Grundkurs Semantik. Sitzung 3: Mengenlehre. Andrew Murphy

Größe: px
Ab Seite anzeigen:

Download "Grundkurs Semantik. Sitzung 3: Mengenlehre. Andrew Murphy"

Transkript

1 Grundkurs Semantik Sitzung 3: Mengenlehre Andrew Murphy Grundkurs Semantik HU Berlin, Sommersemester murphy/semantik Mai 2015 Basiert auf Kapitel 4 von Krifkas Skript GK Semantik Mengenlehre

2 Was sind Mengen? Menge Eine Menge ist eine abstrakte Zusammenfassung bestimmter wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens zu einem Ganzen. λ abstrakt heißt, dass die Objekte nicht physisch zusammengefasst werden müssen, vgl. Briefmarkensammlung in einem Album. λ wohlunterschieden heißt, dass man in der Lage sein muss, die Elemente der Menge voneinander unterscheiden zu können. λ Aus der Definition wird auch klar, dass wir auch eine Menge definieren kann, von Dingen, die nicht existieren: (1) Menge der Planeten des Sonnensystems Gondon : {Vla, Zumatan IV, Blagazor,...} λ Die Elemente einer Menge werden dargestellt in geschweiften Klammern wie oben. GK Semantik Mengenlehre

3 Wichtige Eigenschaften von Mengen λ Nehmen wir als Beispiel die folgende Menge: (2) Die Menge der Grundvokale {a, o, u, i, e} λ Mengen sind ungeordnet. Dies bedeutet, dass es keine Rolle spielt, in welcher Reihenfolge, die Elemente der Menge vorkommen. λ Folglich sind die folgenden Mengen gleich (2): (3) a. {a, o, i,e, u} b. {o, i, e, u, a} c. {i, e, o, u, a} d. {u, a, i, o, e} e.... GK Semantik Mengenlehre

4 Wichtige Eigenschaften von Mengen λ Außerdem können Mengen unendlich sein. λ Dies wird klar, wenn wir die Mengen aller natürlichen Zahlen N betrachten: (4) Menge natürlicher Zahlen: {1, 2, 3, 4, 5, 6, 7,...} λ Eine Menge, die nur ein Element enthält nennt man eine Einermenge ({1}). λ Außerdem gibt es die leere Menge ({ }). λ Die leere Menge wird wie folgt dargestellt:. GK Semantik Mengenlehre

5 Wichtige Eigenschaften von Mengen λ Eine weitere wichtige Eigenschaft von Mengen ist, dass deren Elemente wohlunterschieden sein müssen. λ Dies bedeutet, dass wenn ein Element mehrfach in einer Menge aufgelistet wird, dies nur als ein Vorkommen des Elements gilt: (5) a. {1, 2, 3, 4, 5, 5, 6} = {1, 2, 3, 4, 5, 6} b. {a, b, c, d} = {a, a, b, c, d, d, d} λ Dies bedeutet, dass beide Mengen in (5) enthalten sechs Elemente. λ Mengen, die das mehrfache Vorkommen eines Elements erlauben heißen Multimengen. GK Semantik Mengenlehre

6 Mengentheoretische Aussagen λ Wir können Aussagen über Mengen machen. λ Die erste Aussage haben wir schon gesehen; Mittels = können wir ausdrücken, dass zwei Mengen gleich sind. (6) a. {a, e, i, o, u} = {u, o, i, e, a} b. {1, 2, 3, 3, 4} = {1, 2, 3, 4} λ Normalerweise sind mengentheoretische Aussagen entweder wahr (1) oder falsch (0). λ Die oben genannten Beispiele sind eigentlich Abkürzungen für die folgenden: (7) a. ({a, e, i, o, u} = {u, o, i, e, a}) = 1 b. ({1, 2, 3, 3, 4} = {1, 2, 3, 4}) = 1 GK Semantik Mengenlehre

7 Mengentheoretische Aussagen λ Wir können ausdrücken, dass ein Objekt zu einer Menge gehört. λ Hierfür benutzten wir das Symbol (Elementenbeziehung): (8) a. a {a, b, c, d} b. b {a, b, c, d} c. (c {a, b, c, d}) = 1 λ Es ist auch möglich auszudrücken, dass ein Element nicht Teil einer Menge ist mit dem Symbol : (9) e {a, b, c, d} GK Semantik Mengenlehre

8 Mengentheoretische Aussagen λ Andere Mengen können natürlich auch in anderen Menge enthalten sein: (10) a. {a, b} {{a, b}, c, d} b. {a, c} {{a, b}, c, d} λ Außerdem ist die leere Menge in jeder Menge enthalten: (11) a. {a, b, c, d} b. {a, b, c, d} = {, a, b, c, d} GK Semantik Mengenlehre

9 Mengentheoretische Aussagen λ Wir können die Gleichzeit zweier Menge über die -Relation definieren: λ Wann sind zwei Mengen (A und B) gleich? λ Gdw. sie dieselben Elemente enthalten. (12) Gleichheit von Mengen: A = B gdw. für alle x gilt: [x A x B] GK Semantik Mengenlehre

10 Kardinalität λ Manchmal wollen wir wissen, wie viele Elemente eine Menge hat. λ Dies nennen wir die Kardinalität einer Menge. λ Die Kardinalität einer Menge A wird durch card(a), #(A) oder manchmal A ausgedrückt: (13) #({a, b, c, d}) = 4 λ Dies ist wieder eine Aussage, die entweder wahr oder falsch ist. GK Semantik Mengenlehre

11 Die Teilmengenbeziehung ( ) λ Eine (für uns) sehr wichtige Aussage der Mengenlehre ist die Teilmengenbeziehung ( ). λ Eine Menge A ist eine Teilmenge von einer anderen Menge B, wenn jedes Element der Menge A auch ein Element von B ist. (14) Teilmenge: A B gdw. für jedes x gilt: x A x B (15) a. {a, b, c} {a, b, c, d} b. {c, d} {a, b, c, d} c. {d, e} {a, b, c, d} λ Jede Menge ist natürlich eine Teilmenge von sich selbst: (16) {a, b, c} {a, b, c} GK Semantik Mengenlehre

12 Die echte Teilmengenbeziehung ( ) λ Jede Menge ist natürlich eine Teilmenge von sich selbst: (17) {a, b, c} {a, b, c} λ Wenn wir dies ausschließen wollen, benutzen wir den Begriff der echten Teilmenge ( ): (18) Echte Teilmenge: A B gdw. A B (B A) (19) a. {a, b, c} {a, b, c} b. {a, b, c} {a, b, c} (20) a. {a, b} {a, b, c} b. {a, b} {a, b, c} λ Der Begriff der Teilmenge ist also allgemeiner. GK Semantik Mengenlehre

13 Drei Gesetze der Teilmengenbeziehung (21) Reflexivität: Für jede Menge A gilt: A A (22) Transitivität: Wenn A B und B C, dann gilt auch: A C (23) Antisymmetrie: Wenn A B und B A, dann gilt A = B. GK Semantik Mengenlehre

14 Venn-Diagramme λ Es ist möglich Teilmengenbeziehungen graphisch darzustellen mittels sog. Venn-Diagramme: B A A B A B, A B A B, A B GK Semantik Mengenlehre

15 Obermengen λ Zusätzlich zu der Teilmenge gibt es die gegenteilige Beziehung, die man Obermenge ( ) nennt. λ Wenn A B, dann B A. (24) Obermenge: A B gdw. für alle x gilt: [x B x A] λ Genau das gleiche gilt für die echte Teilmenge: λ Wenn A B, dann B A. GK Semantik Mengenlehre

16 Kontrollfragen λ Wie würde das Venn-Diagram für A B, A B aussehen? λ Welche der folgenden mengentheoretische Aussagen sind wahr? (25) a. {1, 2, 3, 4} = {4, 3, 2, 1} b. {a, b} {a, b, c, d} c. {, 6} {5, 2, 4, 6, 1, 0, 22} d. {a, b, c, d} {a, b, c, d} (26) a. {Hans, Maria, Peter} {Julia, Maria, Stefan, Hans, Markus, Peter} b. #({blau, grün, rot, orange, blau, lila}) = 5 c. #({a, b, c, {d, e}}) = 5 GK Semantik Mengenlehre

17 Mengentheoretische Operationen λ Bisher haben wir mengentheoretische Aussagen kennengelernt. Wir haben gesagt, dass diese entweder wahr oder falsch sind. λ Es gibt aber auch mengentheoretische Operationen. λ Das Ergebnis einer mengentheoretischen Operation ist keinen Wahrheitswert (1,0), sondern eine neue Menge. λ Ein Beispiel ist das sog. Potenzmenge (pow(a) od. (A)) (engl. power set). (27) pow({a, b, c}) = {, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} λ Die Potenzmenge einer Menge A ist die Menge aller Teilmengen von A. GK Semantik Mengenlehre

18 Die Vereinigung ( ) λ Die Vereinigung zweier Mengen A und B (A B) ergibt eine neue Menge, die alle Elemente von A und B enthält: (28) a. {a, b, c} {c, d, e} = {a, b, c, d, e} b. {a} {b, c} = {a, b, c} c. {a, b, c} = {a, b, c} U A B A B GK Semantik Mengenlehre

19 Der Durchschnitt ( ) λ Der Durchschnitt zweier Mengen A und B (A B) ergibt eine neue Menge, die alle Elemente enthält, die A und B gemeinsam haben: (29) a. {a, b, c} {c, d, e} = {c} b. {a} {b, c} = c. {a, b, c} {a, b, c} = {a, b, c} U A B A B GK Semantik Mengenlehre

20 Die Differenz (\) λ Die Differenz zweier Mengen A und B (A \ B) ergibt eine neue Menge, die alle Elemente von A enthält, die nicht in B sind: (30) a. {a, b, c} \ {c, d, e} = {a, b} b. {a} \ {b, c} = {a} c. {a, b, c} \ {a, b, c} = U A B GK Semantik Mengenlehre

21 Das Komplement (Ā) λ Wenn wir über Mengen sprechen, beschänken wir uns auf eine bestimmte Menge von Objekt (z.b. die Mengen der Buchstaben). λ Die Menge der Buchstaben gilt in unseren Beispielen als Universum. λ Das Komplement einer Mengen A (Ā) ergibt eine neue Menge, die alle Elemente von A enthält, die in dem Universum enthalten sind, aber nicht in A: (31) a. A = {a, b, c} b. Ā = {d, e, f, g, h, i, j, k,...} A U GK Semantik Mengenlehre

22 Spezifikation von Mengen λ Es gibt verschiedene Weisen, wie man Mengen angeben kann. λ Bisher haben wir Mengen aufgezählt, indem wir alle Elemente der Menge innerhalb von geschweiften Klammern aufgelistet haben: (32) A = {a, e, i, o, u} λ Die Menge A (die 5 Grundvokale) kann man aber durch Abstraktion definieren. (33) {x x ist ein Grundvokal} λ (33) ist so vorzulesen: Die Menge aller x, sodass x ein Grundvokal ist λ Die Mengenabstraktion ist besonders nützlich für unendliche Mengen (z.b. die Menge der natürlichen Zahlen, wo es nicht möglich wäre, alle Elemente aufzuzählen. λ Wir können auch Mengen definieren, obwohl wir nicht genau wissen, welche Elemente sie enthalten: z.b. Die Menge aller Einhörner: GK Semantik Mengenlehre

23 Definition der Teilmengenoperationen λ Durch Abstraktion können wir Teilmengenoperation genauer definieren: (34) Vereinigung: A B = {x x A x B} (35) Durchschnitt: A B = {x x A x B} GK Semantik Mengenlehre

24 Kontrollfragen λ Wie könnte man die folgenden Mengen durch Abstraktion definieren? (36) a. {blau, grün, rot, gelb} b. {Nord, West, Ost, Süd} c. {London, Paris, Berlin, Rom} λ Was ist das Ergebnis der folgenden mengentheoretischen Operationen? (37) a. {Hans, Peter, Maria} {Maike, Peter, Linda} = b. {1, 2, 3} {4, 5, 6} = c. U = {x x ist eine Jahreszeit}, {Herbst, Sommer} = d. {1, 2, 3, 4} \ {2, 1, 4, 5, 7, 6} = GK Semantik Mengenlehre

25 Mengenlehre in der natürlichen Sprache λ Nun wollen wir sehen, wie man die Konzepte der Mengenlehre für die Analyse natürlicher Sprache einsetzen können. λ Eine Möglichkeit wäre lexikalische Beziehungen wie die der Hyponomie zu analysieren. (38) a. Käfer Insekt b. rot farbig c. Junggeselle Mann d. rennen sich bewegen λ Das jeweils linke Wort ist ein Hyponym zu dem rechten (Hyperonym). λ Überlegen wir uns nun was die Bedeutung von Italiener ist: (39) a. Italiener = {x x ist Italiener} b. Andrea Pirlo = Andrea Pirlo λ Dann ist wahr, dass Andrea Pirlo Italiener. GK Semantik Mengenlehre

26 Hyponomie λ Was ist die Bedeutung von Europäer? (40) Europäer = {x x ist Europäer} λ In welcher Beziehung stehen Europäer und Italiener? (41) a. Italiener / Europäer b. {x x ist Italiener} / {y y ist Europäer} c. {Luigi, Marco, Gianni, Mario,...} / {Stefan, Pascal, John, Gianni,...} λ In welcher Beziehung stehen Gianni und Europäer, wenn Gianni Italiener Italiener Europäer? λ Welches Gesetz sagt uns das? GK Semantik Mengenlehre

27 Literatur Krifka, Manfred (2015): Satzsemantik. Vorlesungsskript, Humboldt-Universität zu Berlin. GK Semantik Mengenlehre

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen $Id: mengen.tex,v 1.2 2010/10/25 13:57:01 hk Exp hk $ 1 Mengen und Aussagen Der wichtigste Grundbegriff der Mathematik ist der Begriff einer Menge, und wir wollen damit beginnen die klassische, 1878 von

Mehr

1 Mengenlehre. 1.1 Grundbegriffe

1 Mengenlehre. 1.1 Grundbegriffe Dieses Kapitel behandelt Grundlagen der Mengenlehre, die in gewisser Weise am nfang der Mathematik steht und eine Sprache bereitstellt, die zur weiteren Formulierung der Mathematik sehr hilfreich ist.

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Euler-Venn-Diagramme

Euler-Venn-Diagramme Euler-Venn-Diagramme Mengendiagramme dienen der graphischen Veranschaulichung der Mengenlehre. 1-E1 1-E2 Mathematische Symbole c leere Menge Folge-Pfeil Äquivalenz-Pfeil Existenzquantor, x für (mindestens)

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

3 Mengen, Logik. 1 Naive Mengenlehre

3 Mengen, Logik. 1 Naive Mengenlehre 3 Mengen, Logik Jörn Loviscach Versionsstand: 21. September 2013, 15:53 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is

Mehr

1 Sprechweisen und Symbole der Mathematik

1 Sprechweisen und Symbole der Mathematik 1 Sprechweisen und Symbole der Mathematik Übersicht 1.1 Junktoren......................................................... 1 1.2 Quantoren......................................................... 4 1.3

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate:

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate: Aussagenlogik: Aussagen Ausssageformen Prädikatenlogik beschäftigt sich mit Aussagen sind Sätze die entweder wahr oder falsch sind sind Sätze mit Variablen, die beim Ersetzen dieser Variablen durch Elemente

Mehr

Mengenlehre 1-E1. M-1, Lubov Vassilevskaya

Mengenlehre 1-E1. M-1, Lubov Vassilevskaya Mengenlehre 1-E1 M-1, Lubov Vassilevskaya Abb.: Schloss (Fragment), Fulda 1-E2 M-1, Lubov Vassilevskaya Abb.: Glöcken, Darstellung einer Menge Ohne es zu wissen begegnet jedes Kleinkind dem Prinzip der

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Mathematischen Grundlagen und Notationen

Mathematischen Grundlagen und Notationen Mathematischen Grundlagen und Notationen Susanne Schimpf Juni 008 Es geht in dieser Lerneinheit darum, mathematische Notationen besser zu verstehen und auch selbst korrekt zu benutzen. Außerdem sollen

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Dozentin: Wiebke Petersen 1. Foliensatz Wiebke Petersen math. Grundlagen 6 Frage Was ist eine Menge? 1 Minute zum Nachdenken

Mehr

Mengenlehre. Jörg Witte

Mengenlehre. Jörg Witte Mengenlehre Jörg Witte 25.10.2007 1 Grbegriffe Die Menegenlehre ist heute für die Mathematik grlegend. Sie spielt aber auch in der Informatik eine entscheidende Rolle. Insbesondere fußt die Theorie der

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

DIE SPRACHE DER WAHRSCHEINLICHKEITEN

DIE SPRACHE DER WAHRSCHEINLICHKEITEN KAPITEL 1 DIE SPRACHE DER WAHRSCHEINLICHKEITEN Es ist die Aufgabe der ersten drei Kapitel, eine vollständige Beschreibung des grundlegenden Tripels (Ω, A, P) und seiner Eigenschaften zu geben, das heutzutage

Mehr

Lösungen Arbeitsblatt Mengenlehre

Lösungen Arbeitsblatt Mengenlehre Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Dozent: - Brückenkurs Mathematik 2016 Lösungen Arbeitsblatt Mengenlehre Modul: Mathematik Datum:

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Lösungen Arbeitsblatt Mengenlehre

Lösungen Arbeitsblatt Mengenlehre Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Arbeitsblatt Mengenlehre Dozent: Roger Burkhardt Büro: - Klasse: BWZ (Gruppe A) 2012/2013

Mehr

1.2 Mengenlehre-Einführung in die reellen Zahlen

1.2 Mengenlehre-Einführung in die reellen Zahlen .2 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 Dezimalzahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist.......................... 5

Mehr

Mathematik für Techniker

Mathematik für Techniker Siegfried Völkel u.a. Mathematik für Techniker 7., neu bearbeitete und erweiterte uflage 16 1 Rechenoperationen Prinzip der Mengenbildung Wenn eine ussageform für die Objekte eines Grundbereichs vorliegt,

Mehr

Relationen und Partitionen

Relationen und Partitionen Relationen und Partitionen Ein Vortrag im Rahmen des mathematischen Vorkurses der Fachschaft MathPhys von Fabian Grünig Fragen, Anmerkungen und Korrekturen an fabian@mathphys.fsk.uni-heidelberg.de Inhaltsverzeichnis

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

(10) x 1[FRAU(x 1) RENNT(x 1)] Keine Frau rennt.

(10) x 1[FRAU(x 1) RENNT(x 1)] Keine Frau rennt. Institut für deutsche Sprache und Linguistik, Humboldt-Universität zu Berlin, GK Semantik SS 2009, F.Sode Basierend auf Seminarunterlagen von Prof. Manfred Krifka Quantoren in der Prädikatenlogik (auch

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Venndiagramm, Grundmenge und leere Menge

Venndiagramm, Grundmenge und leere Menge Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst

Mehr

Mengenlehre. Spezielle Mengen

Mengenlehre. Spezielle Mengen Mengenlehre Die Mengenlehre ist wie die Logik eine sehr wichtige mathematische Grundlage der Informatik und ist wie wir sehen werden auch eng verbunden mit dieser. Eine Menge ist eine Zusammenfassung von

Mehr

3 M E N G E N, A L P H A B E T E, A B B I L D U N G E N

3 M E N G E N, A L P H A B E T E, A B B I L D U N G E N 3 M E N G E N, A L P H A B E T E, A B B I L D U N G E N Im Kapitel über Signale, Nachrichten,... usw. haben wir auch über Inschriften gesprochen. Ein typisches Beispiel ist der Rosetta-Stein (Abb. 3.1),

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Arbeitsblatt Mengenlehre

Arbeitsblatt Mengenlehre Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Arbeitsblatt Mengenlehre Dozent: Roger Burkhardt Klasse: BWZ 2013/2014 Büro: 5.1C05 Semester: -

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

2.2 der Größenbegriff

2.2 der Größenbegriff (mit Äquivalenzrelationen) Maximilian Geier Institut für Mathematik, Landau Universität Koblenz-Landau Zu Größen gelangt man ausgehend von realen Gegenständen durch einen Abstraktionsvorgang. Man geht

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

Fragen zum Nachdenken: Wie könnte man das Fehlen eines Attribut-Wertes interpretieren?

Fragen zum Nachdenken: Wie könnte man das Fehlen eines Attribut-Wertes interpretieren? Attribut-Werte-Paare Eine Eigenschaft kann beschrieben werden durch ein Paar [a,w]. Dabei bezeichnet a das Attribut und w den konkreten Wert aus dem Wertebereich W a des Attributs. Die Eigenschaften eines

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Grundbegriffe der Mengenlehre 2 Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Georg Cantor begründet. Der Begriffsapparat der Mengenlehre hat sich als so nützlich für

Mehr

Rudolf Brinkmann Seite 1 30.04.2008

Rudolf Brinkmann Seite 1 30.04.2008 Rudolf Brinkmann Seite 1 30.04.2008 Der Mengenbegriff und Darstellung von Mengen Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens welche

Mehr

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist.

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Geordnete Mengen Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Ist eine Ordnungsrelation auf eine geordnete Menge., dann nennt man Die Namensgebung

Mehr

1 Die reellen Zahlen. 1.2 Aussagen und Mengen. Mathematik für Physiker I, WS 2013/2014 Montag 4.11

1 Die reellen Zahlen. 1.2 Aussagen und Mengen. Mathematik für Physiker I, WS 2013/2014 Montag 4.11 $Id: reell.tex,v 1.18 2013/11/04 12:13:45 hk Exp hk $ 1 Die reellen Zahlen 1.2 Aussagen und Mengen Wir sind gerade damit beschäftigt den Mengenbegriff zu diskutieren und am Ende der letzten Sitzung hatten

Mehr

"Zahlen-Irrtum I": Es gibt nur halb so viele gerade Zahlen (2, 4, 6,.) wie Natürliche Zahlen (1, 2, 3, 4,.).

Zahlen-Irrtum I: Es gibt nur halb so viele gerade Zahlen (2, 4, 6,.) wie Natürliche Zahlen (1, 2, 3, 4,.). "ZAHLEN "Zahlen-Irrtum I": Es gibt nur halb so viele gerade Zahlen (2, 4, 6,.) wie Natürliche Zahlen (1, 2, 3, 4,.). Beide Zahlenmengen enthalten genau gleich viele Zahlen. Denn jeder Natürlichen Zahl

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Übungsaufgaben Mengenlehre

Übungsaufgaben Mengenlehre Übungsaufgaben Mengenlehre Die folgenden Übungsaufgaben beziehen sich auf den Stoff des Skriptes zur Mengenlehre der Lehrveranstaltung Wirtschaftsmathematik und dienen der Klausurvorbereitung. Zuvor werden

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

2 Modellierung mit Wertebereichen

2 Modellierung mit Wertebereichen 2 Modellierung mit Wertebereichen Mod-2.1 In der Modellierung von Systemen, Aufgaben, Lösungen kommen Objekte unterschiedlicher Art und Zusammensetzung vor. Für Teile des Modells wird angegeben, aus welchem

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Ordnungsrelationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Geordnete Mengen Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv,

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

Abschluss unter Operationen

Abschluss unter Operationen Abschluss unter Operationen Definition Definition: Es seien L eine Menge von Sprachen und τ eine n-stellige Operation, die über Sprachen definiert ist. Dann heißt L abgeschlossen unter τ, wenn für beliebige

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will?

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will? Mengenlehre und Logik: iederholung Repetitorium: Grundlagen von Mengenlehre und Logik 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 arum??? arum um alles in der elt muss man sich mit herumschlagen,......

Mehr

5 Logische Programmierung

5 Logische Programmierung 5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen

Mehr

Zu einer semiotischen Arithmetik der Reziprozität

Zu einer semiotischen Arithmetik der Reziprozität Prof. Dr. Alfred Toth Zu einer semiotischen Arithmetik der Reziprozität S Lebe n isch es Lied, wo n en Spiler singt. Niemert verstoots, und scho is es verbii. Kurt Früh, Hinter den sieben Gleisen (1959)

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten

Mehr

2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zwischen Mengen 2.4 Mengenoperationen

2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zwischen Mengen 2.4 Mengenoperationen 2. Mengen 2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zischen Mengen 2.4 Mengenoperationen 2. Mengen GM 2-1 Wozu Mengen? In der Mathematik Au dem Mengenbegri kann man die gesamte Mathematik

Mehr