Themenerläuterung. Die wichtigsten benötigten Formeln

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Themenerläuterung. Die wichtigsten benötigten Formeln"

Transkript

1 Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben sollst du dann die anderen, nicht angegebenen Kennzahlen der Körper errechnen. In wenigen Fällen wird auch das Zeichnen eines Schrägbildes oder der Abwicklung eines Kegels gefordert. Die wichtigsten benötigten Formeln. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. 2. Die trigonometrischen Formeln Die Hypothenuse ist immer die längste Seite im rechtwinkligen Dreieck und liegt dem rechten Winkel gegenüber. Die Gegenkathete ist die Kathete, die dem Winkel, um den es geht, gegenüber liegt. Die Ankathete ist die Kathete, die an dem Winkel, um den es geht, anliegt. 3. Kreis und Kreisausschnitt Kreis: Für die Fläche eines Kreises mit Radius und Durchmesser gilt: # # $% ( 2 2 ( Für den Umfang, eines Kreises mit Radius und Durchmesser gilt:,2# #,2# # ( ; (

2 Kreisausschnitt: Für die Fläche des Kreisausschnitts eines Kreises mit Radius bzw. Durchmesser und Öffnungswinkel gilt: ( / % 0 23 / ( $ % bzw Für die Länge des Kreisbogens des Kreisausschnitts eines Kreises mit Radius bzw. Durchmesser und Öffnungswinkel gilt: 4. ( / / 23 Kreiskegel Für einen geraden Kreiskegel mit Grundkreisradius bzw. durchmesser, der Höhe 8 und der Länge der Seitenkante gilt: Volumen: 9 : 8 # 8 # 8 Mantel: ; # Oberfläche: < : ; #. # # # Kugel und Halbkugel Für eine Kugel mit Radius bzw. Durchmesser gilt: Volumen: 9 # # Oberfläche: < 4# # Radius bzw. Durchmesser: Bei gegebenem Volumen 9 gilt: > ; ( 2 2 ; ( 2 2 ( > Bei gegebener Oberfläche < > (

3 Für eine Halbkugel mit Radius bzw. Durchmesser gilt: Volumen: 9 # 2 # Oberfläche: <2# # 3# # Radius bzw. Durchmesser: Bei gegebenem Volumen 9 gilt: > ; 22 > 2> ( ( ( Bei gegebener Oberfläche < ( ; (. Besondere Werte für BCD, EFB und GHD Einige Aufgaben sind in Abhängigkeit einer sogenannten Formvariablen gestellt. Diese Formvariable wird mit dem Buchstaben J bezeichnet. In diesen Aufgaben wird verlangt, dass du den Nachweis ohne gerundete Werte führen sollst. Dies bedeutet für dich, dass du keinen Taschenrechner verwenden kannst und die Aufgabe manuell lösen musst. In diesen Aufgaben handelt es sich stets nur um Winkel der Größe 30, 4, 0 bzw. 90. Für diese Winkelgrößen gibt es besondere Werte, die in nachstehender Tabelle aufgeführt sind. Diese Tabelle findest du auch in deiner Formelsammlung , , , 0 0,

4 Übungsaufgaben im Stil der Abschlussprüfung Aufgabe A Der Umfang, der Grundfläche eines Kreiskegels ist 28,9 R lang. Die Oberfläche < beträgt 222 R. Berechnen Sie das Volumen des Kreiskegels. Lösung: 927,2 R Aufgabe A2 Ein Kreiskegel mit dem Volumen 928 R³ ist 28,7 R hoch. Berechnen Sie den Radius der Kugel, deren Oberfläche genau so groß ist, wie die des Kegels. Lösung: 9, R Aufgabe A3 Auf der Grundfläche eines Kreiskegels ist eine Halbkugel aufgesetzt worden. Es gilt: ; UV 27 R² 8, R Berechnen Sie das Gesamtvolumen des zusammengesetzten Körpers. Lösung: 970 R Aufgabe A4 Die Grundfläche eines Kreiskegels ist 74,8 R² groß. Der Winkel X beträgt 73,0. Berechnen Sie die Oberfläche des Zylinders, der denselben Radius und dieselbe Höhe wie der Kreiskegel besitzt. Lösung: < YV 32 Z [ Aufgabe A Von einem Kegel sind das Volumen und der Grundkreisradius bekannt. 932,4 R³, R. Die Mantellinie wird um die Hälfte verlängert. Berechnen Sie, um wie viel Prozent die Oberfläche des Körpers zunimmt. Lösung: \ Y %2,8 % Aufgabe A Gegeben sei ein Kreiskegel mit Körperhöhe 8J Winkel 0 Zeigen Sie ohne Verwendung gerundeter Werte, dass für die Mantelfläche gilt: ; #J².

