach Mathematik Refet im Fc Mtemtik Tem: Beecnung von Rottionsköpen mit klssiscen Metoden und mit Integlecnung m Beispiel von Kegel, Kugel und Rottionsellipsoid. Vefsse: Ruen Flle Inltsvezeicnis. Ws sind Rottionsköpe?

Mehr

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich.

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich. Püfungsufgben Köpebeecnungen Aufgbenbltt 6 Püfungsufgben Klssenstufe 0 Alle Lösungen uf CD Dtei N. 6 Ausduck nu von de CD us möglic Fiedic Buckel Juni 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Köpebeecnungen

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0}

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0} Mekhilfe Mthemtik fü Bildugsgäge die zu FHSR fühe Zhlemege ℕ = { ; ; ; ;...} Mege de tüliche Zhle ℕ = ℕ {} ℤ = {... ; ; ; ; ; ;...} Mege de gze Zhle ℤ = ℤ {} ℝ Mege de eelle Zhle ℝ = ℝ {} ℝ+ = { ℝ } Mege

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

1. Berechne mit dem Taschenrechner Näherungswerte und runde das Ergebnis auf vier Dezimalen a) sin 35,20 b) cos 17,75 c) tan d) cos 3 3

1. Berechne mit dem Taschenrechner Näherungswerte und runde das Ergebnis auf vier Dezimalen a) sin 35,20 b) cos 17,75 c) tan d) cos 3 3 9 Üben X Trigonometrie 30. Berecne mit dem Tscenrecner Näerungswerte und runde ds Ergebnis uf vier Dezimlen ) sin 35,0 b) cos 7,75 c) tn 44 d) cos 3 3. Berecne die Winkel und gib ds Ergebnis gerundet uf

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

Basisaufgaben - Lösungen

Basisaufgaben - Lösungen Arbeitsplan: Trigonometrie am rectwinkligen Dreieck Jargangsstufe 9 Aufgabe 1 Basisaufgaben - Lösungen a) sin δ k m l ; cos δ l m q l ; tan δ k l q, sin ε l m k ; cos ε k m p k ; tan ε l k p b) sin μ 1

Mehr

H Aufgabenlösungen zu Kapitel 8

H Aufgabenlösungen zu Kapitel 8 H Aufgabenlösungen zu Kapitel 8 H. ösung de Übungsaufgabe 8. Zu Beecnung des Pfadvelustes beim Zweiwegemodell geen wi von Bild H. aus. Empfänge (a) Sende d d Boden Empfänge (a) Sende d T d Boden T Bild

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras E Die Stzguppe des Pytgos 0. Eene Figuen Anwendung des pytgoäiscen Lestzes II Odne dem Tpez die ictige Bezeicnung zu. Ziee pllele Seiten mit gleice Fe nc. ) ) c) d) e) gleicscenkliges ectwinkliges Tpez

Mehr

. - Verwandle das Rechteck in ein flächeninhaltsgleiches Rechteck mit der neuen Breite x1. und der neuen Länge y. = und neuer zugehöriger Länge

. - Verwandle das Rechteck in ein flächeninhaltsgleiches Rechteck mit der neuen Breite x1. und der neuen Länge y. = und neuer zugehöriger Länge Wirserg-Gymnsium Grundwissen temtik 9. rgngsstufe Lerninlte Fkten-Regeln-Beisiele Reelle Zlen Defintion der Qudrtwurzeln: Für 0 ist diejenige nit negtive Zl, deren Qudrt ergit. eißt Rdiknd. Es git Zlen,

Mehr

Modul 3.4 Geometrie: Kubus, Quader, Zylinder

Modul 3.4 Geometrie: Kubus, Quader, Zylinder Seite 1 1. Volumen Hie lenst du, Volumen von folgenden Köpen zu beecnen: De Begiff Volumen kennzeicnet nicts andees als den Inalt eines Köpes. Den Inalt eecnest du, indem du zunäcst die Gundfläce ausecnest

Mehr

n n n

n n n mthbu.ch9+ Repetition mthbu.ch9+ LU 901 1. Die Route de Steetpde in Züich ist 3.8 km lng. Wie lnge ist sie uf eine Kte mit dem Mssstb 1 : 5 000? 15. cm. Auf eine Kte des Mssstbs 1 : 5 000 misst du einen

Mehr

Phi- Geometrie 1. Dritte Übungen aus der heiligen Geometrie zum persönlichen Nachvollzug und zur Vertiefung. Von Franz Delaquis

Phi- Geometrie 1. Dritte Übungen aus der heiligen Geometrie zum persönlichen Nachvollzug und zur Vertiefung. Von Franz Delaquis Pi- Geometie Ditte Übungen us de eiligen Geometie zum pesönlicen Ncvollzug und zu Vetiefung. Von Fnz Delquis Aus den Quellen des eindücklicen Buces Vom ewig beginnenden Ende von Andes OttigeAmmnn, AnOA-

Mehr

Aufgaben, in denen die Nebenbedingung mithilfe des Strahlensatzes ermittelt wird.

Aufgaben, in denen die Nebenbedingung mithilfe des Strahlensatzes ermittelt wird. Differentilrecnung Extremwertufgben Arbeitsbltt Aufgben, in denen die Nebenbedingung mitilfe des Strlenstzes ermittelt wird. Vorwissen 1 Werden zwei Strlen und b mit dem gemeinsmen Anfngspunkt S von zwei

Mehr

Eigenschaften von Prismen

Eigenschaften von Prismen gnz klr: Mtemtik - Ds Ferieneft mit Erfolgsnzeiger Eigenscften von Ein gerdes Prism t immer eine rund- und eine Deckfläce, die deckungsgleic (kongruent) und prllel zueinnder sind. Den Astnd zwiscen rund-

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

15 / 16 I GK EF Übung 2 Dez.15

15 / 16 I GK EF Übung 2 Dez.15 1 / 16 I GK EF Übung Dez.1 Nr. 1: Ableitungsdefinition - Tangentenberecnung Gegeben ist die ganzrationale Funktion. Grades mit: f(x) = x - x a) Bestimmen Sie die durcscnittlice Änderungsrate (Sekantensteigung)

Mehr

Inhalt, Formelsammlung:

Inhalt, Formelsammlung: Inlt, Fomelsmmlung: Geometie Ds llgemeine Deiek Spezielle Deieke Vieeke Regelmäßige Vieleke Keisfläen Pismen Pymien un Kegel 5 Pymien- un Kegelstümpfe 6 Kugel 6 Zentise Stekung un ie Stlensätze 6 Stz es

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Integration Teil 2: Flächenberechnungen

Integration Teil 2: Flächenberechnungen Integtion Teil : Fläcenbeecnungen Dtei N. 8 Stnd Febu 7 Fiedic Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mte-cd.de Inlt Dtei 8. Rectecksmetoden. Ein estes goßes Beispiel. Heleitung eine Fläceninltsfomel.

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

Analysis. Ganzrationale Funktionen: komplettes Stoffgebiet. Allg. Gymnasien: ab J1 / Q1 Berufliche Gymnasien: ab Klasse 12.

Analysis. Ganzrationale Funktionen: komplettes Stoffgebiet. Allg. Gymnasien: ab J1 / Q1 Berufliche Gymnasien: ab Klasse 12. Anlysis Allg. Gymnsien: b J / Q Berufliche Gymnsien: b Klsse Alexnder Schwrz August 0 Aufgbe : 4 Gegeben ist die Funktion f mit f(x) x 4x mit xr. Ihr Schubild sei K. ) Untersuche K uf Schnittpunkte mit

Mehr

Gymnasium. Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2. Klasse 9. - Lösungen

Gymnasium. Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2. Klasse 9. - Lösungen Aufgben zum Pytgors, Ktetenstz, Höenstz Hinweise: Die Zeicnungen sind teilweise verkleinert drgestellt. Alle Mße sind in mm, flls nict nders ngegeben.. Der Abstnd zweier Punkte im Koordintensystem errecnet

Mehr

7. Geometrische Flächen

7. Geometrische Flächen WS 008/09 5 7 Elementmtemtik (LH) Kein nspuc uf Vollständigkeit 7. Geometisce Fläcen 7.. Fläceninlt eene geometisce Figuen 7... elegungsgleiceit s neensteende Recteck und ds llelogmm sind jeweils in vie

Mehr

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6 Geometrie 6. Juni 017 Inltsverzeicnis 1 Zweidimensionle Geometrie Dreidimensionle Geometrie 6 1 1 Zweidimensionle Geometrie In diesem Kpitel wollen wir uns mit einigen einfcen geometriscen Formen bescäftigen

Mehr

Kapitel 9: Sätze im rechtwinkligen Dreieck 9.1 Der Satz von Pythagoras

Kapitel 9: Sätze im rechtwinkligen Dreieck 9.1 Der Satz von Pythagoras Kpitel 9: Sätze im ectwinkligen Deieck 9.1 De Stz von Pytgo 1. ) c + c 3 + 9 + 16 5 5 cm c 13 1 169 1 5 5 cm c) c 65 56 5 3136 1089 33 cm d) c + c + 1 + 1 5 cm.36 cm e) c 8 7 6 9 15 cm 3.873 cm f) c 13

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten:

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten: Der Kosinusstz Dreieke lssen si mit drei ngen zu irer Figur, vollständig zeinen. D er die zeinerise Lösung eines Dreieks nit so genu und zudem ret ufwendig ist, muss es u einen renerisen Weg geen, die

Mehr

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h Matematik LK 11 M2, AB 1 Funktionsuntersucungen Lösung 14.0.2016 Aufgabe 1: Gegeben ist die Funktion f (x)=x x 2 1.1 Berecne die ersten drei Ableitungsfunktionen der Funktion f mit Hilfe des Differentialquotienten,

Mehr

Ortskurven besonderer Punkte

Ortskurven besonderer Punkte Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.

Mehr

B Figuren und Körper

B Figuren und Körper B Figuen und Köpe 1 Keis und Keisteile Ein Keis mit dem Rdius ht den Flächen inhlt A = p 2 und den Umfng U = 2p. Die Keiszhl p = 3,14159 ist eine itionle Zhl. Als Nähe ungswete fü p benutzt mn oftmls p

Mehr

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git

Mehr

Abschlussprüfungen an den Bezirksschulen 2001 Mathematik 1.S

Abschlussprüfungen an den Bezirksschulen 2001 Mathematik 1.S bschlusspüfungen n den eziksschulen 00 Mthemtik.S ) Veeinfche soweit ls möglich: n + 4n + 4 : n + 4 - n b) Löse die folgende Gleichung nch uf: + + ) estimme die vie gössten gnzzhligen Lösungen: 0 4 7 +

Mehr

für beliebige Mengen A, B, C

für beliebige Mengen A, B, C 1.1 Mengenlehre A A A B B A A B B C A C für elieige Mengen A, B, C (Reflexivität) (Symmetrie) (Trnsitivität) (1) (2) (3) A B = B A A B = B A (Kommuttivgesetze) (4) (A B) C = A (B C) (A B) C = A (B C) (Assozitivgesetze)

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Die Grundfigur der Trigonometrie ist das rechtwinklige Dreieck. Mit ihm fangen wir an.

Die Grundfigur der Trigonometrie ist das rechtwinklige Dreieck. Mit ihm fangen wir an. TRIGONOMETRIE [ J. Möller, WS Üerlingen] TRIGON = Dreieck Die Trigonometrie ist der Zweig der Mtemtik, der sic mit der Berecnung von Seiten und Winkeln in rectwinkligen und llgemeinen Dreiecken efsst.

Mehr

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i

C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5. = 4 + i, z 2. = i ETH-Aufnahmeprüfung Herbst 18 Mathematik I (Analysis) D C Aufgabe 1 [6 Punkte] Bestimmen Sie den Winkel α im Trapez ABCD. 5 α. A 1 Aufgabe [1 Punkte] Geben Sie die Lösungsmenge folgender Gleichungen in!

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

Numerische Methoden zur Lösung bestimmter Integralen

Numerische Methoden zur Lösung bestimmter Integralen Prof. Dr.-Ig. Dirk Rbe, FB Tecik Mtemtik I A Numerisce Metode zur Lösug bestimmter Itegrle D es oft scwierig oder sogr umöglic ist, die Stmmfuktio durc eie bekte Fuktio uszudrücke, ist es oft sivoll/eifcer

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei 8. Integrierbre Funktionen Definition 3.3 (Treppenfunktionen). Eine Funktion t : [,b] R heißt Treppenfunktion, flls es endlih viele Punkte x < x 1 < < x n mit x = und x n = b gibt, so dss f uf jedem der

Mehr

Berufsmaturität GIBB. Mathematik. BMS GEW Skript. Autoren: B. Jakob, A. Göldi, M. Saier

Berufsmaturität GIBB. Mathematik. BMS GEW Skript. Autoren: B. Jakob, A. Göldi, M. Saier Beufsmtuität GIBB Mthemtik BMS GEW Skipt Autoen: B. Jkob, A. Göldi, M. Sie Inhltsvezeichnis Geometie Plnimetie... S. 8 Plnimetie... S. 9 6 Steeometie... S. 7 40 Tigonometie Tigonometie... S. 4 54 Tigonometie...

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Lösung Aufgabe 1, KSR GF07

Lösung Aufgabe 1, KSR GF07 Lösung Aufgae, KSR GF7 a) Zielfunktion d(x) x + (-x + x - 7) soll minimal werden. d'(x) 6x - :, also x und somit P( 9 ) Gf Da d''(x) 6 > für alle x, so ist d(x ) minimal. ) Berechnung Nullstelle x der

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Stzgruppe des Pytgors Inlt: 1 Der Stz des Pytgors Pytgors im Rum 3 ufstellen von Formeln 4 Prktise nwendungen 5 Der Ktetenstz 6 Der Höenstz 7 Exkurs: Konstruktion retwinkliger Dreieke 8 ekliste 9 Hinweise

Mehr

EBENE GEOMETRIE. 1) Kollineare Punkte: liegen alle auf einer Geraden. 6) Parallele Geraden: schneiden sich nicht: g 2. 7) Einteilung der Dreiecke:

EBENE GEOMETRIE. 1) Kollineare Punkte: liegen alle auf einer Geraden. 6) Parallele Geraden: schneiden sich nicht: g 2. 7) Einteilung der Dreiecke: N GOTRI 1) Kollinee Punkte: lieen lle uf eine Geden 6) Pllele Geden: sneiden si nit: ) u denselen Punkt eende Geden: 7) inteilun de eieke: n den eiten: O uneelmäßi: lle eiten vesieden ln 3) Winkeleinteilun:

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

α Winkel der Schrägen

α Winkel der Schrägen Glechföge Bewegung eg Gechwndgket t π d n t Glechföge echleungte Bewegung Bewegung ohne nfng- t gechwndgket t t t d n t eg Gechwndgket et Duchee Dehhl eg Bechleungung et Gechwndgket - n - - - chefe Eene

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

N a c h s c h r e i b k l a u s u r

N a c h s c h r e i b k l a u s u r N a c s c r e i b k l a u s u r Aufgabe Bestimmen Sie die Ableitung der Funktion f (x) an der Stelle x 0, indem Sie den Grenzwert des Differenzenquotienten berecnen. a) f (x) = 4 x 2 x 2 x 0 = 4 b) f (x)

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Wissen und Können. Zahlenmengen Aufgaen, Beispiele, Erläuterungen N Z Q R natürliche ganze rationale reelle Zahlen Zahlen Zahlen

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrgngsstufe 9 Wissen und Können Zhlenmengen N Z Q R ntürliche gnze rtionle reelle Aufgen, Beispiele, Erläuterungen N, Z, Q, R Wurzeln (Qudrtwurzel)

Mehr

TRIGONOMETRISCHE 1 FUNKTIONEN

TRIGONOMETRISCHE 1 FUNKTIONEN IGONOMEISCHE FUNKIONEN Bse en w uns n enem Dek mt den Seten, den Höen, den Sätzen des Eukld und Pytgos, dem Bogenmß üe ene Deeksete, und ds nu uf Spezlfälle esänkt, usenndesetzen müssen De snd jedo dekte

Mehr

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE Übungsbeispiele Deiecke Mg. Toms Höffee ufgben DREIECKE Fläce von Deiecken: D 1. Gegeben sin ie ei Seiten eines llgemeinen Deiecks. estimme ie Fläce un ie ei Höen e einzelnen Deiecke. b c b c.) 1 1 15

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

ÜBUNG 4.: GEKRÜMMTE STÄBE

ÜBUNG 4.: GEKRÜMMTE STÄBE ÜUG 4: GEKÜTE STÄE ufgbe 1: Schnittgößen und Spnnungveteilung gekümmte Stäbe y Löung: K Gegeben: bmeungen und eltung eine im ild dgetellten m uechnitt eingepnnten Stbe mit Keiquechnitt: d ufgbe: ) etimmung

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

DEMO für Trigonometrie. Teil 1. Geometrie Sinus, Kosinus und Tangens im rechtwinkligen Dreieck INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

DEMO für  Trigonometrie. Teil 1. Geometrie Sinus, Kosinus und Tangens im rechtwinkligen Dreieck INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Gemetrie Sinus, Ksinus und Tngens im retwinkligen Dreiek Text Nr. 16001 Stnd 8. pril 010 Friedri ukel Trignmetrie DEM für www.mte-d.de INTERNETILITHEK FÜR SHULMTHEMTIK Teil 1 www.mte-d.de 16001 Trignmetrie

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr