Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Größe: px
Ab Seite anzeigen:

Download "Materialien WS 2014/15 Dozent: Dr. Andreas Will."

Transkript

1 Master Umweltingenieur, 1. Semester, Modul 42439,, , VL, Do. 11:30-13:00, R , UE, Do. 13:45-15:15, R Materialien WS 2014/15 Dozent: Dr. Andreas Will

2 Reynoldszahl Phänomene der Viscosität Rohrströmung Hindernisse in Strömungen Übung

3 Vorlesung 8: Reibungskraft in Flüssigkeiten Entdimensionierung der Impulsgleichung Die Impulsgleichung (im absoluten Koordinatensystem) mit Newton'scher Reibung lautet: v/ t + v v = -1/ p -g+ ν v (1) Entdimensionalisierung: Alle Terme der Gleichung (1) haben die selbe Dimension. Schreibt man jede Größe ψ(x,t) eines Terms als Produkt eines typischen, dimensionsbehafteten Werts ψ 0 mal variablem, dimensionslosermfaktor ψ (x,t), kann jeder Term der Gleichung als typische dimensionsbehaftete, konstante Größe mal dimensionsloser, variabler Term der Größenordnung eins geschrieben werden. Teilt man die Gleichung durch die typische Größe eines Referenzterms, wird die Gleichung dimensionslos. Die Vorfaktoren der dimensionslosen Terme geben dann ihre Größe relativ zum Re-ferenzterm an. Als Referenzterm wird üblicherweise die Advektion ( bzw. dieträgheitskfraftdichte) verwendet. Zerlegung der Größen in (1) ergibt: v=v 0 v and v=v 0 v with V 0 = v, t 0 = L/V 0 t, =1/L, p 0 /( 0 V 2 )=1 (2) Setzt man (2) in (1) ein, erhält man: V 02 /L ( v / t + v v )= -p 0 /( 0 L) 1/ p -ge z + νv 0 /L 2 ν v Teilungdurch die typische Größe der Advektion V 2 /L und Ersetzung von Ψ durch Ψ, ergibt: v/ t + v v = - p/ gl/v 2 e z + 1/Re v mit Re = V 0 L/ν Reynoldszahl (Trägheitskraft /Reibungskraft) und Fr= V 0 / (gl) Froudezahl (Trägheitskraft/Gravitationskraft), erhält man v/ t + v v = - p/ 1/Fr 2 e z + 1/Re v

4 Vorlesung 8: Reibungskraftin Flüssigkeiten Reynoldszahlen v/ t + v v = - p/ 1/Fr 2 e z + 1/Re v Unterschiedliche Strömungen können die gleiche oder sehr unterschiedliche dimensionslose Zahlen haben. Die gleiche dimensionslose Zahl bedeutet, daß der Einfluß des entsprechenden Terms gleich groß ist. Bei gleichen Randbedingungen sind auch die Lösungen gleich. ν [m2/s] L [m] V [m/s] Re Atmosphäre: 1E-5 1E6 10 1E12 Ozean 1E-6 1E6 1 1E12 Fluß 1E-6 1E2 1 1E8 Klärbecken 1E-6 5E1 2 1E8 Gleitlager 1E-5 1E E2 Laborströmung 1 1E E7 Laborströmung 2 1E E5 Laborströmung 3 1E E2

5 Vorlesung 8: Reibungskraftin Flüssigkeiten: Rohrströmung Wir betrachten eine Strömung durch ein Rohr mit Durchmesser D. Die Reibungskraft hängt von den Strömungsparametern ab. Das Strömungsverhalten kann durch die Reynoldszahl (Re) charakterisiert werden, die als Quotient von Advektion und Reibungskraftdichte definiert ist: Re = V D/ν Laminare Strömung Re < 2300 (Rotta, 1950) mit Δv=v und D : Rohrdurchmesser ν : kinematische Viscosität V : Strömungsgeschwindigkeit Bei dieser definition der Reynoldszahl Re ist die Strömung turbulen für Re>2300. Turbulente Strömung Re > 2300

6 Vorlesung 8: Reibungskraftin Flüssigkeiten: Rohrströmung Wir betrachten nun die Rohrströmung in Rohren mit unterschiedlichen Wandmaterialien. Die Reibungskraft hängt nun von der Reynoldszahl und den Eigenschaften der Wand ab: Laminare Strömung (Re < 2300) : f = 64/Re (theoretische Lösung) Turbulente Strömung (Re > 2300) : 1/ (f) = -1.8 log[(6.9/re) + (k/3.7) 1.11 ] k = Z 0 /D Re =v D/ν=Advektion/Reibung: Reynoldszahl Z 0 : Rauigkeitslänge. Wandabstand, bei dem im logarithmischen Profil der turbulenten mittleren Strömung v=0 auftreten würde. D : Rohrdurchmesser L : Rohrlänge ν : kinematische Viskosität der Strömung material Stahl Kupfer Glas Polyethylen Flexibles P.V.C. Steifes P.V.C. Gusseisen Beton Darcy-Weisbach Gleichung: Die Druckdifferenz zwischen zwei Punkten im Abstand L kann mithilfe der folgenden empirischen Formel bestimmt werden: Z mm mm mm mm mm mm mm mm

7 Vorlesung 8: Reibungskraft in Flüssigkeiten: Hindernisumströmung Wir betrachten einen Zylinderförmigen Gegenstand in einer gleichförmigen Anströmung Die Reynoldszahl (Re) Re = V D/ν ist definiert durch D : Zylinderdurchmesser ν : kinematische Viskosität der Flüssigkeit V : Geschwindigkeit der Anströmung Mit dieser Definition von Re, ist die laminare Strömung beschränkt auf 1<Re<10. Im Bereich 90<Re<1000 tritt stromabwärts die Wirbelstrasse auf. Für Re > 1E4 tritt eine voll entwickelte turbulente Strömung stromabwärts auf.

8 Vorlesung 8: Reibungskraftin Flüssigkeiten: von Karman Wirbelstrasse Beispiel einer von Kármán Wirbelstrasse in der Troposphäre: Umströmung der Juan Fernández Insel vor der Chilenischen Küste.

9 Vorlesung 8: Reibungskraftin Flüssigkeiten von Karman Wirbelstrasse V L/T : v/ t + v v = - p/ 1/Fr 2 e z + 1/Re v St= Instationarität/Trägheit= L/vT= ωl/v St v/ t + v v = - p/ 1/Fr 2 e z + 1/Re v Bedingungen für das Auftreten der von Karman Wirbelstraße: St= (1-19.7/Re) 250 < Re < , 0.18 < St < 0.198

10 Vorlesung 8: Reibungskraftin Flüssigkeiten Reynoldszahl Resonanz: Die maximale Amplitude der Oscillation tritt bei der Resonanzfrequenz auf: Rechts: Amplituden des harmonischen Oszillators (wikipedia)

11 Vorlesung 8: Reibungskraftin Flüssigkeiten: von Karman vortex street Möglichkeiten der Verhinderung der Druckoscillationen (die die Bauwerke zerstören können): 1. Verlängerung des umströmten Objekts 2. Spirale um den Schornstein Prosperine/Mill, 2012, wikipedia

12 Vorlesung 8: Reibungskraftin Flüssigkeiten body in a uniform flow Wir betrachten nun unterschiedlich geformte Körper mit gleicher Fläche senkrecht zur Strömungsrichtung: die Reibungskraft F d hängt von der Körperform ab und kann mithilfe einer empirischen Formel bestimmt werden. Die empirische Formel lautet: F d = 0.5 C w A v 2 Sie wurde mithilfe von Labormessungen vielfach bestätigt durch Bestimmung der Koeffizienten einer Taylor- Reihenentwicklung. Es wurde festgestellt, daß die Koeffizienten der Terme mit dem Exponenten der Geschwindigkeit 1, 3 und 4 klein sind im Vergleich mit C w.

13 Übung 8: Reibungskraftin Flüssigkeiten Übung 1 Gebe die C w Werte für 5 unterschiedliche Körper an. Übung 2: Berechne die Reynoldszahl der Atmosphäre und des Flusses Elbe Übung 3 Bei welcher Geschwindigkeit wird die Strömung turbulent in einem Rohr mit Durchmesser 2cm? A) Wenn Wasser durchströmt B) Wenn ein typisches Öl durchströmt C) Wenn Luft durchströmt Übung 4. Welche Geschwindigkeit erreicht eine Fahrradfahrerin, wenn sie 100 W, und welche, wenn sie 500 W leistet. Nehme typische Werte an für C w A.

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

Strömende Flüssigkeiten und Gase

Strömende Flüssigkeiten und Gase Strömende Flüssigkeiten und Gase Laminare und turbulente Strömungen Bei laminar strömenden Flüssigkeiten oder Gasen bewegen sich diese in Schichten, die sich nicht miteinander vermischen. Es treten keine

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995) Universität - Gesamthochschule Kassel Fachgebiet Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch GhK WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

Mehr

Tutorium Hydromechanik I + II

Tutorium Hydromechanik I + II Tutorium Hydromechanik I + II WS 2015/2016 Session 3 Prof. Dr. rer. nat. M. Koch 1 Aufgabe 13 (Klausuraufgabe am 07.10.2012) Der bekannte Bergsteiger Reinhold Messner befindet sich mal wieder auf Himalaya

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Versuch Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße)

Versuch Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße) Versuch 7 + 8 Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße) Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und

Mehr

3. Laminar oder turbulent?

3. Laminar oder turbulent? 3. Laminar oder turbulent? Die Reynoldszahl Stokes- Gleichung Typisch erreichbare Reynoldszahlen in der Mikrofluik Laminare Strömung Turbulente Strömung 1 Durchmesser L Dichte ρ TrägheitskraG: F ρ ρu 2

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

laminare Grenzschichten Wofür Grenzschichttheorie?

laminare Grenzschichten Wofür Grenzschichttheorie? laminare Grenzschichten Wofür Grenzschichttheorie? mit der Potentialtheorie können nur Druckverteilungen berechnet werden Auftriebskraft Die Widerstandskräfte können nicht berechnet werden. Reibungskräfte

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Besprechung am /

Besprechung am / PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 016/17 Übungsblatt 9 Übungsblatt 9 Besprechung am 10.01.017 / 1.01.017 Aufgabe 1 Dakota Access Pipeline. Die Dakota Access Pipeline ist eine

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

Nachholklausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS)

Nachholklausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS) Fakultät für Physik der LMU 29.03.2012 Nachholklausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS) Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel

Mehr

7 Turbulenz (7.1) L. L oder ausgerückt durch das Verhältnis (7.2)

7 Turbulenz (7.1) L. L oder ausgerückt durch das Verhältnis (7.2) 7 Turbulenz In einer laminaren Strömung fliessen die Flüssigkeitselemente in benachbarten Stromlinien aneinander vorbei ohne sich zu mischen. Im Gegensatz dazu hat die turbulente Strömung einen stark unregelmässigen,

Mehr

Kolumban Hutter. Thermodynamik. Eine Einführung. Zweite Auflage Mit 194 Abbildungen. Springer

Kolumban Hutter. Thermodynamik. Eine Einführung. Zweite Auflage Mit 194 Abbildungen. Springer Kolumban Hutter Fluidund Thermodynamik Eine Einführung Zweite Auflage Mit 194 Abbildungen Springer Inhaltsverzeichnis 1. Einleitung 1 1.1 Historische Notizen und Abgrenzung des Fachgebietes 1 1.2 Eigenschaften

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

Laborübung der Mess- und Automatisierungstechnik Druckmessung

Laborübung der Mess- und Automatisierungstechnik Druckmessung Laborübung der Mess- und Automatisierungstechnik Druckmessung Versuch III: Druckmessung in einer Rohrströmung Bearbeiter: Betreuer: Dr. Schmidt Übungsgruppe: / C Versuchsdatum: 21. November 2003 Laborübung

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 01.10.2002 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) 1)... Matr.-Nr.:... HS I / HS II / IP / WI 2)... 3)... Beurteilung:...

Mehr

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3 Lösung 4.1 4.1/1 Gegeben: Rechteckkanal, von Diphyl durchströmt w = 0,2 m/s, t i = 400 o C Stoffdaten von Diphyl: λ = 0,083 /(m K), c p = 2,57 kj/(kg K), η = 1, 405 10 4 Pa s, ϱ = 717 kg/m 3 Modellkanal

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Grundoperationen der Verfahrenstechnik. Dimensionsanalyse und Ähnlichkeitstheorie I

Grundoperationen der Verfahrenstechnik. Dimensionsanalyse und Ähnlichkeitstheorie I Grundoperationen der Verfahrenstechnik 1. Übung, WS 2016/2017 Betreuer: Maik Tepper M.Sc., Maik.Tepper@avt.rwth-aachen.de Morten Logemann M.Sc., Morten.Logemann@avt.rwth-aachen.de Johannes Lohaus M.Sc.,

Mehr

Hydromechanik Hausarbeiten 1

Hydromechanik Hausarbeiten 1 Hydromechanik Hausarbeiten 1 Institut für Hydromechanik Dozent: Prof. Gerhard H. Jirka, Ph.D. Assistent: Dr.-Ing. Tobias Bleninger WS 2006/2007 Abgabedatum: Fr. 1.12.06 Dies sind die Hausarbeiten zur Hydromechanik.

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

Innere Reibung von Flüssigkeiten

Innere Reibung von Flüssigkeiten Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Bearbeitet: Versuch: L. Jahn RF M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Aktualisiert: am 29. 03. 2010 Innere Reibung von

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Strömung. 1 Einleitung. 2 Physikalische Grundlagen. Versuchsziele:

Strömung. 1 Einleitung. 2 Physikalische Grundlagen. Versuchsziele: 1 Strömung Versuchsziele: Experimentelle Überprüfung des Hagen-Poiseuill schen Gesetzes Durchführung zweier Methoden der Viskositätsbestimmung von Flüssigkeiten Ermittlung der Temperaturabhängigkeit der

Mehr

Messung turbulenter Rohrströmung

Messung turbulenter Rohrströmung Fachlabor Strömungs- und Wärmetechnik Messung turbulenter Rohrströmung Bearbeiter: Gruppe: Name :... Vorname :... Matrikel-Nr. :... Tag des Versuchs :... Teilnahme am Versuch :... Korrekturhinweis : Endtestat

Mehr

3. Innere Reibung von Flüssigkeiten

3. Innere Reibung von Flüssigkeiten IR1 3. Innere Reibung von Flüssigkeiten 3.1 Einleitung Zwischen den Molekülen in Flüssigkeiten wirken anziehende Van der Waals Kräfte oder wie im Falle des Wassers Kräfte, die von sogenannten Wasserstoffbrückenbindungen

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden)

KLAUSUR STRÖMUNGSLEHRE. Blockprüfung für. Maschinenbau. und. Wirtschaftsingenieurwesen. (3 Stunden) Univ.-Prof. Dr.-Ing. Wolfram Frank 09.10.2003 Lehrstuhl für Fluiddynamik und Strömungstechnik Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Aufg. 2)... Beurteilung:...

Mehr

4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen

4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen 4.1.4 Stationäre kompressible Strömungen in Rohren oder Kanälen 4.1.4-1 konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel SCIENTIFIC COMPUTING Die eindimensionale Wärmeleitungsgleichung (WLG) Begriffe Temperatur Spezifische Wärmekapazität Wärmefluss Wärmeleitkoeffizient Fourier'sche Gesetz Spezifische Wärmeleistung Mass für

Mehr

Design fürs Schwimmen: das Geheimnis der Haihaut

Design fürs Schwimmen: das Geheimnis der Haihaut Science in School Ausgabe 41: Herbst 2017 1 Design fürs Schwimmen: das Geheimnis der Haihaut A Ein großartiger weißer Hai, Carcharodon carcharias, Bild zur Verfügung gestellt von Stefan Pircher/Shutterstock

Mehr

Theoretische Biophysik - Statistische Physik

Theoretische Biophysik - Statistische Physik Theoretische Biophysik - Statistische Physik 10. Vorlesung Pawel Romanczuk Wintersemester 2018 http://lab.romanczuk.de/teaching/ 1 Brownsche Bewegung Zusammenfassung letzte VL Formulierung über Newtonsche

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Klausur Strömungsmechanik I

Klausur Strömungsmechanik I ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I 08. 08. 2014 1. Aufgabe (12 Punkte) Eine Ölbarriere in der Form eines Zylinders mit dem Durchmesser D schwimmt im Meer. Sie taucht in dem

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

3. Grenzschichtströmungen Grenzschichtablösung

3. Grenzschichtströmungen Grenzschichtablösung 3. Grenzschichtströmungen - 3. Grenzschichtablösung Eine Strömung ist nicht in der Lage sehr schnellen Konturänderungen zu folgen, da dies sehr hohe Beschleunigungen und daher sehr hohe Druckgradienten

Mehr

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti:

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti: ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 05. 08. 011 1. Aufgabe a Konti: Impuls: Energie: u x + v = 0 ρ u u x + v u ρ c p u T x + v T = η u = λ T dimensionslose Größen: ū = u u

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,

Mehr

~F Z. Physik 1 für Chemiker und Biologen 5. Vorlesung Heute: - Reibung, fortgesetzt - Gravitation - Arbeit, Energie, Leistung

~F Z. Physik 1 für Chemiker und Biologen 5. Vorlesung Heute: - Reibung, fortgesetzt - Gravitation - Arbeit, Energie, Leistung Physik 1 für Chemiker und Biologen 5. Vorlesung 26.11.2018 Heute: - Reibung, fortgesetzt - Gravitation - Arbeit, Energie, Leistung Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, # 486428

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik Frühjahr 205 5. März 205, Beginn 6:30 Uhr Taschenrechner (nicht programmierbar) Lineal und Schreibmaterial (nur dokumentenecht,

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

Modul: Atmosphärische Skalen in Raum und Zeit

Modul: Atmosphärische Skalen in Raum und Zeit in Raum und Zeit ernziel: Erstes Einordnen der verschiedenen atmosphärischen Prozesse nach ihren charakteristischen Größenordnungen, Definition der typischen dynamischen Skala in Raum und Zeit, Einführung

Mehr

Übungen zu Physik I für Physiker Serie 12 Musterlösungen

Übungen zu Physik I für Physiker Serie 12 Musterlösungen Übungen zu Physik I für Physiker Serie 1 Musterlösungen Allgemeine Fragen 1. Warum hängt der Klang einer Saite davon ab, in welcher Entfernung von der Mitte man sie anspielt? Welche Oberschwingungen fehlen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 9: Turbulente Strömungen, Grenzflächen, Schwingungen Dr. Daniel Bick 30. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 30. November 2016

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell

Mehr

Dru. Gleicher Nennweiten- und Strömungsgeschwindigkeitsbereich, jedoch mit 6-fach höherer Rauigkeit k = 30 mm

Dru. Gleicher Nennweiten- und Strömungsgeschwindigkeitsbereich, jedoch mit 6-fach höherer Rauigkeit k = 30 mm 0,09 0,0 0,07 0,0 0,0 0,0 0,03 0,0 0,01 0,01 0,01 0,01 0,010 0,009 0,00 0,007 hydraulisch rau (k >0) d/k = 0 λ = 0 Re Grenzkurve 00 00 laminar turbulent 0 000 A 000 10 000 0 000 0 000 hydraulisch glatt

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 9: Turbulente Strömungen, Grenzflächen, Schwingungen Dr. Daniel Bick 30. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 30. November 2016

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 1. Auflage Hanser München 2008 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 41054 1 Zu Inhaltsverzeichnis schnell

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

109 Kugelfallmethode nach Stokes

109 Kugelfallmethode nach Stokes 109 Kugelfallmethode nach Stokes 1. Aufgaben 1.1 Messen Sie die Fallzeit von Stahlkugeln mit unterschiedlichem Durchmesser in Rizinusöl! 1.2 Bestimmen Sie daraus die dynamische Viskosität des Öls, und

Mehr

Nachholklausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik und Meteorologie (9 ECTS)

Nachholklausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik und Meteorologie (9 ECTS) Fakultät für Physik der LMU 29.03.2012 Nachholklausur zur Vorlesung E1: Mechanik für Studenten mit Hauptfach Physik und Meteorologie (9 ECTS) Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr.

Mehr

Mechanik der Flüssigkeiten und Gase

Mechanik der Flüssigkeiten und Gase BIBLIOTHEK DES TECHNIKERS UXMT Mechanik der Flüssigkeiten und Gase Technische Physik von Horst Herr VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer GmbH & Co. KLEINER WERTH 50 POSTFACH 201815 5600 WUPPERTAL

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Hydromechanik Klausur Oktober 2007

Hydromechanik Klausur Oktober 2007 Hydromechanik Klausur Oktober 007 Aufgabe. Ein oben offener Tank mit einem Durchmesser on 5,5 m und einer Höhe on 5 m ist mit 0 C warmen Wasser bis zum Rand gefüllt. Wieiel Liter Wasser laufen aus dem

Mehr

Grundoperationen der Verfahrenstechnik. Sedimentation I

Grundoperationen der Verfahrenstechnik. Sedimentation I Grundoperationen der Verfahrenstechnik 3. Übung, WS 2016/2017 Betreuer: Maik Tepper M.Sc., Maik.Tepper@avt.rwth-aachen.de Morten Logemann M.Sc., Morten.Logemann@avt.rwth-aachen.de Johannes Lohaus M.Sc.,

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin 1.Klausur Strömungslehre Technik und Beispiele am Freitag, 23. Februar 2018 15:00-17:00 Raum H 0104, HE 101 Fakultät V Verkehr- und Maschinensysteme ISTA Institut für Strömungsmechanik

Mehr

Tutorium Hydromechanik I und II

Tutorium Hydromechanik I und II Tutorium Hydromechanik I und II WS 2017/2018 12.03.2018 Prof. Dr. rer. nat. M. Koch Vorgelet von: Ehsan Farmani 1 Aufgabe 46 Wie groß ist die relative Änderung (%) vom Druck, wenn a) wir die absolute Temperatur

Mehr

Was ist Turbulenz? Max Camenzind Senioren Uni

Was ist Turbulenz? Max Camenzind Senioren Uni Was ist Turbulenz? Max Camenzind Senioren Uni Würzburg @WS2013 Themen Einige Beispiele aus dem täglichen Leben. 1755 leitete Leonhard Euler die Euler- Gleichungen her für ideale Flüssigkeiten; Das mathematische

Mehr

Thermodynamik II Musterlösung Rechenübung 10

Thermodynamik II Musterlösung Rechenübung 10 Thermodynamik II Musterlösung Rechenübung 0 Aufgabe Seitenansicht: Querschnitt: Annahmen: stationärer Zustand Wärmeleitung in axialer Richtung ist vernachlässigbar konstante Materialeigenschaften Wärmeleitungswiderstand

Mehr

Kármánsche Wirbelstraßen in

Kármánsche Wirbelstraßen in Kármánsche Wirbelstraßen in der Atmosphäre Untersuchungen mittels Large Eddy Simulation Rieke Heinze und Siegfried Raasch Institut für Meteorologie and Klimatologie Leibniz Universität Hannover DACH 2010

Mehr

2. Klausur zur Vorlesung E1: Mechanik

2. Klausur zur Vorlesung E1: Mechanik Fakultät für Physik der LMU 16.02.2009 2. Klausur zur Vorlesung E1: Mechanik Wintersemester 2008/2009 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr. Doris Heinrich Name:... Vorname:... Matrikelnummer:...

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Technische Universität München

Technische Universität München Technische Universität München Lehrstuhl I für Technische Chemie Lehrstuhl für Energiesysteme Diplomhauptprüfung Mechanische Verfahrenstechnik I (Verfahrenstechnische Grundlagen für Baustoffingenieure)

Mehr

Strömungen in Wasser und Luft

Strömungen in Wasser und Luft Strömungen in Wasser und Luft Strömungssimulationen im UZWR Daniel Nolte März 2009 Mathematische Strömungsmodelle Navier Stokes Gleichungen (Massenerhaltung, Impulserhaltung, Energieerhaltung) ρ + (ρ U)

Mehr

6.Übung Strömungslehre für die Mechatronik

6.Übung Strömungslehre für die Mechatronik 6.Übung Strömungslehre für die Mechatronik Prof. Dr.-Ing Peter Pelz Dipl.-Ing. Thomas Bedar 18. Juli 2009 Inhaltsverzeichnis 1 Hinweise 1 2 Korrektur zur Vorlesung vom 14.07.2009 2 3 laminare Schichtenströmung

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Ende WS 01/0 Heift / Kurtz Name: Vorname: Matrikel-Nr: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

2. Potentialströmungen

2. Potentialströmungen 2. Potentialströmungen Bei der Umströmung schlanker Körper ist Reibung oft nur in einer dünnen Schicht um den Körper signifikant groß. Erinnerung: Strömung um ein zweidimensionales Tragflügelprofil: 1

Mehr

Verweilzeitverhalten im Rührkessel / Kaskade und Verweilzeitverhalten im Strömungsrohr

Verweilzeitverhalten im Rührkessel / Kaskade und Verweilzeitverhalten im Strömungsrohr Protokoll Verweilzeitverhalten im Rührkessel / Kaskade und Verweilzeitverhalten im Strömungsrohr Von Christian Terhorst 716822-1- Inhaltsverzeichnis 1 Aufgabenstellung 2 Rührkessel ( -kaskade ) 2.1 Versuchsaufbau

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Name. Vorname. Legi-Nr.

Name. Vorname. Legi-Nr. Dimensionieren Prof. Dr. K. Wegener Name Vorname Legi-Nr. Übung 7: Hydrodynamisches Radialgleitlager Voraussetzungen: Lagerungen Problemstellung Für ein hydrodynamisches Radialgleitlager analog zu den

Mehr

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Serie 12. Erinnerung: Der Laplace-Operator in n 1 Dimensionen ist definiert durch

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Serie 12. Erinnerung: Der Laplace-Operator in n 1 Dimensionen ist definiert durch D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner Serie 12 1. Laplace-Operator in ebenen Polarkoordinaten Erinnerung: Der Laplace-Operator in n 1 Dimensionen ist definiert durch ( ) 2

Mehr

Strömung realer inkompressibler Fluide

Strömung realer inkompressibler Fluide 4 STRÖMUNG REALER INKOMPRESSIBLER FLUIDE 4.1 EIGENSCHAFTEN REALER FLUIDE 4.1.1 Fluidreibung und Viskosität Wesentlichstes Merkmal realer Fluide ist die Fluidreibung. Sie wurde erstmals von I. Newton (engl.

Mehr

3 Erzwungene Konvektion 1

3 Erzwungene Konvektion 1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation

Mehr

Klausur Strömungsmechanik 1 Herbst 2012

Klausur Strömungsmechanik 1 Herbst 2012 Klausur Strömungsmechanik 1 Herbst 2012 21. August 2012, Beginn 15:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Klausur. Physik für Pharmazeuten und Biologen (PPh) WiSe 07/ Februar 2008

Klausur. Physik für Pharmazeuten und Biologen (PPh) WiSe 07/ Februar 2008 Klausur Physik für Pharmazeuten und Biologen (PPh) WiSe 07/08 11. Februar 2008 Name: Matrikel-Nr.: Fachrichtung: Semester: Bearbeitungszeit: 90 min Bitte NICHT mit Bleistift schreiben! Nur Ergebnisse auf

Mehr

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied Zum Verständnis der folgenden Kapitel werden wir zuerst die in dieser Broschüre verwendeten Fachbegriffe der definieren und erläutern. Im Stichwortverzeichnis finden Sie diese Begriffe alphabetisch geordnet

Mehr