5 Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte zur Erreichung der Endergebnisse dar. Lösung A Detaillierte Lösung: Lösungsschritte:. Aus dem gegebenen Umfang errechnen wir über die Formel für den Kreisumfang den Radius des Grundkreises. 2 :2 2, 4, 2. Wir ziehen von der gegebenen Oberfläche die Fläche des Grundkreises ab und erhalten die Mantelfläche ,, 3. Aus der im Schritt zwei gewonnenen Mantelfläche errechnen wir die Länge der Seitenkante. : #$$,$ %, 4. Wir berechnen ) über den Satz des Pythagoras. ) +0,8 4, +9,489,8. Wir berechnen das Volumen. - #. ) #. 4, 9,827,2 2. Lösung A2 Berechnen von 34 aus den gegebenen Werten. Berechnen der Seitenkante des Kegels über den Satz des Pythagoras. Berechnen der Oberfläche 34 über die Oberflächenformel. Gleichsetzung von 34 mit 34 und daraus Berechnung von : - 34 #. 3) 3; 8)9 3. : ;<. $ =,> 3 9,40 : ) 3 +28,7 9,4 Satz des Pythagoras 3 : 3 : +92,030, ,4 9,4 30,29, :849 ;< % ##,%. % 3 9, Der Radius der Kugel beträgt 9, 2. 93,0

6 Lösung A3 Berechnen der Höhe ) des Kegels über den Satz des Pythagoras. Berechnen des Volumens des Kegels über die Volumenformel. Berechnung des Volumens der Halbkugel. Addition von Kegelvolumen und Halbkugelvolumen. : 34 :89 ;< >, ): ) +0,22 8, Satz des Pythagoras ) 30,4884,2-34 : - 34 #. ) #. 8,,2427,8 - A3 : - A3 # %... 8,. 332, - öc : - öc AD3 427,8332,79,73 Das Gesamtvolumen des zusammengesetzten Körpers beträgt etwa Lösung A4 Berechnen der Höhe ) des Kegels über den EF G. Berechnen der Oberfläche des Zylinders über die Oberflächenformel. : H : I 4,88 >%, 23,8 ): JKF G ); = JKFG ) LMN O %,,0 LMN.,$ P RS4 : RS4 28)92 4,88 84,88,93,99 Die Oberfläche des Zylinders beträgt 322. Lösung A Berechnen der Höhe ) des Kegels über die Volumenformel Berechnen von des Kegels über den Satz des Pythagoras. Berechnen der Oberfläche des Ursprungskegels. Berechnung der verlängerten Seitenkante. Berechnen des vergrößerten Radius nach dem Strahlensatz. Berechnen der Oberfläche des vergrößerten Kegels. Berechnung der prozentualen Zunahme.

7 ): - 34 #. ) 3; 8 9 ). : ;< P..#,% $,# P,8 : ) +,8, Satz des Pythagoras +,22,8 34 : 34,, 2,8287,0 :, 9,3 : P P $,# 9,37,8 #,$ 34 : 34 7,8 7,8 ;< ;< $,,883722,78 % V ;< V ;< >,W Die Oberfläche des vergrößerten Kegels nimmt etwa 2,8 % zu. Lösung A Berechnen von über den EF0. Berechnen von über den Satz des Pythagoras. Berechnen der Mantelfläche des Zylinders über die Mantelformel. : EFY = = $.#W Z NW P #W... #W. [ 3 ; EF0.. : ) 8 #W. [ 39 8[9 Satz des Pythagoras #WWP. 2[ $. [ $. $... $. [ 3 : $. [ 3 #W. [ 3 $W. [. [ q.e.d.

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges an Stationen Übungsmaterial zu den Bildungsstandards Downloadauszug aus dem Originaltitel: an Stationen Übungsmaterial zu den Bildungsstandards Dieser Download ist ein

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Lösungen zur Prüfung 2005: Pflichtbereich

Lösungen zur Prüfung 2005: Pflichtbereich 005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen

Mehr

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert) Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.

Mehr

! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2

! #$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2 % Note: mit P.! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '. 4+ Körperberechnung: Die Übungsarbeit dient der gezielten Vorbereitung auf die Arbeit. Die Übungsarbeit hat insgesamt 8 Aufgaben mit einigen Teilaufgaben.

Mehr

Raumgeometrie - Zylinder, Kegel

Raumgeometrie - Zylinder, Kegel Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Mathe an Stationen Klasse 9 Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse 9 Dieser Download ist ein Auszug aus dem Originaltitel Mathe an Stationen

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe I) So berechnet man das Volumen einer Säule. Körper Strukturbild geometrische Bedeutung Formel Säule Volumen Volumen einer Schicht mal h s Anzahl der Schichten V s A h s Volumen Säule Grundfläche Höhe

Mehr

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung 1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten

Mehr

Inhaltsverzeichnis. I Planimetrie.

Inhaltsverzeichnis. I Planimetrie. Inhaltsverzeichnis I Planimetrie. Winkel 1.1 Einführung 1.1.1 Definition eines Winkels 1 1.1.2 Messung von Winkeln in Grad (Altgrad) 1 1.1.3 Orientierte Winkel 2 1.1.4 Winkelkategorien 2 1.2 Winkel an

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

8.1 Vorstellen im Raum

8.1 Vorstellen im Raum äumliche Geometrie 1 8 äumliche Geometrie 8.1 Vorstellen im aum 1. Alle dargestellten Körper sind aus elf Würfeln zusammengesetzt. a) Welche der Körper sind deckungsgleich zueinander? b) Welche der Körper

Mehr

Geometrie Stereometrie

Geometrie Stereometrie TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.7 Geometrie Stereometrie Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Juni 2009

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Arbeitsplan Mathematik Klasse 10 RS Schüttorf 2012/13 Nr. (Zeitrahmen)

Arbeitsplan Mathematik Klasse 10 RS Schüttorf 2012/13 Nr. (Zeitrahmen) Medieneinsatz: Taschenrechnernutzung (Trigonometrie) (a) Trigonometrische Beziehungen => Physik WPK (Astronomie), Erdkunde (Landvermessung?) 1. (ca.45 16 h) 03.09. 05.10. Modellieren/Problemlösen: Entnehmen

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 8 LU Nr nhaltliche * * V* Titel MB 8 LU 5 * nhaltliche mein Raumvorstellungsvermögen weiter entwickeln und ebene wie räumliche V Figuren erkennen die Eigenschaften eines regelmässigen Tetraeders

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 2008 Lehrbuch: Mathematik heute 9

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 2008 Lehrbuch: Mathematik heute 9 Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 008 Lehrbuch: Mathematik heute 9 Inhalte Seiten Kompetenzen gemäß Kerncurriculum Eigene Bemerkungen Lineare Gleichungssysteme Lineare

Mehr

! % Note: mit P. ! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2

! % Note: mit P. ! #$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2 ! % Note: mit P.! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '. 4+ Körperberechnung: Die Übungsarbeit dient der gezielten Vorbereitung auf die Arbeit. Die Übungsarbeit hat insgesamt 10 Aufgaben mit einigen

Mehr

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9 Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Klasse 5-10: Lambacher-Schweizer Mathematik, Klett-Verlag

Klasse 5-10: Lambacher-Schweizer Mathematik, Klett-Verlag Ziele -1- Der Unterricht in der Sekundarstufe I soll mathematisches Denken als wichtigstes Mittel zur rationalen Erkenntnis und Gestaltung unserer Welt durch Erstellung und Nutzung entsprechender Modelle

Mehr

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. STEREOMETRIE I Grundlagen 1. Punkte, Geraden und Ebenen Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. a) Gerade Axiom:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen Mathematik Klasse 9 Inhalt/Thema von Maßstab Band 5 1. Grundkenntnisse Rechnen mit Brüchen und Dezimalbrüchen Rechnen mit Größen Proportionale und umgekehrt proportionale Zuordnungen, Dreisatz Prozent-

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Raumgeometrie WORTSCHATZ 1

Raumgeometrie WORTSCHATZ 1 Raumgeometrie WORTSCHATZ 1 Video zur Raumgeometrie : http://www.youtube.com/watch?v=qbqbd0b3vzu VOKABEL : eine Angabe ; angeben ; was angegeben ist : ce qui est donné (les données) eine Annahme ; annehmen

Mehr

1 Wie man für die Prüfung lernen kann... I 2 Das Lösen einer mathematischen Aufgabe... III 3 Formelsammlung... IX

1 Wie man für die Prüfung lernen kann... I 2 Das Lösen einer mathematischen Aufgabe... III 3 Formelsammlung... IX Vorwort Hinweise zur Prüfung Hinweise und Tipps I 1 Wie man für die Prüfung lernen kann... I 2 Das Lösen einer mathematischen Aufgabe... III 3 Formelsammlung... IX Training Grundwissen 1 1 Wiederholung

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

DOWNLOAD Farbmengen berechnen Mathe-Aufgaben aus dem Alltag

DOWNLOAD Farbmengen berechnen Mathe-Aufgaben aus dem Alltag DOWNLOAD Karin Schwacha Farbmengen berechnen Mathe-Aufgaben aus dem Alltag 7 8 auszug aus dem Originaltitel: Katrin: Simon, ich soll für die Kunst-AG die Farbmenge für unser neues Kunstwerk berechnen.

Mehr

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen Quadratwurzel Reelle Zahlen Quadratwurzeln Reelle Zahlen Zusammenhang zwischen Wurzelziehen und Quadrieren Rechenregeln Umformungen (Bd. Kl. 9) 7 46 8 18 19 20 21 24 25 29 30 34 + 2 mit Excel Beschreiben

Mehr

Grundmodul Metalltechnik

Grundmodul Metalltechnik Grundmodul Metalltechnik Inhaltsverzeichnis 1 Längenberechnungen... 4 1.1 Allgemein... 4 1.2 Randabstand gleich der Teilung... 4 1.3 Randabstandteilung ungleich Teilung... 4 1.4 Trennung von Teilstücken...

Mehr

Kreis Kreisabschnitt Kreissegment Kreisbogen

Kreis Kreisabschnitt Kreissegment Kreisbogen Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt)

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

WAchhalten und DIagnostizieren

WAchhalten und DIagnostizieren WAchhalten und DIagnostizieren von Grundkenntnissen und Grundfertigkeiten im Fach Mathematik Klassenstufe 9/10 Teil 1 Annette Kronberger Thomas Weizenegger Stand: 02.04.2016 Einführung 2 Durchgeführte

Mehr

Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)

Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007) Rotationskörper Ronny Harbich 1. August 2003 geändert 24. Oktober 2007) Inhaltsverzeichnis 1 Einführung 3 2 Anschauliche Herleitung 4 2.1 Darstellungen................................. 4 2.2 Gleichungen

Mehr

Füllstand eines Behälters

Füllstand eines Behälters Füllstand eines Behälters Der Behälter ist eines der häufigsten Apparate in der chemischen Industrie zur Aufbewahrung von Flüssigkeiten. Dabei ist die Kenntnis das Gesamtvolumens als auch des Füllvolumens

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

Wahlteil Geometrie/Stochastik B 1

Wahlteil Geometrie/Stochastik B 1 Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1 Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com Dezember 05 Teil A: Ganzrationale Funktionen Aufgabe : Gegeben ist die Funktion

Mehr

Aufnahmeprüfung Mathematik

Aufnahmeprüfung Mathematik Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei

Mehr

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10 Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juli 006 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Beweis des Kugelvolumens und -oberfläche nach Archimedes

Beweis des Kugelvolumens und -oberfläche nach Archimedes 1 Thomas Rupp, 17. April 1999 Beweis des Kugelvolumens und -oberfläche nach Archimedes Vorbereitung zum Proseminar unter Professor Lang 1 Kugeloberfläche Bild1 Bild1 zeigt einen Gorsskreis einer Kugel,

Mehr

Geometrie-Dossier Pyramiden und Kegel

Geometrie-Dossier Pyramiden und Kegel Geometrie-Dossier Pyramiden und Kegel Name: Inhalt: Die gerade Pyramide (Eigenschaften, Definition, Begriffe, Volumen, Oberfläche) Aufgaben zur Berechnung und Konstruktion von geraden Pyramiden. Der gerade

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r.

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r. gerader Zylinder 1 Ein gerader Kreiszylinder hat die Höhe h und den Radius r (a) Erklären Sie, wie man die Formel M = rh2π für den Inhalt der Mantelfläche des Zylinders herleiten kann (b) Für den Inhalt

Mehr

Tafelbild zum Einstieg

Tafelbild zum Einstieg Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung

Mehr

Stoffverteilungsplan Mathematik 9 und 10 auf Grundlage der Rahmenpläne Schnittpunkt 9 und 10 Klettbuch

Stoffverteilungsplan Mathematik 9 und 10 auf Grundlage der Rahmenpläne Schnittpunkt 9 und 10 Klettbuch Das Thema Lineare Gleichungssysteme soll in Berlin bereits in Klasse 7/8 behandelt werden. Schnittpunkt 9 Kapitel 1 Lineare Gleichungssysteme Klassenarbeit Beschreiben und Interpretieren von Realsituationen

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Prisma, Zylinder, Kegel, Kugel. Auf Seite 5 7 finden Sie eine Formelsammlung. Für eine Maschine werden Kugeln beidseitig 5mm abgefräst und mit zwei Bohrungen versehen (vgl. Skizze). Die

Mehr

KGS Stoffverteilungsplan RS-Zweig Mathematik 10 Lehrbuch:Schnittpunkt 10 Klettbuch Seite 1 von 6

KGS Stoffverteilungsplan RS-Zweig Mathematik 10 Lehrbuch:Schnittpunkt 10 Klettbuch Seite 1 von 6 KGS Stoffverteilungsplan RS-Zweig Mathematik 10 Lehrbuch: Klettbuch 978-3-12-742501-7 nutzen zur Lösung einer komplexen Aufgabe mehrere Modelle und verknüpfen sie vergleichen Vorgehensweisen des s bzgl.

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Realschulabschlussprüfung 2003 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2003 Mathematik Seite Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus

Mehr

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 3 pro (maximal 45 Minuten) Rechnen mit natürlichen Zahlen; Darstellung natürlicher Zahlen und einfacher Bruchteile; Rechnen mit Größen Maßstabsverhältnisse;

Mehr

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 %

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 % 5 Prozentrechnen Übung 50 Der ganze Streifen entspricht 100 % = 1 000 = 1. Welche Prozent- und Promillesätze stellen die unterschiedlich getönten Flächen dar? Abb. 27 1. 2. 3. Übung 51 Der volle Winkel

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

2. Strahlensätze Die Strahlensatzfiguren

2. Strahlensätze Die Strahlensatzfiguren 2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?

Mehr

Schulinternes Curriculum Mathematik 9 des Anne-Frank-Gymnasiums Werne auf der Grundlage

Schulinternes Curriculum Mathematik 9 des Anne-Frank-Gymnasiums Werne auf der Grundlage Verbalisieren Kommunizieren Erläutern mathematischer Zusammenhänge und Einsichten eigenen Worten und Präzisieren Überprüfung und Bewertung von Problembearbeitungen Vergleichen und Bewerten von Lösungswegen

Mehr

Grundlagen. y P(4;3;2) Schrägbild 1. Punkte im Raum. Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt.

Grundlagen. y P(4;3;2) Schrägbild 1. Punkte im Raum. Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt. Grundlagen Schrägbild 1 Punkte im Raum z y P(4;3;2) 2 3 4 x Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt. ufgabe Versuche die Punkte (0;0;0), (1;1;1) und (3;2;-2) in einem Schrägbild

Mehr

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Eckleinjarten 13a. 7580 Bremerhaven 0471 3416 rath-u@t-online.de Fertigungstechnik Technische Kommunikation - Technisches Zeichnen 11 Projektionszeichnen 11. Körperschnitte und Abwicklungen 11..4 Kegelige

Mehr

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 10 Stand 2008 Lehrbuch: Mathematik heute 10

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 10 Stand 2008 Lehrbuch: Mathematik heute 10 Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 0 Stand 008 Lehrbuch: Mathematik heute 0 Inhalte Seiten Kompetenzen gemäß Kerncurriculum Eigene Bemerkungen Quadratische Gleichungen Quadratischen

Mehr

Berufsmaturitätsprüfung 2013 Mathematik

Berufsmaturitätsprüfung 2013 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste

Mehr

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA Mathematik: Mag. Schmid Wolfgang Areitslatt 9. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen haen deckungsgleiche (kongruente), parallele und eckige Grund- und Deckflächen.

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Schnittpunkt 9 Klettbuch

Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Schnittpunkt 9 Klettbuch Stoffverteilungsplan Mathematik 9 auf der Grundlage der Kerncurricula Klettbuch 978-3-12-742591-8 Stoffverteilungsplan Schnittpunkt Band 9 Schule: 978-3-12-742591-8 Lehrer: - vergleichen Vorgehensweisen

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Prozent- und Zinsrechnung

Prozent- und Zinsrechnung Prozent- und Zinsrechnung Promillewert, Grundwert, Promillesatz berechnen Das Promillerechnen ist eine Erweiterung des Prozentrechnens. Vergleich: 1 % = ein Hundertstel des Grundwertes; 1 = ein Tausendstel

Mehr

1 GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe Reelle Zahlen ℝ :

1 GN GRUNDWISSEN MATHEMATIK. für die Jahrgangsstufe Reelle Zahlen ℝ : Zahlmengen. Reelle Zahlen ℝ : natürliche Zahlen ℕ 0 ganze Zahlen ℤ negative ganze Zahlen Arechende und nichtarechende periodische Dezimalzahlen (Bruchzahlen) rationale Zahlen ℚ reelle Zahlen ℝ nichtarechende

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

21 Winkelfunktionen

21 Winkelfunktionen Winkelfunktionen. Berechnungen am rechtwinkligen Dreieck Ein Dreieck, in dem ein Winkel genau 90 hat nennt man ein rechtwinkliges Dreieck. Für die Dreiecksseiten hat man hier verschiedene Bezeichnungen

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2012 REALSCHULABSCHLUSS MATHEMATIK. Pflichtteil 2 und Wahlpflichtteil. Arbeitszeit: 160 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2012 REALSCHULABSCHLUSS MATHEMATIK. Pflichtteil 2 und Wahlpflichtteil. Arbeitszeit: 160 Minuten Pflichtteil 2 und Wahlpflichtteil Arbeitszeit: 160 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Kreuzen Sie die Wahlpflichtaufgabe, die bewertet werden soll, an. Wahlpflichtaufgabe

Mehr