Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Größe: px
Ab Seite anzeigen:

Download "Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass"

Transkript

1 Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma. Für jedes n N konvergiert das Integral gilt lim t + tn e t. t n e t dt und es Beweis. Wir beweisen dieses Resultat durch Induktion nach n. Für n ist lim t + e t und e t r dt lim r + e t dt lim r + e r ). Sei n >. Dann ist lim t + tn e t t n lim ) t + e t n )t n t n lim n ) lim. t + e t t + }{{ e t } Weiters erhalten wir durch partielle Integration, dass lim r + lim r n e r) r + t n e t dt lim r + r n e r + } n {{ e} +n ) lim r + r r t n e t dt e t ) r +n ) t n e t dt t n e t dt n ) ) t n e t dt gilt. Weil nach Induktionsvoraussetzung t n e t dt konvergiert, konvergiert daher auch t n e t dt. Proposition. Für jedes x R mit x > konvergiert es gilt lim t + tx e t. t x e t dt und Beweis. Seix R,x >. Nach dem Archimedischen Axiom gibt es einn N mitx n. Fürt gilt dann t x e t t n e t. Weillim t + t n e t nach Lemma gilt, erhalten wir lim t + t x e t. Wegen Lemma

2 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL konvergiert t n e t dt und daher konvergiert auch t n e t dt. Deshalb konvergiert auch t x e t dt nach dem Majorantentest. Falls x ist, dann ist t t x e t stetig auf [,]. Nach dem Hauptsatz der Differenzial- und Integralrechnung existiert daher tx e t dt. Im Fall < x < ist t x e t t x. Weil dann x >, konvergiert tx dt. Nach dem Majorantentest konvergiert daher tx e t dt. Somit existieren sowohl tx e t dt als auch t x e t dt. Daher konvergiert auch t x e t dt. Definition. Sei x R, x >. Dann setze Γx) : t x e t dt. Man nennt Γ : {x R : x > } R die Gamma-Funktion. Wegen Proposition ist Γx) in Definition wohldefiniert. Man könnte x! : Γx+) definieren. Lemma. Für jedes x R mit x > konvergiert Beweis. Es ist t x e t logt t x logt)e t. Nachdem logt lim t + t ) t lim t + lim t + t t x e t logt dt. gibt es ein R > mit R, sodass logt t für alle t R gilt. Somit gilt logt t für alle t R. Daher ist für t R t x e t logt t x e t. t Nach Proposition konvergiert R tx e t dt. Daher konvergiert t x e t dt, und deshalb konvergiert auch R tx e t logtdt R tx e t logt dt wegen des Majorantentests. Jetzt betrachten wir den Fall x >. Weil logt lim logt lim t +tx t + t ) x t lim t + x)t x x lim t +tx

3 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL 3 kann die Funktion t t x e t logt zu einer stetigen Funktion auf [,R] fortgesetzt werden. Deshalb existiert R tx e t logt dt nach dem Hauptsatz der Differenzial- und Integralrechnung. Somit konvergiert t x e t logt dt im Fall x >. Schließlich nehmen wir an, dass < x. Wegen logt lim logt) lim t + tx t + t x ) lim t + x t x lim t x + t }{{ +tx } gibt es ein r,) mit r < R, sodass t x logt für alle t,r). Daher ist logt für alle t,r), und deshalb gilt t x t x e t logt t x e t logt) t x t x für allet,r). Weil x >, konvergiert r tx dt. Nach dem Majorantentest konvergiert daher r tx e t logt)dt r tx e t logt dt. Wegen der Stetigkeit von t t x e t logt auf [r,r] existiert R r tx e t logt dt nach dem Hauptsatz der Differenzial- und Integralrechnung. Somit konvergiert t x e t logt dt auch im Fall < x. Proposition. Die Gamma-Funktion ist stetig. Beweis. Sei t >. Betrachte die Funktion x t x auf {x R : x > }. Dann gilt ) t x e x )logt logt t x logt. e x )logt Seix R mit x >. Weiters seiy R mit y > und x y < min {, } x. Dann gilt nach dem Mittelwertsatz, dass es einξ zwischenxundy gibt, sodass t x t y t ξ logt)x y). Es ist x x x ξ x, weil ξ zwischen x und y liegt, und x y < min {, } x. Für t ist dann t ξ t x, und wegen logt ist deshalb < t ξ logt t x logt. Somit ist t } x {{ t y } t ξ logt) x y t x logt) x y. t ξ logt)x y) t x logt Daher ist t x t y )e t t x e t logt) x y. Nach Lemma konvergiert

4 4 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL t x e t logt dt, und daher konvergiert auch t x e t logt dt. Somit ist t x e t dt t y e t dt ) t x t y )e t t x e t logt) x y x y t x e t logt dt. Falls hingegen t, dann ist t ξ t x, und wegen logt ist somit < t ξ logt t x logt. In diesem Fall ist deshalb t x t y t ξ logt)x y) t ξ logt) x y t x logt x y. t x logt Also ist t x t y )e t t x e t logt x y. Wegen Lemma konvergiert t x e t logt dt, und deshalb konvergiert auch tx e t logt dt. Daher ist t x e t dt t y e t dt ) t x t y )e t t x e t logt x y x y t x e t logt dt. Setze C : tx e t logt dt+ t x e t logt dt. Dann ist C >. Es ist Γx) tx e t dt Γy) ty e t dt t x t y ) e t dt t x t y ) e t dt + t x t y ) e t dt. Wegen ) und ) ist daher Γx) Γy) t x t y ) e t dt + t x t y ) e t dt x y tx e t logt dt x y tx e t logt dt ) t x e t logt dt+ t x e t logt dt x y C x y. C nach Definition von C

5 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL 5 Es gilt also 3) Γx) Γy) C x y für alle x,y R mit x >, y > und x y < min {, } x. Sei x R mit x > und sei ε >. Setze δ : min { ε,, x C }. Sei jetzt y R mit y > und y x < δ. Dann gilt wegen 3), dass Γx) Γy) C x y < ε. <δ ε C Deshalb ist die Gamma-Funktion stetig. Jetzt beweisen wir die Funktionalgleichung der Gamma-Funktion. Proposition 3. Für alle x R mit x > gilt Γx+) xγx). Beweis. Partielles Integrieren ergibt t x e t dt t x e t + xt x e t dt t x e t +x e t ) t x e t dt. Wegen Proposition ist lim r + r x e r. Da x > ist x e und daher ist Γx+) also Γx+) xγx). t x e t dt lim r + rx e r ) + } x {{ e } +x t x e t dt xγx), Korollar. Für alle n N gilt Γn+) n!. Γx) Beweis. Wir beweisen das Korollar durch Induktion nach n. Für n ist Γ+) Γ) t Sei n >. Dann ist nach Proposition 3 also Γn+) n!. e t dt lim r e r Γn+) n Γn) nn )! n!, n )! +!.

6 6 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL Als nächstes wollen wir das Produkt von Wallis, also berechnen. Proposition 4. Es gilt mit n. Weiters gelten sin n xdx n n sin xdx π und , sin n xdx für alle n N sin xdx. Beweis. Es ist sin }{{ x} dx π und nach dem Hauptsatz der Differenzial- und Integralrechnung sin x dx cos π +cos. Sei n. Unter cosx) Verwendung der partiellen Integration erhalten wir sin n π cos π sin n xdx +sin }{{ n } cos+ n ) sin n x) sinx ) cosx) dx n )sin n x)cosx)cosx) dx cos x sin x sin n xdx n ) sin n xdx. Deshalb ist n sinn xdx n ) sinn xdx, woraus sofort das gewünschte Resultat folgt. Proposition 5. Für alle n N gelten sin n xdx π n n sin n+ xdx n n+. Beweis. Wir beweisen das Resultat durch Induktion nach n. Im Fall n ist nach Proposition 4 sin xdx sin xdx π und π sin 3 xdx sin xdx 3 3. und

7 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL 7 Sei n >. Dann gilt nach Proposition 4 sin n xdx n n sin n xdx π n 3 n sin n+ xdx n sin n xdx n+ womit unser Resultat bewiesen ist n n π 3 n... 4 n n n+, und Damit können wir jetzt das Produkt von Wallis berechnen. Beachte, dass n n)n) n )n+) und 9 n k)k) n... n n n. k )k+) n 3 n n n+ k Proposition 6. Für alle n N gelten n n)n) n )n+) lim n Beweis. Setze a n : n k n k k)k) k )k +) π. k)k) k )k+). Sei n. Auf [, π ] ist x sinx stetig, es gilt sinx und sin π. Daher ist sinn+ x sin n x sin n x und sin n+ π. Somit gilt nach Proposition 5, dass 4) < sin n+ xdx sin n xdx sin n xdx n n+ π n Umformen der zweiten Ungleichung in 4) ergibt n n n }{{ n+ } a n n n also a n π. Aus der dritten Ungleichung in 4) erhalten wir durch Umformen, dass π 4 4 n... n. Durch Multiplizieren mit n n n n+ π,

8 8 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL ergibt sich n π } n+ {{} n n n }{{ n+ } + n π also a + n. Wegen lim n n + n π + n π a n, gilt deshalb a n π, π woraus sich lim n a n π ergibt, und unser Resultat bewiesen ist. Schließlich wollen wir die Stirling sche Formel beweisen, die eine Näherungsformel für n! liefert. Salopp gesagt gilt n! n n e) πn. Zuvor müssen wir dazu einige Hilfsresultate beweisen. Lemma 3. Es seien a,u R mit u >. Weiters sei f : [a u,a+u] R eine konkave Riemann-integrierbare Funktion. Dann gilt a+u a u fx)dx ufa). Beweis. Sei t [,u]. Dann ist a a t) + a+t). Weil f konkav ist, gilt fa) fa t)+ fa+t). Daher ist u fa)dt ufa) u fa t)dt+ Durch die Substitution s a t erhalten wir u fa t)dt a u a fs))ds und die Substitution s a+t liefert u fa+t)dt a a u fs)ds+ Deshalb ist ufa) sich ufa) a+u fs)ds ergibt. a u a u a a+u a u fa+t)dt. fs)ds fs)ds. a+u a fs)ds a+u a u a a u fs)ds, fs)ds, woraus

9 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL 9 Lemma 4. Für x R mit x > gilt x+ ) log + ) >. x Beweis. Betrachte die Funktionfx) : x+ ) log + x) als eine Funktion f : {x R : x > } R. Dann gilt f x) log Daraus ergibt sich f x) x ) + x } {{ } x +x + } x {{ +x } x +x) x x) + x ) + x+ ) log + ) x+ x x +x x+ ) + x x ) x +x ) x +x. x +x+ ) x +x) ) x +x) x+) x +x) >. Weil f x) > für alle x >, ist f streng monoton wachsend, und ) daher ist f x) < lim y + f y) für alle x >. Wegen f y) log + y+ und y y +y y+ y + y y +y + y ist f x) < lim y + f y) lim y + log + ) y + ) y y + log+. y Es ist daher f x) < für alle x >, und deshalb ist f streng monoton fallend. Somit ist fx) > lim y + fy) für alle x >. Wir erhalten ) lim fy) lim y + ) log + )) log + y lim y + y + y y + ) lim y + + y y ) y+ ) lim y + Somit ist x+ ) log + x) fx) >. ) y + y +y lim y + y+ + y + y ).

10 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL n! Satz. Es gilt lim n n n. e) πn Beweis. Betrachte die Funktion fx) : logx auf {x R : x > }. Dann ist f x) x und f x) x <. Deshalb ist x logx konkav. Für k N ist daher nach Lemma 3 Sei n N. Dann ist k+ k logxdx logk logk. n+ logxdx n k k+ k logxdx } {{ } logk n n logk log k logn!. k k Durch partielle Integration erhält man logxdx logxdx xlogx x x dx xlogx x. x Wegen des Hauptsatzes der Differenzial- und Integralrechnung ist daher Es gilt daher logn! n+ ) log n+ 5) logn! n+ ) n+ ) log n+ ) logxdx n+ ) log log n+ log n+ ) log n+ ) n+ log.. +

11 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL Setze b n : logn! n+ ) logn+n für n N. Dann ist b n b n+ logn! + n+ ) logn+n logn+)! n+ + ) logn+) n+ )logn+)+logn+) log n!+logn+) n+) logn! n+ ) logn+n logn! logn+)+ + n+ ) logn+)+logn+) n+) n+ ) logn+) logn) n+ ) log + ) >. n log n+ n log+ n) > wegen Lemma 4 Somit ist b n+ < b n für alle n N, also b n ) n N ist streng monoton fallend. Weiters ist wegen 5) b n logn! n+ ) logn+n n+ )logn+ ) n+ log n+ ) log n+ ) n+ log n+ n+ ) log n+ ) ) logn n+ ) log n+ n + n + log log n+ n n+ ) > log + log + ) n > + ) logn+n + log > log Also b n ) n N ist streng monoton fallend und nach unten beschränkt. Daher konvergiert b n ) n N. Setze β : lim n b n und α : e β. Dann ist α >. Weiters definiere.

12 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL a n : n! n e) n n. Wir erhalten nach der Definition von b n, dass e bn e logn! n+ )logn+n e logn! e n+ )logn e n n! n n n n n n! n n n e n n n n e n n! n e) n n a n gilt. Wegen der Stetigkeit von x e x ergibt sich daraus lim n a n lim e bn e limn bn n e β α. e bn α a Da α gilt, erhalten wir lim n n a n α α a n a n n!) n n)! n n! n e) n n ) n)! n e ) n n n n!) n)! α. Es ist n!) e n n n n n n)!n n ne n n n!) n ) n) n ) n) n ) n ) n) n ) n) n 3) n ) n. n Wir setzen jetzt c n : n ) n) n 3) n ) n. Nach den obigen Überlegungen ist daher lim n c n lim n a n a n α. Deshalb ergibt sich,

13 GAMMA-FUNKTION, PRODUKT VON WALLIS, STIRLING SCHE FORMEL 3 dass lim n c n α. Es ist c n ) n ) n) n 3) n ) n n ) n ) n) n) n 3) n 3) n ) n ) n n ) n ) n) n) n 3) n ) n ) n n) n) n ) n+) n+) }{{ n} 4+ n n ) n ) n) n) n 3) n ) n ) n+) n) n) n ) n+) π 4+ ) n Nach Proposition 6 ist lim n Proposition 6 ist das Produkt von Wallis). Daher ist α lim c n) n) n lim 4+ ) n n n ) n+) n π 4. π 4 π. Daraus ergibt sich α π. Somit gilt lim n n e n! ) n lim πn π n! n n e ) n lim n π a n womit unser gewünschtes Resultat bewiesen ist. n a n α π π π,

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis WS 4/5 PD Dr. Peer Christian Kunstmann 9..4 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 5. Übungsblatt Aufgabe : (a) Sei

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Das Volumen und die Oberfläche einer n-dimensionalen Kugel

Das Volumen und die Oberfläche einer n-dimensionalen Kugel Das Volumen und die Oberfläche einer n-dimensionalen Kugel Alois Temmel 6. Februar 14 c 14, A. Temmel Inhaltsverzeichnis 1 Die Volumenformel 3 1.1 Die n-dimensionale Kugel.................... 3 1.1.1 Die

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Formelsammlung Analysis I & II

Formelsammlung Analysis I & II Formelsammlung Analysis I & II Wichtige eindimensionale Integrale: { x s dx = s+ xs+ + C falls s log x + C falls s = exp(x dx = exp(x + C cos(x dx = sin(x + C sin(x dx = cos(x + C sinh(x dx = cosh(x +

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 8. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 9, 207 Grenzwerte Korollar 5.2.2 (Bernoulli-de l Hôpital) Seien f, g : [a, b] R stetig und differenzierbar

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Analysis für Informatiker und Statistiker Modulprüfung

Analysis für Informatiker und Statistiker Modulprüfung Prof. Dr. Peter Otte Wintersemester 2013/14 Tom Bachmann, Sebastian Gottwald 18.02.2014 Analysis für Informatiker und Statistiker Modulprüfung Lösungsvorschlag Name:.......................................................

Mehr

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014 Aufgabensammlung Höhere Mathematik für Physiker III Wintersemester 2014 1 Verbandstheorie 1. Aufgabe: (a) Sei f C(R) eine stetige Funktion. Wenn Rf(x)φ(x)dx = 0 für alle Testfunktionen φ Cc (R) gilt, dann

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

Lösungen zur Analysis-Prüfung Sommer 2017

Lösungen zur Analysis-Prüfung Sommer 2017 Lösungen zur Analysis-Prüfung Sommer 27. Teil: Rechnungen. a) [ Punkt] Berechnen Sie das Integral x dx. x 2 + Es gilt x x 2 + dx = = 2 arsinh(). x 2 + dx = [arsinh(x)] b) [ Punkt] Berechnen Sie das Integral

Mehr

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele Univ.-Prof. Dr. Radu Ioan Boţ, Axel Böhm Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele SS18 A1. Sei f : [, + ) R so, dass und dass ein M existiert mit Zeigen Sie, dass f(s +

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 015): Differential und Integralrechnung 1 1.1 (Frühjahr 00, Thema 3, Aufgabe ) Formulieren Sie das Prinzip der vollständigen Induktion und beweisen

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

Mathematische Grundlagen (01141) SoSe 2010

Mathematische Grundlagen (01141) SoSe 2010 Mathematische Grundlagen (4) SoSe Klausur am 8.8.: Musterlösungen Aufgabe Sei n. Es gilt (+) (+)(+). Es gilt somit der Induktionsanfang. Als Induktionsannahme nehmen wir an, dass n n(n+)(n+) für ein n

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr

P n (1) P j (1) + ε 2, j=0. P(1) P j (1) + ε 2 < ε. log(1+x) =

P n (1) P j (1) + ε 2, j=0. P(1) P j (1) + ε 2 < ε. log(1+x) = Zu ε > 0 gibt es ein N N mit P n (1) P j (1) < ε/2 für j,n > N, also gilt Es folgt (1 x) n 1 j=n+1 und schließlich mit n x j P n (1) P j (1) (1 x) ε 2 P n (1) P n (x) (1 x) P(1) P(x) (1 x) für x hinreichend

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014 Tutorübung 5 Analysis 2 für Lehramt TU Dortmund, Sommersemester 24 Aufgabe T Bestimme die Taylorreihen von (a) cos(x) um a. (b) ln(x) um a. (c) um a 2. +x Bestimme in allen Fällen das Taylorpolynom T n,a

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Prof. Dr. Guido Sweers WS 28/29 Jan Gerdung, M.Sc. Gewöhnliche Dierentialgleichungen Übungsblatt 6 Die Lösungen müssen in den Übungsbriefkasten Gewöhnliche Dierentialgleichungen Raum 3 im MI) geworfen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

9.3 Der Hauptsatz und Anwendungen

9.3 Der Hauptsatz und Anwendungen 9.3 Der Huptstz und Anwendungen Definition: Seien Funktionen F, f : [, b] R Funktionen mit F (x) = f(x), x b. Dnn heißt F(x) Stmmfunktion von f(x). Bemerkung: Ist F(x) eine Stmmfunktion von f(x), so sind

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

21 Bogenlängen, Sinus und Kosinus

21 Bogenlängen, Sinus und Kosinus 1 Bogenlängen, Sinus und Kosinus 19 Bogenlängen, Sinus und Kosinus 99 Lernziele: Konzepte: Bogenlängen, Sinus und Kosinus Resultat: Eine C 1 -Funktion hat die Bogenlänge L a (f) = a 1+f (x) dx. In diesem

Mehr

9. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester x 3 + 4x 2 + 4x + 1 d x (d) x ln(x) d x. lim tan(a/2) + 1

9. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester x 3 + 4x 2 + 4x + 1 d x (d) x ln(x) d x. lim tan(a/2) + 1 O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani, F. Kissling B. Krinn, J. Schmid 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 3 Lösungshinweise zu den Hausaufgaben: π Dr. M. Künzer Prof.

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

6 Weiterer Ausbau der Differentialrechnung

6 Weiterer Ausbau der Differentialrechnung 6 Weiterer Ausbau der Differentialrechnung 6.1 Mittelwertsätze, Extremwerte, Satz von Taylor Motivation: Wie wählt man Höhe und Durchmesser einer Konservendose, so dass bei festem Volumen V möglichst wenig

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Kapitel 4 Folgen, Reihen & Funktionen

Kapitel 4 Folgen, Reihen & Funktionen Kapitel 4 Folgen, Reihen & Funktionen Inhaltsverzeichnis FOLGEN REELLER ZAHLEN... 3 DEFINITION... 3 GRENZWERT... 3 HÄUFUNGSPUNKT... 4 MONOTONIE... 4 BESCHRÄNKTHEIT... 4 SÄTZE... 4 RECHNEN MIT GRENZWERTEN...

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

Christine Schweinem. 9. November Γ(x) := t x 1 e t dt, x > 0. (1) t x 1 dt< für x>0. t x 1 e t t. = lim 1

Christine Schweinem. 9. November Γ(x) := t x 1 e t dt, x > 0. (1) t x 1 dt< für x>0. t x 1 e t t. = lim 1 Seminar Fraktionale Differentialgleichungen WS / Prof. Dr. Peter E. Kloeden Thema: Gamma Funktion Christine Schweinem 9. ovember Definition der Gamma Funktion Im Reellen gibt es für die Gamma Funktion

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II .3.27 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr