27 Taylor-Formel und Taylor-Entwicklungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "27 Taylor-Formel und Taylor-Entwicklungen"

Transkript

1 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen und Untersuchung ihres Konvergenzverhaltens Frage: Versuchen Sie, den Kosinus in eine Potenzreihe um 0 zu entwickeln. Lineare Approximationen. a) Es seien I R ein offenes Intervall, a I und f : I R eine Funktion. Ist f differenzierbar in a, so gilt f(x) = f(a)+f (a)(x a)+r(x); (1) hierbei wird f nahe a durch das Polynom ersten Grades f(a)+f (a)(x a) bis auf einen Fehler r(x) approximiert, der lim x a r(x) x a = 0 (2) erfüllt, für x a also schneller als x a gegen 0 geht. b) Umgekehrt folgt aus (1) und (2) sofort die Differenzierbarkeit von f in a. Diese Umformulierung des Differenzierbarkeitsbegriffs ist für dessen Erweiterung auf Funktionen von mehreren reellen Veränderlichen wichtig, vgl. Abschnitt 38 und [A2], Landau-Symbole. Eigenschaft (2) kann mit Hilfe eines Landau-Symbols kurz formuliert werden: Für Funktionen f : I\{a} R und g : I\{a} (0, ) setzt man f(x) f(x) = o(g(x)) für x a : lim x a g(x) f(x) = O(g(x)) für x a : δ > 0 : = 0, (3) f(x) sup <. (4) g(x) 0< x a δ Entsprechend werden klein o - und groß O -Bedingungen für x a +, x a und x ± erklärt. In (1) gilt also r(x) = o( x a ) für x a. Approximationen durch Polynome. Eine Funktion f : I R sei in eine Potenzreihe um a I entwickelbar, z.b. sei f ein Polynom von einem Grad > m N. Nach (26.19) gilt dann f(x) = m (x a) k + r m (x), (5)

2 27 Taylor-Formel und Taylor-Entwicklungen 137 wobei für den Approximationsfehler r m (x) = k=m+1 (x a) k = O( x a m+1 ), erst recht also r m (x) = o( x a m ) für x a gilt. Das in (5) auftretende Polynom vom Grad m sollte auch für eine beliebige C m -Funktion f eine ähnlich gute Approximation nahe a I an f sein. Definition. Es seien I R ein offenes Intervall und f C m (I,R). Für a I und m N 0 heißt T a m(f)(x) := T a mf (x) := m das Taylor-Polynom vom Grad m zu f in a. (x a) k (6) 27.1 Beispiele. a) Für f(x) = e x ist = e a für k N 0 und somit T a m(exp)(x) = m e a (x a)k. (7) b) Für f(x) := sinx und a R erhält man f (a) = cosa, f (a) = sina, f (a) = cosa, f (4) (a) = sina. Allgemein gilt f (2j) (a) = sina und f (2j+1) (a) = cosa, also T a mf(x) = sina 0 2j m Speziell für a = 0 hat man (2j)! (x a)2j +cosa 0 2j+1 m (2j+1)! (x a)2j+1. T 0 m (sin)(x) = 0 2j+1 m (2j+1)! x2j+1, x R. (8) c) Analog zu b) ergeben sich für f(x) := cosx = sin x sofort die Formeln f (2j) (a) = cosa und f (2j+1) (a) = +1 sina, also T a mf(x) = cosa 0 2j m (2j)! (x a)2j +sina 0 2j+1 m +1 (2j+1)! (x a)2j+1, T 0 m(cos)(x) = 0 2j m (2j)! x 2j, x R. (9) d) Es seien I = (0, ) und f(x) = logx. Dann gelten log x = 1, x log x = 1,..., log (k) (x) = ( 1) k 1 (k 1)!, also x 2 x k T a m(log)(x) = loga+ m k=1 ( 1) k 1 ka k (x a) k für a > 0. (10) Die Güte der Approximation einer Funktion durch ihre Taylor-Polynome wird nun durch das folgende sehr wichtige Resultat geklärt:

3 138 IV. Unendliche Reihen und Taylor-Formel 27.2 Theorem (Taylor). Es seien I R ein offenes Intervall, a I und f C m+1 (I,R). Dann gilt für x I : f(x) = m (x a) k + Rm+1 a (f)(x) (11) mit einem Fehler oder Restglied R a m+1 (f)(x) = O( x a m+1 ) für x a. Genauer hat man für dieses die Integral-Form R a m+1 (f)(x) = x a f (m+1) (t) (x t)m oder auch die Cauchy- und Lagrange-Formen (vgl. (24.6)) R a m+1(f)(x) = f (m+1) (ξ) (x ξ)m R a m+1 (f)(x) = f(m+1) (ξ) (x a)m+1 (m+1)! dt, (12) (x a) für ein ξ \a,x\, (13) für ein ξ \a,x\. (14) Bemerkungen. a) Am besten einprägsam ist sicher die Lagrange-Form des Restgliedes wegen ihrer formalen Ähnlichkeit zum (m + 1)-ten Term des Taylor-Polynoms. b) Für m = 0 reduzieren sich (13) und (14) auf den Mittelwertsatz der Differentialrechnung. c) Der Satz von Taylor lässt sich auch so formulieren: f(a+h) = m h k f (m+1) (a+sh) h m+1 (1 s) m ds. (15) Hier wird also das Taylor-Polynom als Polynom in h = x a betrachtet; in (12) wurde t = a + sh substituiert. Die Lagrange-Form des Restgliedes lautet dann so: R a m+1(f)(h) = f(m+1) (a+θh) (m+1)! h m+1 für ein θ [0,1]. (16) 27.3 Satz. Für ein offenes Intervall I R, f C m (I,R) und a I gilt f(x) = m (x a) k + o( x a m ). (17) Das folgende Resultat haben wir in Satz 11.9 bereits für Polynome gezeigt: 27.4 Satz. Es seien I R ein offenes Intervall, f C m (I,R) und a I. Es sei f (a) =... = f (m 1) (a) = 0, aber f (m) (a) 0. Dann gilt: a) Ist m gerade und f (m) (a) > 0, so hat f ein lokales Minimum in a. b) Ist m gerade und f (m) (a) < 0, so hat f ein lokales Maximum in a. c) Ist m ungerade, so hat f kein lokales Extremum in a.

4 27 Taylor-Formel und Taylor-Entwicklungen 139 Man beachte, daß der Satz im Fall f (m) (a) = 0 für alle m N (vgl. Beispiel 27.11) keine Aussage macht Beispiele. a) Für f(x) = sinx oder f(x) = cosx gilt f (m+1) (t) 1 für alle t R und m N; für x R gilt folglich Rm+1 a (f)(x) 0 für m, und aus (8), (9) ergeben sich Potenzreihenentwicklungen des Sinus und Kosinus um 0: sinx = j=0 cosx = j=0 (2j+1)! x2j+1, x R, (18) (2j)! x 2j, x R. (19) b) Für f(x) = e x gilt f (m+1) (t) e t für alle t R und m N. Also gilt auch hier R a m+1(f)(x) 0 für m und alle x R, und aus (7) folgt e x = e a (x a)k, x R, (20) für a = 0 speziell die Potenzreihenentwicklungen der Exponentialfunktion um 0: e x = Insbesondere ist (vgl. (18.6)) x k, x R. (21) e = 1. (22) Taylor-Reihen. a) Es seien I R ein offenes Intervall, f C (I) und a I. Dann heißt die Potenzreihe T a (f)(x) := T a f(x) := k 0 (x a) k (23) die Taylor-Reihe von f in a I. Es stellt sich sofort die Frage, ob diese stets gegen f konvergiert. b) Aufgrund der Taylor-Formel ist dies für einen Punkt x I genau dann der Fall, wenn lim n R a n(f)(x) = 0 gilt. c) Kann f irgendwie in eine Potenzreihe um a entwickelt werden, d. h. gilt f(x) := a k (x a) k für x a < ρ, (24) so stimmt nach (26.19) diese Potenzreihe mit der Taylor-Reihe von f in a überein; somit gilt also dann T a f(x) = f(x) für x a < ρ.

5 140 IV. Unendliche Reihen und Taylor-Formel 27.6 Beispiel. a) In Beispiel 27.1 d) wurden die Taylor-Polynome von log x in Punkten a > 0 berechnet. Für die entsprechenden Taylor-Reihen gilt daher: T a (log)(x) = loga+ k 1 ( 1) k 1 ka k (x a) k. Der Konvergenzradius dieser Potenzreihe ist offenbar a. Eine Abschätzung des Restgliedes liefert logx = loga+ k=1 ( 1) k 1 ka k (x a) k (25) für a x 2a. Speziell für a = 1 und x = 2 ergibt sich wieder die Summe der 2 alternierenden harmonischen Reihe zu ( 1) k 1 = log2 (vgl. (24.10)). k k=1 b) Für 0 < x < a ist 2 Ra n (f)(x) 0 nicht unmittelbar ersichtlich. Durch Integration einer Reihenentwicklung von 1 nach Potenzen von (x a) erhält man aber, daß (25) x auch für 0 < x < 2a gilt. Die Gültigkeit von (25) auch für x = 2a kann dann auch wie in Beispiel 27.8 b) unten gezeigt werden Beispiel. a) Für die Funktion Artanhx = 1 2 Artanh x = 1 1 x 2 = x 2k, x < 1; Integration liefert wegen Artanh 0 = 0 sofort log 1+x 1 x = 2Artanhx = 2 x log 1+x 1 x gilt nach Tabelle 17.2 x3 = 2(x+ + x5 + ), x < 1. (26) 3 5 b) Die Entwicklung (26) ist zur Berechnung von Logarithmen oft besser geeignet als (25) im Fall a = 1. Für x = 1 1+x etwa ist = 2, also 3 1 x log2 = 2 1 (2k +1) Beispiel. a) Für die Ableitung des Arcus-Tangens gilt arctan x = 1 = ( 1) k x 2k für x < 1; 1+x 2 durch Integration folgt wegen arctan0 = 0 für x < 1 sofort arctanx = ( 1) k x = x x3 + x , x < 1. (27) b) Die Reihe in (27) erfüllt für 0 x < 1 die Voraussetzungen des Leibniz-Kriteriums Wie in (23.11) gilt daher arctanx n 1 ( 1) k x x2n+1 2n+1 1 2n+1 für x [0,1) und n N.

6 27 Taylor-Formel und Taylor-Entwicklungen 141 Die Konvergenz ist also gleichmäßig auf [0,1), und mit x 1 folgt auch arctan1 n 1 ( 1) k 1 1 für n N. 2n+1 Wegen arctan1 = π 4 erhält man die Summe der Leibnizschen Reihe: ( 1) k = π 4 = (28) 27.9 Beispiel. a) Für α R wird die Funktion f : x (1+x) α auf ( 1,1) in ihre Taylor-Reihe um 0 entwickelt. Es gilt f (x) = α(1+x) α 1, f (x) = α(α 1)(1+x) α 2,..., f (m) (x) = α(α 1) (α m+1)(1+x) α m = ( ) α m (1+x) α m, wobei die verallgemeinerten Binomialkoeffizienten durch ( ) α 0 := 1 und ( ) α m := α(α 1) (α m+1), α R, m N, (29) definiert seien. Somit gilt also T 0 (f)(x) = ) x k. k 0 ( α k Für α N 0 ist dies eine endliche Summe; für α N 0 hat diese Taylor-Reihe den Konvergenzradius ρ = 1. b) Es sei nun g(x) := T 0 (f)(x) für x < 1. Dann gilt (1+x)g (x) = αg(x), x < 1. (30) c) Offenbar wird (30) auch von f(x) = (1+x) α erfüllt. Es folgt d dx (g(x) f(x) ) = f(x)g (x) f (x)g(x) f(x) 2 = 0, wegen g(0) = 1 = f(0) also g = f. Somit gilt die Binomialentwicklung (1+x) α = ( α k ) x k, x < 1. (31) Definition. Eine Funktion f C (I) heißt reell-analytisch, wenn es zu jedem a I ein δ > 0 gibt, so daß für x a < δ die Taylor-Reihe (x a) k von f in a gegen f(x) konvergiert. Polynome sind reell-analytisch auf R, ebenso die Exponentialfunktion, Sinus und Kosinus aufgrund der Beispiele 27.1 und Nach Beispiel 27.6 ist der Logarithmus reell-analytisch auf (0, ). Jedoch sind nicht alle C - Funktionen reell-analytisch: k 0

7 142 IV. Unendliche Reihen und Taylor-Formel Beispiel. a) Die Funktion g : x { exp( 1/x 2 ), x > 0 0, x 0 (32) liegt inc (R) mit g (k) (0) = 0 für alle k N 0. Somit gilt T 0 (g) = 0; dietaylor-reihe von g in 0 konvergiert also auf ganz R, für x > 0 aber nicht gegen g(x). Es gibt auch Taylor-Reihen, die nur im Entwicklungspunkt selbst konvergieren. Allgemeiner gilt das folgende wichtige Theorem (Borel). Es sei (c n ) n N0 eine beliebige Folge. Dann gibt es eine Funktion f C (R) mit f (n) (0) = c n für alle n N 0. Einen Beweis findet man in [A1],

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014 Tutorübung 5 Analysis 2 für Lehramt TU Dortmund, Sommersemester 24 Aufgabe T Bestimme die Taylorreihen von (a) cos(x) um a. (b) ln(x) um a. (c) um a 2. +x Bestimme in allen Fällen das Taylorpolynom T n,a

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen...

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen... KAPITEL 9 Funtionenreihen 9. Taylor-Reihen.................................... 74 9.2 Potenzreihen..................................... 77 9.3 Methoden der Reihenentwiclung.......................... 90

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

4.4 Taylorentwicklung

4.4 Taylorentwicklung 4.4. TAYLORENTWICKLUNG 83 4.4 Taylorentwicklung. Definitionen f sei eine reellwertige m + -mal stetig differenzierbare Funktion der n Variablen x bis x n auf einem Gebiet M R n. Die Verbindungsgerade der

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Höhere Mathematik II. (Vorlesungskript)

Höhere Mathematik II. (Vorlesungskript) Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Vorlesungskript) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L

Mehr

Höhere Mathematik II

Höhere Mathematik II Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Beilagen) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L A TEX-Satz

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Beispielaufgaben rund um Taylor

Beispielaufgaben rund um Taylor Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.

Mehr

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze

Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze Prof. Dr. Lorenz Schwachhöfer Inhaltsverzeichnis 1 Mathematische Grundlagen 2 2 Folgen und Reihen 7 3 Stetigkeit 15 4 Differenzierbarkeit

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Differenzierbarkeit von Funktionen

Differenzierbarkeit von Funktionen Differenzierbarkeit von Funktionen ist ein fundamentales Konzept zur a Beschreibung von Naturvorgängen: Änderungsrate, Momentangeschwindigkeit, Beschleunigung Differentialgleichungen als Bewegungsgleichungen

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

10 Potenz- und Fourierreihen

10 Potenz- und Fourierreihen 10 Potenz- und Fourierreihen 10.1 Konvergenzbegriffe für Funktionenfolgen Im letzten Kapitel soll es noch einmal um eindimensionale Analysis gehen. Speziell werden wir uns mit Folgen und Reihen reeller

Mehr

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Um die Grundidee der Taylorentwicklung zu verstehen, betrachten wir zunächst eine Polynomfunktion f(x) = n

Um die Grundidee der Taylorentwicklung zu verstehen, betrachten wir zunächst eine Polynomfunktion f(x) = n VII.1. Taylorentwicklung 143 VII. Taylorreihen In diesem Kapitel werden wir eine Methode kennenlernen, differenzierbare Funktionen lokal durch Polynome zu approximieren. Im gleichen Sinne wie die Differenzierbarkeit

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 3. Gruppenübung zur Vorlesung Höhere Mathematik 2 Sommersemester 2009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Harmonische und Holomorphe Funktionen

Harmonische und Holomorphe Funktionen Harmonische und Holomorphe Funktionen Jonathan Bischoff LMU München illertal am 14.12.2014 Jonathan Bischoff Harmonische und Holomorphe Funktionen 1/14 Definition harmonische Funktion Sei G R 2 ein Gebiet.

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

9 Folgen und Reihen von Funktionen

9 Folgen und Reihen von Funktionen 9 Folgen und Reihen von Funktionen In diesem Abschnitt betrachten wir verschiedene Arten der Konvergenz einer Funktionenfolge Besonders interessiert uns die Frage, ob sich Eigenschaften der einzelnen Glieder

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

26. Höhere Ableitungen

26. Höhere Ableitungen 26. Höhere Ableitungen 331 26. Höhere Ableitungen Im letzten Kapitel haben wir gesehen, wie man für Abbildungen zwischen mehrdimensionalen Räumen das Konzept der Differenzierbarkeit definieren und für

Mehr

Lösung der Übungsaufgaben vom SS 2011

Lösung der Übungsaufgaben vom SS 2011 Inhaltsverzeichnis Lösung der Übungsaufgaben vom SS Aufgabe Nr. Seite Aufgabe Nr. Seite 3 3 3 3 3 33 3 4 3 34 4 5 3 35 5 6 4 36 6 7 4 37 8 8 4 38?? 9 5 39 3 5 4 34 6 7 3 8 4 9 5 6 7 8 9 3 3 3 4 4 5 5 6

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2

Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2 Klasse STa FrSe 4 ungr MAE Serie 6 Potenz und Taylorreihen Aufgabe a Bestimmen Sie die Grenzen des Konvergenzbereihs der Potenzreihe: p b Entwikeln Sie die Funktion f vier Summanden. k k 4 k k k in eine

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Skript zur Vorlesung. Mathematik 1. für Studierende der Bachelorstudiengänge Chemie und Biophysik. Dr. Caroline Löbhard

Skript zur Vorlesung. Mathematik 1. für Studierende der Bachelorstudiengänge Chemie und Biophysik. Dr. Caroline Löbhard Skript zur Vorlesung Mathematik 1 für Studierende der Bachelorstudiengänge Chemie und Biophysik Dr. Caroline Löbhard 1. Februar 2016 Inhaltsverzeichnis 1 Folgen und Konvergenz 5 1.1 Folgen reeller Zahlen.............................

Mehr